Pubblicazioni

Generalized Feynman-Kac formula under volatility uncertainty  (2023)

Autori:
Akhtari, B; Biagini, F; Mazzon, A; Oberpriller, K
Titolo:
Generalized Feynman-Kac formula under volatility uncertainty
Anno:
2023
Tipologia prodotto:
Articolo in Rivista
Tipologia ANVUR:
Articolo su rivista
Lingua:
Inglese
Formato:
A Stampa
Referee:
Nome rivista:
Stochastic Processes and their Applications
ISSN Rivista:
0304-4149
N° Volume:
166
Intervallo pagine:
82-110
Parole chiave:
Feynmac-Kac formula; Sublinear conditional expectation; Nonlinear PDEs
Breve descrizione dei contenuti:
In this paper we provide a generalization of a Feynmac-Kac formula under volatility uncertainty in presence of a linear term in the PDE due to discounting. We state our result under different hypothesis with respect to the derivation given by Hu et al. (2014), where the Lipschitz continuity of some functionals is assumed which is not necessarily satisfied in our setting. In particular, we show that the G-conditional expectation of a discounted payoff is a viscosity solution of a nonlinear PDE. In applications, this permits to calculate such a sublinear expectation in a computationally efficient way. (c) 2022 Elsevier B.V. All rights reserved.
Id prodotto:
137426
Handle IRIS:
11562/1118229
ultima modifica:
19 febbraio 2025
Citazione bibliografica:
Akhtari, B; Biagini, F; Mazzon, A; Oberpriller, K, Generalized Feynman-Kac formula under volatility uncertainty «Stochastic Processes and their Applications» , vol. 1662023pp. 82-110

Consulta la scheda completa presente nel repository istituzionale della Ricerca di Ateneo IRIS

<<indietro
Condividi