Il corso denominato "Laboratorio di Python" è un'attività (facoltativa) di tipologia f che permette l'assegnazione, tramite prova di accertamento finale, di 3 CFU. Questa attività è disponibile sia per gli studenti del CdLM in Economics e del CdLM in Banca e Finanza sia per gli studenti delle altre lauree magistrali e triennali. Si può partecipare a questa attività anche se non si ha una conoscenza del software Python. Le caratteristiche di questa attività sono le seguenti:
- L’attività è rivolta in particolare, ma non in modo esclusivo, agli studenti del CdLM in Economics e del CdLM in Banca e Finanza.
- La frequenza alle lezioni/esercitazioni è obbligatoria. Per poter accedere alla prova di accertamento del profitto che si terrà alla fine del corso è necessario aver frequentato almeno i 2/3 delle lezioni/esercitazioni.
Sono previste complessivamente 18 ore di lezioni/esercitazioni (più 2 ore di accertamento finale), da tenersi prevalentemente nel primo semestre. Il corso sarà attivato al raggiungimento di un numero minimo di partecipanti. Il calendario di massima delle attività sarà pubblicato appena possibile.
Tutor: dott. Jacopo Morabito
L’attività è erogata in aula informatica (50 posti) presso il polo Santa Marta (Verona). Le richieste di partecipazione a tale attività verranno soddisfatte in base all’ordine cronologico di iscrizione.
Apertura prenotazioni: 15 ottobre 2017
Chiusura prenotazioni: 3 novembre 2017
La procedura di iscrizione si trova sulla piattaforma elearning del corso.
Python è un linguaggio di programmazione dinamico orientato agli oggetti utilizzabile per molti tipi di sviluppo software. Offre un forte supporto all'integrazione con altri linguaggi e programmi, compreso R, è fornito di una estesa libreria standard e può essere imparato in pochi giorni. Python è ampiamente utilizzato in molti ambiti, in particolare per la gestione e l’analisi dei dati (data science). Oggigiorno, R e Python sono i due software più diffusi tra chi si occupa di gestione e analisi dei dati (data scientist). Entrambi hanno incrementato la loro diffusione in modo quasi esponenziale negli ultimi anni. Per questi software, esistono numerose librerie per la gestione di data base di dimensioni elevate, per la visualizzazione dei dati, e per l’implementazione di modelli avanzati di machine learning. Python è usato in numerose organizzazioni, comprese la NASA, Yahoo e Google, ed è completamente gratuito. Altre informazioni si possono trovare su https://www.python.it/ oppure su https://www.python.org/
Il programma dell’attività prevede alcune lezioni di introduzione al software Python ed alle sue principali funzioni. Verranno quindi presi in considerazione alcuni degli argomenti trattati negli insegnamenti a contenuto matematico, statistico, econometrico e finanziario. Gli argomenti verranno presentati principalmente per mezzo di esempi. Nel suo complesso, l’attività si pone l’obiettivo di innalzare il livello delle abilità quantitative ed informatiche dei partecipanti e di perfezionare la conoscenza di un software ampiamente utilizzato, fornendo delle competenze che possono rivelarsi utili sia nella preparazione della tesi sia nel mondo del lavoro.
Autore | Titolo | Casa editrice | Anno | ISBN | Note |
Dmitry Zinoviev | Data Science con Python: dalle stringhe al machine learning, le tecniche essenziali per lavorare sui dati (Edizione 1) | APOGEO | 2017 | 9788850334148 | |
Joel Grus | Data Science from Scratch: First Principles with Python (Edizione 1) | O'Reilly Media, Inc. | 2015 | 9781491901410 | |
Sarah Guido, Andreas C. Müller | Introduction to Machine Learning with Python (Edizione 1) | O'Reilly Media, Inc. | 2016 | 9781449369880 | |
Tony Gaddis | Introduzione a Python (Edizione 1) | Pearson Italia, Milano-Torino | 2016 | 9788891900999 | |
Samir Madhavan | Mastering Python for Data Science (Edizione 1) | Packt Publishing | 2015 | 9781784390150 | |
Ahmed Sherif | Practical Business Intelligence (Edizione 1) | Packt Publishing | 2016 | 9781785885433 | |
Toby Segaran | Programming Collective Intelligence (Edizione 1) | O'Reilly Media, Inc. | 2007 | 9780596529321 | |
Jake VanderPlas | Python Data Science Handbook: Essential Tools for Working with Data (Edizione 1) | O'Reilly Media, Inc. | 2016 | 9781491912126 | |
William Wesley McKinney | Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (Edizione 2) | O'Reilly Media, Inc. | 2017 | 9781491957653 | |
Vahid Mirjalili, Sebastian Raschka | Python Machine Learning (Edizione 2) | Packt Publishing | 2017 | 9781787125933 | |
Chris Albon | Python Machine Learning Cookbook (Edizione 1) | O'Reilly Media, Inc. | 2018 | 9781491989371 | |
Allen B. Downey | Think Stats: Exploratory Data Analysis (Edizione 2) | O'Reilly Media, Inc. | 2014 | 9781491907344 | |
Richard Lawson | Web Scraping with Python (Edizione 1) | Packt Publishing | 2015 | 9781782164364 |
La prova di accertamento del profitto consiste in una prova pratica e in un eventuale colloquio orale sull’utilizzo del software Python.
******** CSS e script comuni siti DOL - frase 9957 ********