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Abstract

This paper establishes an equivalence between three incomplete rank-
ings of distributions of an ordinally measurable attribute. The first rank-
ing is that associated with the possibility of going from distribution to
the other by a finite sequence of two elementary operations: increments
of the attribute and the so-called Hammond transfer. The later transfer is
like the Pigou-Dalton transfer, but without the requirement - that would
be senseless in an ordinal setting - that the "amount" transferred from
the "rich" to the "poor" is fixed. The second ranking is an easy-to-use
statistical criterion associated to a specifically weighted recursion on the
cumulative density of the distribution function. The third ranking is that
resulting from the comparison of numerical values assigned to distribu-
tions by a large class of additively separable social evaluation functions.
Illustrations of the criteria are also provided.

1 Introduction

When can we say that a distribution of income among a collection of individuals
is more equal than another ? One of the greatest achievement of the modern
theory of inequality measurement is the demonstration (made for the first time
by Hardy, Littlewood, and Polya (1952) and popularized among economists by
Kolm (1969) Atkinson (1970) Dasgupta, Sen, and Starrett (1973), Sen (1973)
and Fields and Fei (1978)) that the following three answers to that question are
equivalent:

1) When one distribution has been obtained from the other by a finite se-
quence of Pigou-Dalton transfers.

∗We are indebted, with the usual disclaiming qualification, to Ramses Abdul Naga for his
detailed comments on an earlier version of this paper.
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2) When one distribution would be considered better than the other by all
utilitarian philosophers who assume that individuals convert income into utility
by the same increasing and concave function.

3) When the Lorenz curve associated to one distribution lies nowhere below,
and at least somewhere above, that of the other.

The equivalence of these three answers is an important result because it ties
together three a priori distinct aspects of the process of inequality measurement.

The first one - contained in the famous Pigou-Dalton principle of transfers
- is an "elementary transformation" of the distribution of income that captures
in a crisp fashion the nature of the equalization process that is at stake. It
provides a first immediately palatable answer to the question raised above. A
distribution is more equal than another when it has been obtained from it by a
finite sequence of such "clearly equalizing" Pigou-Dalton transfers.

The second aspect of the process of inequality measurement identified by
the Hardy-Littlewood-Polya (HLP) theorem is the ethical principle underlying
utilitarianism or, more generally, additively separable social evaluation. Attitude
toward income inequality is clearly an ethical matter. It is therefore of impor-
tance to identify the ethical principles that rationalize the notion of inequality
reduction underlying the Pigou-Dalton principle of transfers. While the HLP
theorem points toward utilitarianism or additively separable social evaluation
as a source of such rationalization, it can be shown (see e.g. Gravel and Moyes
(2013)) that such a rationalization can also be obtained through a much more
general class of social evaluation functions.

The third aspect of the process of inequality measurement captured by the
HLP theorem is the empirically implementable criterion underlying Lorenz dom-
inance. It is, indeed, immensely useful to have an implementable criterion like
the Lorenz curve that enables one to check in an easy manner when one distrib-
ution dominates another. Comparisons of Lorenz curves have become a routine
exercise that is performed every day by thousands of researchers all over the
world. Moreover, compatibility with the Lorenz ranking of income distributions
is now considered to be a minimal requirement that any numerical index of in-
come inequality must satisfy. In this sense, the HLP theorem is, in the literal
sense of the word, a foundation to income inequality measurement.

The current paper is concerned with the issue of establishing analogous foun-
dations to the problem of comparing distributions of an ordinal or qualitative
attribute among a collection of individuals. The last fifteen years have wit-
nessed indeed an extensive use of data involving distributions of attributes such
as access to basic services, educational achievements, health outcomes, and self-
declared happiness to mention just some of the most popular of those. When
performing normative comparisons of distributions of such attributes, it is not
uncommon for researchers to disregard the ordinal measurability of the attribute
and to treat it, just like income, as a variable that can be "summed", or "trans-
ferred" across individuals. Examples of those practices include Castelló-Clement
and Doménech (2002) and Castelló-Clement and Doménech (2008) (who dis-
cusses inequality indices on human capital) and Pradhan, Sahn, and Younger
(2003) (who decompose Theil indices applied to the heights of under 36 month
children interpreted as a measure of health). Yet, following the influential con-
tribution by Allison and Foster (2004), there has been a growing concern by
researchers of duly accounting for the ordinal character of the numerical infor-
mation conveyed by the indicators used in those studies. Examples of studies
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that have taken such a care, and have explicitly refused to use cardinal properties
of the attribute when normatively evaluating its distribution, include Abul-Naga
and Yalcin (2008) and Apouey (2007).

