Statistica (2010/2011)

Codice insegnamento
4S00121
Crediti
9
Coordinatore
Darionino Olivieri
Settore disciplinare
SECS-S/01 - STATISTICA
Lingua di erogazione
Italiano
L'insegnamento è organizzato come segue:
Attività Crediti Periodo Docenti Orario
lezione 8 Primo semestre Darionino Olivieri
esercitazione 1 Primo semestre Annamaria Guolo

Orario lezioni

Primo semestre
Attività Giorno Ora Tipo Luogo Note
lezione lunedì 8.30 - 10.10 lezione Aula A  
lezione martedì 10.10 - 11.50 lezione Aula A  
lezione giovedì 13.30 - 15.10 lezione Aula A  
lezione venerdì 8.30 - 10.10 lezione Aula A  

Obiettivi formativi

Obiettivi formativi
Il corso intende fornire una metodologia di analisi quantitativa fondata sulla osservazione, rilevazione ed elaborazione dei fenomeni collettivi. In particolare sono trattate le problema-tiche relative all’analisi dei dati, al disegno e alla realizzazione di indagini ed esperimenti nei diversi settori applicativi, a fini descrittivi, interpretativi e decisionali. Una parte del programma considera le principali tecniche dell’inferenza statistica.

Programma

Programma
Concetti introduttivi: introduzione alla statistica; cenni storici; lo schema della ricerca statistica; le rappresentazioni grafiche.
Gli indici di localizzazione: generalità; le medie potenziate; la media aritmetica; la media armonica; la media geometrica; la media quadratica; la media cubica e le altre medie potenziate; i centri; le medie lasche; la mediana; le altre medie di posizione: quartili, decili, percentili o quantili; la moda o norma; considerazioni sull’uso delle medie.
I rapporti statistici: il confronto fra dati statistici; i rapporti statistici; i rapporti indici o numeri indici.
Gli indici di variabilità: la variabilità; gli intervalli di variazione; il campo di variazione; la differenza interquartile; gli scarti da un valore medio; gli scostamenti semplici medi; lo scarto quadratico medio; la varianza; cenni sulle differenze medie; gli indici relativi di variabilità.
I momenti e gli indici di forma: la forma delle distribuzioni statistiche; i momenti; i momenti dall’origine; i momenti centrali e le loro relazioni.
L’asimmetria e l’appiattimento.
Concetti di calcolo delle probabilità: le definizioni di probabilità; la definizione classica; la definizione frequentista; la definizione soggettivista; la definizione assiomatica.
Le variabili casuali: generalità; la definizione di variabile casuale; le variabili casuali discrete; le variabili casuali continue; i momenti delle variabili casuali.
Variabili casuali discrete: generalità; la variabile binomiale, ipergeometrica, frequenza relativa campionaria, di Poisson.
Variabili casuali continue: generalità; la variabile normale; la trasformazione lineare di una variabile normale; la somma di variabili normali indipendenti; la variabile normale standardizzata; le tavole della normale standardizzata.
Le distribuzioni limite: introduzione; la convergenza della variabile binomiale; la convergenza della variabile ipergeometrica; la convergenza della frequenza relativa campionaria; la convergenza della variabile di Poisson; la convergenza della variabile t di Student; la convergenza della variabile chi-quadrato.
Inferenza statistica: il campionamento; vantaggi e costi del campione; vari tipi di campioni; i campioni probabilistici; gli stimatori; le proprietà degli stimatori; la prova delle ipotesi; i test statistici; gli errori di prima e seconda specie.
Inferenze su proporzioni: lo stimatore frequenza relativa campionaria; le proprietà dello stimatore; l’errore nella stima di una proporzione; la dimensione campionaria che assicura una data precisione; l’intervallo di confidenza per una proporzione; la prova di ipotesi su una proporzione.
Inferenze sulla media: lo stimatore media campionaria; le proprietà dello stimatore; la varianza campionaria; l’errore e la dimensione campionaria nella stima della media della popolazione; l’intervallo di confidenza per la media della popolazione; la prova di ipotesi su una media.
Altri problemi inferenziali: il test di omogeneità per il confronto fra distribuzioni di frequenza; il test di indipendenza nelle tabelle a doppia entrata.
La regressione: le relazioni fra variabili; le fasi della rappresentazione analitica; i minimi quadrati (con dimostrazione); il modello bivariato; la retta di regressione; il coefficiente di correlazione lineare; il coefficiente di determinazione; la significatività del coefficiente di correlazione lineare, cenni sull’analisi multivariata.

Modalità d'esame

Modalità di svolgimento dell’esame. Accertamento scritto, eventualmente integrato da una prova orale a richiesta del candidato o della Commissione.-
I n.9 Cfu conseguibili sono costituiti di n.8 Cfu di lezioni (per 64 ore tenute dal Prof. Olivieri) e da n.1 Cfu di esercitazioni (per 12 ore tenute dalla Dott.ssa A. Guolo)

Libri di testo
– D. OLIVIERI, Fondamenti di statistica, terza edizione, Cedam, Padova, 2007.
– D. OLIVIERI, Temi svolti di statistica, terza edizione aggiornata al 2006, Cedam, Padova, 2008.

Letture consigliate:
D. Piccolo, Statistica per le decisioni, Il Mulino, Bologna 2004.
M. Fraire, A. Rizzi, Statistica, Carocci editore, Roma, 1998.
F. Parpinel, C. Provasi, Probabilità e statistica per le scienze economiche, Giappichelli, Torino, 1999.