Andrea Mazzon

AndreaMazzon,  September 4, 2023
Position
Temporary Assistant Professor
Academic sector
STAT-04/A - Mathematical Methods for Economy, Finance and Actuarial Sciences
Research sector (ERC-2024)
PE1_13 - Probability

SH1_4 - Finance; financial markets

PE1_14 - Mathematical statistics

Office
Polo Santa Marta,  Floor 1,  Room 1.29
Telephone
045 8028345
E-mail
andrea|mazzon*univr|it <== Replace | with . and * with @ to have the right email address.

Office Hours

Any time via E-Mail arrangement.

Previo appuntamento via E-Mail.

Curriculum

Andrea Mazzon è un Ricercatore a Tempo Determinato (RTDB) presso il dipartimento di Scienze Economiche dell'Università di Verona. 

Ha ottenuto il dottorato di ricerca in Mathematics in Natural, Social and Life Sciences presso la Scuola Internazionale Superiore di Studi Avanzati (SISSA) di Trieste in collaborazione con il Gran Sasso Science Institute (GSSI), con una tesi dal titolo Asset price bubbles in Financial networks, per la quale ha lavorato alla LMU di Monaco di Baviera sotto la supervisione dei prof. Biagini e Meyer-Brandis.

Presso la LMU è stato prima post-doc e poi Lecturer, per tre anni.

I suoi interessi di ricerca includono Model uncertainty, rischio finanziario climatico e lo studio di martingale locali.

Modules

Modules running in the period selected: 8.
Click on the module to see the timetable and course details.

Course Name Total credits Online Teacher credits Modules offered by this teacher
Master’s degree in Banking and Finance Financial risk management (2025/2026)   12    PROGRAMMAZIONE IN JAVA PER LA FINANZA
Master’s degree in Banking and Finance Asset Pricing Models (2024/2025)   9  eLearning 7.66 
Master’s degree in Banking and Finance Computational methods for finance (2024/2025)   6  eLearning
Ph.D. in Economics and Finance Mathematics (2024/2025)   3.75  eLearning 3.75 
Master’s degree in Banking and Finance Financial risk management (2024/2025)   12  eLearning PROGRAMMAZIONE IN JAVA PER LA FINANZA
Master’s degree in Banking and Finance Asset Pricing Models (2023/2024)   9  eLearning
Master’s degree in Banking and Finance Computational methods for finance (2023/2024)   6  eLearning
Ph.D. in Economics and Finance Mathematics (2023/2024)   4.5  eLearning 4.5 

Di seguito sono elencati gli eventi e gli insegnamenti di Terza Missione collegati al docente:

  • Eventi di Terza Missione: eventi di Public Engagement e Formazione Continua.
  • Insegnamenti di Terza Missione: insegnamenti che fanno parte di Corsi di Studio come Corsi di formazione continua, Corsi di perfezionamento e aggiornamento professionale, Corsi di perfezionamento, Master e Scuole di specializzazione.
Research interests
Topic Description Research area
MSC 60G40 - Stopping times; optimal stopping problems; gambling theory Modelling of stopping times and optimal stopping problems in stochastic processes, focusing on decision-making under uncertainty in dynamic systems; analysis of timing strategies, reward optimization, and risk evaluation; application of gambling theory and martingale methods to study temporal variations and optimal stopping rules. Quantitative Methods for Economics
Stochastic processes
MSC 62P05 - Applications to actuarial sciences and financial mathematics Risk modelling in insurance and finance, in particular credit risk with the development of credit scoring models and algorithms; calibration of the probabilities of defaults; market segmentation. Quantitative Methods for Economics
Applications
MSC 91B30 - Risk theory, insurance Risk modelling in insurance and finance, focusing on the assessment and management of uncertainty in dynamic systems; development of probabilistic structures for claim processes, premium calculation, and solvency analysis; application of stochastic processes and risk measures to evaluate temporal variations and optimize risk-sharing strategies. Quantitative Methods for Economics
Mathematical economics
MSC 91B70 - Stochastic models Stochastic modelling in economics and finance, focusing on dynamic systems that evolve over time under uncertainty; development of probabilistic frameworks for market behavior, risk assessment, and decision-making; applications of stochastic processes and stochastic control to model temporal variations and optimize strategies. Quantitative Methods for Economics
Mathematical economics



Share