A difficulty with the normative evaluation of distribution of an ordinal at-
tribute is that of defining an appropriate notion of inequality reduction in that
context. What does it mean indeed for an ordinal attribute to be "more equally
distributed" than another ? The usual notion of a Pigou-Dalton transfer used
to answer this question in the case of a cardinally measurable attribute is of no
clear use for that purpose. Recall indeed that a Pigou-Dalton transfer is the op-
eration by which an individual transfers to someone with a lower quantity of the
attribute a certain quantity of the attribute. Such a transfer is obviously mean-
ingless if the "quantity" of the attribute is ordinal. While ordinal measurability
of the attribute - provided that it is comparable across different individuals -
enables one to identify which of two individuals has "more" of the attribute
than the other, it does not enable one to quantify further the statement. It does
not enable one to talk about a "certain quantity" of the attribute that can be
transferred across individuals.

Some forty years ago, Peter J. Hammond (1976) has proposed, in the spe-
cific context of social choice theory, a so-called "minimal equity principle" that
was explicitly concerned with distributions involving an ordinally measurable
attribute. According to Hammond’s principle, a change in the distribution that
"reduces the gap" between two individuals endowed with different quantities of
the ordinal attribute is a good thing, irrespective of whether or not the "gain"
from the poor recipient is equal to the "loss" from the rich giver. A Pigou-Dalton
transfer is clearly a particular case of a Hammond transfer (that imposes on the
later the additional requirement that the amount given by the rich should be
equal to the amount received by the poor). It seems to us that the purely ordi-
nal nature of Hammond transfers qualifies them as a highly plausible instances
of "ordinal inequality reduction". A distribution of an ordinal attribute is un-
questionably more equal than another when it has been obtained from the later
by a finite sequence of such Hammond transfers. This paper identifies a nor-
mative dominance criterion and a statistically implementable criterion that are
each equivalent to the notion of equalization underlying Hammond transfers.
It does so in the somewhat specific, but empirically important, case where the
ordinal attribute can take only a finite number different values. This finite case
is somewhat specific indeed for discussing Hammond equity principle. For, as is
well-known in social choice theory (see e.g. D’Aspremont and Gevers (1977),
D’Aspremont (1985), Sen (1977)), the Hammond equity principle is closely
related to "Max-Min" or "Lexi-Min" types of criteria that rank distributions
of an ordinal attribute on the basis of the smallest quantity of the attribute.
Bosmans and Ooghe (2013) have even shown that any anonymous, continuous,
and Pareto-inclusive transitive ranking of all vectors of Rn that are sensitive
to Hammond transfer must be the Maxi-Min criterion that compares such vec-
tors on the sole basis of the size of their smallest component. As shall be seen
in this paper, this apparently tight connection between Maxi-Min or Lexi-Min
principles and Hammond transfers becomes significantly looser when attention
is restricted to distributions of an attribute that can take finitely many different
values.

As for the normative principle, we stick to the tradition of comparing distri-
butions of the attribute by means of an additively separable social evaluation
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function. Each attribute quantity is thus assigned a numerical value by some
function, and alternative distributions of attributes are compared on the basis
of the sum - taken over all individuals - of these values. While this normative
approach can be considered utilitarian (if the function that assigns a value to
the attribute is interpreted to be a "utility" function), it does not need to. One
could also interpret the function more generally as an advantage function re-
flecting the value assigned to the attribute quantity by the social planner. It is
also possible to justify axiomatically this additively separable normative eval-
uation in a non-welfarist setting (see e.g. Gravel, Marchant, and Sen (2011)).
As the ordinal attribute (health indicator, education, access to basic services)
is considered to be a good thing to the individual, it is assumed that the ad-
vantage function is increasing with respect to the attribute. We show in this
paper that, in order for a ranking of distributions based on an additively sep-
arable social evaluation function to be sensitive to Hammond transfers, it is
necessary and sufficient for the advantage function to satisfy a somewhat strong
"decreasing increasingness" property. Specifically, any increase in the quantity
of the attribute obtained from some initial level must increase the advantage
more than would do any increase in the attribute taking place at some higher
level of the attribute. Because of this result, we therefore consider the ranking
of distributions of the ordinal attribute that coincides with the unanimity of all
additively separable rankings who use an advantage function that satisfies this
property.

The statistical criterion that we consider is, to the very best of our knowl-
edge, a new one. Its construction is based on a curve that we call, provisionally,
the H-curve, by reference to the Hammond principle of transfer to which it is,
as it turns out, closely related. To draw such a curve, one first assigns to the
lowest possible quantity of the ordinal attribute the fraction of the population
that are endowed with this quantity. For this lowest category, this number is
nothing else than the relative frequency of the category or, equivalently for the
lowest category, its cumulative frequency. One then proceeds, for any quantity
of the attribute that is strictly larger than this smallest quantity, by adding
together the relative frequency of the population endowed with this quantity of
the attribute and twice the fraction of the population endowed with a strictly
lower quantity of the attribute. The innovation of this curve lies precisely in its
addition, to any fraction of the population falling in some category, of twice the
fraction of the population falling in a strictly lower category. This (doubly) larger
weight given to the fraction of the population lying in a strictly worse category
as compared to that of the population belonging to a given category reflects,
of course, the somewhat strong redistributive flavour of the Hammond’s equity
principle. The criterion that we propose, and that we call H-dominance, is for
the dominating distribution to have a H−curve nowhere above and somewhere
below that of the dominated one. As we illustrate in the paper, the construction
of these curves, and the resulting implementation of the criterion, is easy.

This paper provides some foundations for the use of such a H-curve. It does
so by proving that the fact of having a distribution of an ordinal attribute that
H-dominates another is equivalent to the possibility of going from the latter to
the former by a finite sequence of Hammond transfers and/or increments of the
attribute. The paper also shows that the H-dominance criterion coincides with
the unanimity of all additively separable aggregation of advantage functions
that use an advantage function that is strongly decreasingly increasing in the
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sense given above.
The plan of the rest of the paper is as follows. The next section introduces

the notation and discusses the general problem of comparing distributions of
an ordinal attribute. The third section introduces the normative dominance
notions, the elementary transformations (Hammond transfers and increments)
and the H-curve in the specific setting where the ordinal attribute can take
finitely many different values. The main results are stated and proved in the
fourth section and the firth section concludes.

2 Three perspectives on comparing distributions
of an ordinal attribute

2.1 Normative evaluation

We consider societies made of a given number - n say - of individuals, indexed
by i. Societies with varying number of individuals can be compared as usual by
the Dalton principle of population replication. Every individual can fall into one
out of k different categories, indexed by h. We denote by C = {1, ..., k} the set of
these categories. These categories are assumed to be ordered from the worst (e.g.
being gravely ill) to the best (e.g. being in perfect health). However the ordering
of these categories is not assumed to be numerically represented by a cardinally
meaningful function. If the integers 1, ..., k provide a numerical representation
of the ordering of the categories, so do the numbers f(1), ..., f(k) where f is any
strictly increasing real valued function admitting C as its subdomain. A social
situation or, more compactly, a society s = (s1, ..., sn) ∈ Cn is a particular
assignment of these categories to the n individuals, where si is the category in
which individual i falls in society s. For any society s, and every category j,
one can define the number nsj of individuals who, in society s, falls in category
j by:

nsj = #{i ∈ {1, ..., n : si = j}

We of course notice that
k∑

i=1

nsi = n for every society s. If one adopts an anony-

mous perspective according to which "the names of the individuals do not mat-
ter", then the integers nsj (for j = 1, ..., k) summarize all the ethically relevant
information about society s. The current paper adopts this anonymous perspec-
tive and examines more specifically the normative rankings � of societies in Cn

that can be defined, for any two societies s and s′ in Cn, by:

s � s′ ⇐⇒
k∑

j=1

nsjαj ≥
k∑

j=1

ns′j αj (1)

for some list of k real numbers αj (for j = 1, ...., k) satisfying α1 < ... <
αk. These numbers can be seen as numerical evaluations of the corresponding
categories. These valuations may reflect subjective utility (if a Utilitarian
perspective is adopted) or a non-welfarist appraisal made by the social planner
of the fact, for someone, to falling in the different categories to which these
numbers are assigned. If such a non-welfarist perspective is adopted, the specific
additive form of the numerical representation 1 of the social ordering can be
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axiomatically justified (see e.g. Gravel, Marchant, and Sen (2011) for such a
justification in a variable population context).

The ordinal interpretation of the categories suggests that some care be taken
in avoiding the normative evaluation exercise to be unduly sensitive to particular
choices of the numbers αj (for j = 1, ...., k). A standard way to exert such a
care is to require the unanimity of evaluation over a wide class of such numbers.
This underlies the following general definition of normative dominance.

Definition 1 For any two societies s and s′ in Cn, we say that s normatively
dominates s′ for a family A ⊂ R

k of evaluations of the k categories, denoted
s �A s′, if one has:

k∑

j=1

nsjαj ≥
k∑

j=1

ns′j αj

for all (α1, ..., αk) ∈ A.

Given the assumed strict ordering of the categories, the largest set A over
which a normative dominance could be looked for is the set A1 defined by:

A1 = {(α1, ..., αk) ∈ R
k : α1 < ... < αk}

for any ranking ordinal ranking � represented by (1).

2.2 Elementary transformations

The definition of these transformations lies at the very heart of the problem
of comparing alternative distributions of an ordinally measured attribute. One
must indeed verify that the transformation only uses ordinal property of the
attribute. In this paper, we consider two such transformations.

The first of these elementary transformations - the increment - is hardly
new. It captures the intuitive idea that giving to someone - up to a permutation
thanks to anonymity - additional quantities of the ordinal attribute without
reducing - up to a permutation - the quantity of attribute of the others is a
good thing. We actually formulate this principle in the following minimalist
fashion.

Definition 2 (Increment) We will say that society s has been obtained from
society s′ by means of an increment, if there exist j ∈ {1, . . . , k − 1} such that:

nsh = n
s′

h , ∀ h = j, j + 1 ; (2)

nsj = n
s′

j − 1 ; n
s
j+1 = n

s′

j+1 + 1 . (3)

In words, society s has been obtained from society s′ by an increment if the
move from s′ to s is the sole result of the move of one individual from a category
j to the immediately superior category j + 1.

The second elementary transformation considered in this paper is that un-
derlying the principle of equity put forth by Peter J. Hammond (1976) some
forty years ago. It reflects an appealing - if not strong - notion of aversion
to inequality in contexts where the distributed attribute - taken to be utility
in Hammond (1976) - is ordinal. This principle considers that a reduction in

6



someone’s endowment of the attribute that is compensated by an increase in
the endowment of the other is a good thing if the looser remains, after his or
her loss, better off than the winner. While a reduction in the endowment of
someone compensated by an increase in that of someone else may be viewed as
the result of a "transfer" of attribute between the two persons, it is worth notic-
ing that, contrary to what is the case with standard Pigou-Dalton transfers,
the "quantity" given by the donor needs not be equal to that received by the
recipient. A Hammond transfer may involve taking a lot of attribute away from
a "rich" person in exchange of giving just a little bit to a poorer one. It may,
conversely, entail the transformation of a small "quantity" taken from the rich
into a large quantity given to the poor. As the comparisons of gains and loss of
an ordinal attribute is meaningless, the Hammond transfer may be viewed as
the natural analogue, in the ordinal setting, of the Pigou-Dalton transfer used
in the cardinal one. The precise definition of a Hammond transfer in our setting
is as follows.

Definition 3 (Hammond’s transfer) We will say that society s is obtained
from society s′ by means of a Hammond’s (progressive) transfer, if there exist
four categories 1 ≤ g < h ≤ i < j ≤ k such that:

nsl = n
s′

l , ∀ l = g, h, i, j ; (4a)

nsg = n
s′

g − 1 ; n
s
h = n

s′

h + 1 ; (4b)

nsi = n
s′

i + 1; n
s
j = n

s′

j − 1 . (4c)

2.3 Implementation criteria

Two implementation criteria are considered in this paper. The first one - first
order stochastic dominance - is standard in the literature. Its formal definition in
the current setting makes use of the cumulative distribution function associated
to a society s, that is denoted, for every i ∈ C, by F (i; s) and that is defined by:

F (i; s) =
i∑

h=1

nsh/n . (5)

Using this definition, one can define first order dominance as follows.

Definition 4 We will say that society s first order dominates society s′, which
we write s �1 s

′, if and only if:

F (i; s) ≤ F (i; s′) , ∀i = 1, 2, . . . , k . (6)

(remembering of course that F (k; s) =
∑k

h=1 n
s
h/n = 1 for any society s).

The second implementation criterion examined in this paper makes use of
the following curve (defined for any society s and any i ∈ {1, ..., k})

FH(i; s) =
i∑

h=1

(
2i−h

)
nsh /n . (7)

7



A few remarks can be made about this curve.
First, it verifies:

FH(1; s) = F (1; s) (8)

and:

FH(i; s) =
i−1∑

h=1

(
2i−h−1

)
F (h; s) + F (i; s) , ∀i = 2, 3, . . . , k. (9)

The different values of FH(·; s) are therefore nested. Moreover, for any i =
2, 3, . . . , k we have:

FH(i; s) = 2FH(i− 1; s) + F (i; s)− F (i− 1; s) = 2FH(i− 1; s) + n
s
i /n. (10)

Hence, by successive decomposition, one obtains, for all i = 2, 3, . . . , k:

FH(i; s) =
(
2j
)
FH(i− j; s) +

j−1∑

h=0

(
2h
) nsi−h
n

, ∀j = 1, 2, . . . , i− 1 . (11)

This curve give rise to the following notion of dominance - called H dominance.

Definition 5 (H dominance) We will say that society s H-dominates society
s′, which we write s �H s′, if and only if:

FH(i; s) ≤ FH(i; s
′) , ∀i = 1, 2, . . . , k . (12)

As the curve associated to FH is, to the best of our knowledge, new, it may
be worthwhile to illustrate its construction by a simple example. For this sake,
we consider the data used by Abul-Naga and Yalcin (2008) that describe the
distribution of self-reported health status ("very bad" (1), "bad" (2),"so-so" (3),
"good" (4) and "very good" (5)) in seven regions of Switzerland. The fractions
nsi/n (for i = 1, ..., 5) of the population belonging to each of the five health
categories in each of the seven regions are as follows:

ns1/n ns2/n ns3/n ns4/n ns5/n
s = Leman 0.01 0.04 0.11 0.56 0.28
s = North-West 0.01 0.04 0.13 0.63 0.19
s = Central 0 0.02 0.11 0.63 0.24
s = Middle-Land 0.01 0.03 0.13 0.60 0.23
s = East 0 0.03 0.11 0.64 0.22
s = Ticino 0.01 0.05 0.11 0.70 0.13
s = Zurich 0 0.03 0.10 0.65 0.22

Table 1

From this table, one can use definition (5) as well as equations (8) and (10) to

obtain the values of F (i; s) and FH(i; s) for i = 1, ..., 5 as in the two following
tables:
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F (1; s) F (2; s) F (3; s) F (4; s) F (5; s)
Leman 0.01 0.05 0.16 0.72 1
North-West 0.01 0.05 0.18 0.81 1
Central 0 0.02 0.13 0.76 1
Middle-Land 0.01 0.04 0.17 0.77 1
East 0 0.03 0.14 0.78 1
Ticino 0.01 0.06 0.17 0.87 1
Zurich 0 0.03 0.13 0.78 1

Table 2

FH(1; s) FH(2; s) FH(3; s) FH(4; s) FH(5; s)
Leman 0.01 0.06 0.23 1.02 2.32
North-West 0.01 0.06 0.25 1.13 2.45
Central 0 0.02 0.15 0.93 2.10
Middle-Land 0.01 0.05 0.23 1.06 2.35
East 0 0.03 0.17 0.98 2.18
Ticino 0.01 0.07 0.25 1.20 2.53
Zurich 0 0.03 0.16 0.97 2.16

Table 3

A few remarks are in order on the FH curves. In plain English, FH(i; s) is a
(specifically) weighted sum of the fractions (if the number of individuals is vari-
able) of the population in s that are in worse categories than i. The weight
assigned to the fraction of the population in category h (for h < i) in that sum
is 2i−h. Hence the weights are (somewhat strongly) decreasing with respect to
the categories. A nice feature of the FH curve - that appears strikingly in for-
mula (10) - is its recursive construction, that is quite similar to that underlying
the cumulative distribution curve. The cumulative distribution F can indeed
be defined recursively by:

nF (1; s) = ns1 (13)

and, for i = 2, ..., k, by:

nF (i; s) = nF (i− 1; s) + nsi (14)

The recursion that defines FH starts just in the same way than as in (13) with:

nFH(1; s) = n
s
1

but has the iteration formula (14) replaced by:

nFH(i; s) = 2nFH(i− 1; s) + n
s
i

The H-curves associated to the Léman and the Central region in Switzerland
are depicted on figure 1.

We can see that the Leman region H-dominates the central one. We can also
see from table 3 that many (but not all) of the seven regions of Switzerland can
be ranked by H dominance. The Hasse diagram corresponding to the ranking
of the seven regions of Switzerland by the H−dominance criterion is shown
in figure 2. By contrast, figure 3 shows the Hasse diagram associated to the
ranking of these same regions by standard first order stochastic dominance.

9



As can be seen, the ranking of the regions by H-dominance, while obviously
consistent with that of first order stochastic dominance, is significantly more
discriminatory than the latter. The H-dominance ranking of these regions can
be contrasted to the ranking of the same regions by the Allison and Foster (2004)
criterion (provided by Abul-Naga and Yalcin (2008)) as well as to the complete
rankings of those same regions provided by the comparisons of the value taken
by some of the ordinal inequality indices proposed by Abul-Naga and Yalcin
(2008).

0 1 2 3 4 5
0

1

2

category

FH

Leman

Central

Figure 1: Two H-curves

In the next section, we provide some justification for using H-dominance as
a criterion to compare distributions of an ordinal attribute.

10



 
  Central 

   Zurich 

    East 

Leman Middle Land 

North West 

Ticino 

Figure 2: The ranking of the seven Swiss regions by H-dominance.

3 Results

We focus first on the notions of increments, normative dominance, and first
order stochastic dominance. A preliminary question that can be asked is: what
conditions on the set A on which normative dominance is defined are necessary
and sufficient for normative dominance - as per definition 1 - to be sensitive
to increments. The following proposition provides the obvious answer that the
necessary and sufficient condition for this is that A be precisely equal to A1.

Proposition 1 Let s be a society that has been obtained from s′ by an increment
as per definition 2. Then s �A s′ if and only if A = A1.

Proof. Let s be a society obtained from s′ by an increment. By definition 2,
there exists some j ∈ {1, ..., k − 1} such that:

nsh = n
s′

h

for all h ∈ {1, ...k} such that h = j, j + 1,

nsj = n
s′

j − 1

and,
nsj+1 = n

s′

j + 1.

Then s �A s′ if and only if: (using definition 1):

k∑

j=1

nsjαj ≥
k∑

j=1

ns′j αj

⇐⇒

αj+1 − αj ≥ 0

by definition of an increment. As this inequality must hold for any j ∈ {1, ..., k−
1}, this completes the proof.
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Figure 3: The 1st order stochastic dominance ranking of the seven Swiss regions

We now use this proposition to establish the following theorem. We provide
the proof of this theorem for the sake of completeness (and for further use in
the proof of our main theorem 2 below) even though the equivalences that it
establishes have been known for a long time (see e.g. Lehmann (1955) or Quirk
and R.Saposnik (1962)).

Theorem 1 For any two societies s and s′ ∈ Cn, the following three statements
are equivalent:
(a) s is obtained from s′ by means of a finite sequence of increments,
(b) s �A1 s′,
(c) s �1 s

′.

Proof. The equivalence between (a) and (c) is well-known in the literature. We
prove the equivalence between statements (b) and (c). We first notice that, for
any society s, one has

k∑

j=1

nsjαj =






[ns1 α1
+ ns2 α2
+ · · ·
+ nsk αk]

=






ns1 α1
+ ns2 α1 + n

s
2 [α2 − α1]

+ ns3 α1 + n
s
3 [α2 − α1] + n

s
3 [α3 − α2]

+ · · ·
+ nsk α1 + n

s
k [α2 − α1] + n

s
k [α3 − α2] + . . . n

s
k [αk − αk−1] ,

=






nα1
+ (n− ns1) [α2 − α1]
+ [n− (ns1 + n

s
2)] [α3 − α2]

+ · · ·

+
[
n−

∑k−1
h=1 nh

]
[αk − αk−1] ,
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= n[αk −
k−1∑

h=1

F (h; s)(αh+1 − αh)]

Given this, one can write statement (b) as:

k∑

j=1

nsjαj ≥
k∑

j=1

ns′j αj (15)

⇐⇒

αk −
k−1∑

h=1

F (h; s) [αh+1 − αh] ≥ αk −
k−1∑

h=1

F (h; s′) [αh+1 − αh]

⇐⇒
k−1∑

h=1

[F (h; s)− F (h; s′)] [αh+1 − αh] ≤ 0 (16)

Hence having F (h; s) ≤ F (h; s′) for every h ∈ {1, ..., k − 1} is sufficient for
inequality (15) to hold for all (α1, ..., αk) ∈ A1. Conversely, suppose that one
has F (j; s) > F (j; s′) for some category j. Notice that j < k since F (k; s) =
F (k; s′) = 1. Consider then the list of real numbers (α1, .., αk) ∈ A1 such that
αh = 0 for all h = 1, . . . , j and αh = 1 for all h = j + 1, . . . , k. This particular
list of numbers combined to the statement F (j; s) > F (j; s′) leads immediately
to the violation of inequality (16), as required.

We now turn to the notion of Hammond transfers. In a parallel fashion to
what has been established in proposition 1 for increments, we first ask under
what conditions on the set A is normative dominance - as per definition 1 -
sensitive to both increments and Hammond transfers (as per definition 3). It
turns out that the answer to that question involves the following subset A2 of
A1:

A2 =
{
(α1, ..., αk) ∈ R

k | (αh − αg) ≥ (αj − αi) for 1 ≤ g < h ≤ i < j ≤ k
}

(17)
In words, A2 contains all lists of categories’ evaluations that are "strongly con-
cave" with respect to these categories in the sense that the "utility" or "advan-
tage gain of moving from one category to a better one is always better when
done from categories in the bottom part of the categories scale than when done
in the upper part of it. This strong concavity is, perhaps, better seen if one
restrict attention to those elements of A2 that are also in A1, as shown in the
following lemma.

Lemma 1 The list of k real numbers (α1, ..., αk) belongs to A1 and verifies
αi+1 − αi ≥ αk − αi+1 for all i ∈ {1, ..., k − 1} if and only if it belongs to
A1 ∩A2.

Proof. Suppose that (α1, ..., αk) ∈ A1 ∩ A2 so that, among other things, the
inequality (αh − αg) ≥ (αj − αi) for all 1 ≤ g < h ≤ i < j ≤ k. This implies
that, for any i ∈ {1, ..., k−1}, αi+1−αi ≥ αk−αi+1. Conversely, consider any
list of k real numbers (α1, ..., αk) in A1 that verifies αi+1 − αi ≥ αk − αi+1 for
all i ∈ {1, ..., k − 1}. Since (α1, ..., αk) ∈ A1, one has αi+1 − αg > αi+1 − αi ≥
αk − αi+1 ≥ αl − αj for all g < i + 1 and l, j satisfying k ≥ l ≥ j ≥ i + 1.
Replacing i+ 1 by h completes the proof that (α1, ..., αk) ∈ A2.
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Hence, when examined in the light of lemma 1, the evaluations of categories
allowed by the set A2 consider that the gain of moving upward between two
adjacent categories is better than any gain that could result from an upward
move initiated from an upper position in the categorical scale, no matter how
important this latter move can be. It turns out that A2 is the largest set of
evaluations of the categories over which normative dominance - as per definition
1 - is sensitive to Hammond transfers.

Proposition 2 Suppose s is a society in Cn that has been obtained from another
society s′ in Cn by a Hammond transfer as per definition 3. Then s �A s′ if
and only if A = A2.

Proof. Let s be a society that has been obtained from s′ by a Hammond transfer
as per definition 3. For s �A s′ to hold, one must have (using definition 1):

k∑

j=1

nsjαj ≥
k∑

j=1

ns′j αj

for all (α1, ..., αk) ǫ A. Using definition 3, this is equivalent to require that, for
any (α1, ..., αk) ǫ A, the inequality:

(αh − αg)− (αj − αi) ≥ 0 (18)

hold for any 1 ≤ g < h ≤ i < j ≤ k, as required by the definition of A2. In
the other direction, it is clear that s �A2 s′if s has been obtained from s′ by a
Hammond transfer.

It is worth noticing that the set A2 does not need to belong to A1 for nor-
mative dominance to be sensitive to Hammond transfers. A normative criterion
that is represented by an additively separable social evaluation function as per
expression (1) may value favorably a Hammond transfer involving the categories
1 ≤ g < h ≤ i < j ≤ k of definition 3 even if the evaluation of the categories
used by this criterion is not increasing with respect to those categories.

We now turn to the main result of this paper.

Theorem 2 For any societies s and s′ ∈ Cn, the following three statements are
equivalent:
(a) s is obtained from s′ by means of a finite sequence of Hammond’s transfers
and/or increments,
(b) s �A1∩A2 s′,
(c) s �H s

′.

Proof. (c) =⇒ (b)
Assume that s �H s

′ and, therefore, that the inequality:

FH(i; s) ≤ FH(i; s
′)

holds for all i = 2, 3, . . . , k. It suffices to show that this implies that, for any
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vector of k numbers (α1, ..., αk) in the set A1 ∩A2, one has:

k∑

j=1

nsjαj ≥
k∑

j=1

ns′j αj

⇐⇒
k∑

j=1

nsjαj −
k∑

j=1

ns′j αj ≥ 0 (19)

Using (16) in the proof of theorem 1, this is equivalent to:

k−1∑

h=1

[F (h; s′)− F (h; s)] [αh+1 − αh] ≥ 0 (20)

or:
k−1∑

h=1

∆Fhθh ≥ 0 (21)

after defining θh by:
θh = αh+1 − αh

and ∆Fh by:
∆Fh = F (h; s

′)− F (h; s)

for h = 1, ..., k− 1. Consider now the following decomposition of the right-hand
side of expression (21) defined recursively by:
For j = 1:

∆F1θ1 = ∆F1[θ1 −
k−1∑

h=2

θh] + ∆F1θ2 + ...+∆F1θk−1

= ∆F1[θ1 −
k−1∑

h=2

θh] + ∆F1[θ2 −
k−1∑

h=3

θh] + 2∆F1θ3 + ...+ 2∆F1θk−1

= ∆F1[θ1 −
k−1∑

h=2

θh] + ∆F1[θ2 −
k−1∑

h=3

θh] + 2∆F1[θ3 −
k−1∑

h=4

θh] + 4∆F1θ4 + ...+ 4∆F1θk−1

= ....

= ∆F1[θ1 −
k−1∑

h=2

θh] + ∆F1[
k−1∑

i=2

2i−2[θi −
k−1∑

h=i+1

θh]]

For j = 2:

∆F2θ2 = ∆F2[θ2 −
k−1∑

h=3

θh] + ∆F2θ3 + ...+∆F2θk−1

= ∆F2[θ2 −
k−1∑

h=3

θh] + ∆F2[θ3 −
k−1∑

h=4

θh] + 2∆F2θ4 + ...+ 2∆F2θk−1

= ...

= ∆F2[θ2 −
k−1∑

h=3

θh] + ∆F2[
k−1∑

i=3

2i−3[θi −
k−1∑

h=i+1

θh]]

15



For any j = 1, ...k − 1:

∆Fjθj = ∆Fj [θj −
k−1∑

h=j+1

θh] + ∆Fj [
k−1∑

i=j+1

2i−j−1[θi −
k−1∑

h=i+1

θh]] (22)

(under the convention that
k−1∑

h=k

θh =
k−1∑

i=k

2i−k[θi −
k−1∑

h=k

θh] = 0). Substituting

the decomposition terms (22) into inequality (21) yields (up to a change of the
summation index):

k−1∑

j=1

∆Fjθj =
k−1∑

j=1

[∆Fj [θj −
k−1∑

h=j+1

θh] + ∆Fj [
k−1∑

i=j+1

2i−j−1[θi −
k−1∑

h=i+1

θh]]] ≥ 0

or (using the definition of FH given by (9):

k−1∑

j=1

[FH(j; s
′)− FH(j; s)]



θj −
k−1∑

h=j+1

θh



 ≥ 0 (23)

Since: 

θj −
k−1∑

h=j+1

θh



 = αj+1 − αj − [αk − αj+1] ≥ 0

for all (α1, ..., αk) ∈ A1 ∩ A2 thanks to lemma 1, we conclude therefore that
having FH(j; s) ≤ FH(j; s

′) for all j = 1, ..., k − 1 is sufficient for inequality
(23) to hold for all (α1, ..., αk) ∈ A1 ∩A2.
(b) =⇒ (c)
Assume that inequality (19) holds for all (α1, ..., αk) ∈ A1 ∩ A2. Consider two
real numbers a and b satisfying 0 < a < b and, for any i = 2, ..., k − 1, define
the vector αi = (αi1, ..., α

i
k) ∈ R

k
+ by:

αi1 = a

αik = b

αih = (αih−1 + b)/2 if h = 2, ..., k − 1 and h = i

αii = (αii−1 + b+ ε)/2

for some number ε satisfying 0 < ε < b − αii−1. The reader can check that the
vector αi so constructed belongs to A1∩A2. Writing inequality (19) in the form
of (23) with the vector αi yields:

k−1∑

j=1

[FH(j; s
′)− FH(j; s)]



θij −
k−1∑

h=j+1

θih



 ≥ 0 (24)

where, for any j = 1, ..., k − 1, θij is defined by:

θij = α
i
j+1 − α

i
j
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Notice that, for any j /∈ {1, i− 1, k}, one has:

θij −
k−1∑

h=j+1

θih = αij+1 − α
i
j −

k−1∑

h=j+1

[αih+1 − α
i
h]

= (b− αij)/2− [b− α
i
j+1]

= (b− αij)/2− [b− (α
i
j + b)/2]

= 0

while:

θii−1 −
k−1∑

h=i

θih = αii − α
i
i−1 −

k−1∑

h=i

[αih+1 − α
i
h]

= (b− αii−1 + ε)/2− [b− α
i
i]

= (b− αii−1 + ε)/2− [b− (α
i
i−1 + b+ ε)/2]

= ε

Hence, requiring inequality to hold for any such vector αi for any i = 2, ..., k−1
implies requiring inequality:

FH(i; s
′)− FH(i; s) ≥ 0

to hold for any such i, as required by H dominance.
(a) ⇒ (c).
Assume that s is obtained from s′ by means of an increment. We know from
theorem 1 that s �1 s′, which implies that s �H s′. Assume now that s is
obtained from s′ by means of a Hammond transfer. This implies that there are
g, h, i and j satisfying 1 ≤ g < h ≤ i < j ≤ k such that:

nsl = n
s′

l ∀ l = g, h, i, j ;

nsg = n
s′

g − 1 ; n
s
h = n

s′

h + 1 ;

nsi = n
s′

i + 1 ; n
s
j = n

s′

j − 1 .

By using equation (7), one has:

FH(l; s)−FH(l; s
′) =






0 for l = 1, 2, . . . , g − 1 ,
−
(
2l−g

)
/n for l = g, . . . , h− 1 ,

−
(
2l−g − 2l−h

)
/n for l = h, . . . , i− 1 ,

−
(
2l−g − 2l−h − 2l−i

)
/n for l = i, . . . , j − 1 ,

−
(
2l−g − 2l−h − 2l−i + 2l−j

)
/n for l = j, . . . , k.

from which we conclude that FH(l; s) − FH(l; s
′) ≤ 0 for all l = 1, 2, . . . , k − 1

and, therefore, that s �H s
′.

(c) ⇒ (a).
Assume that s �H s′ so that FH(g; s) ≤ FH(g; s

′) for all g = 1, 2, . . . , k − 1
(avoiding the degenerate case where s is equal to s′). We know that s �1 s′

implies s �H s′. Hence, if s �1 s
′, we conclude from theorem 1 that s can be

obtained from s′ by means of a finite sequence of increments and the proof is
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complete. In the following, we shall therefore assume that s �H s
′ holds but that

s �1 s′ does not hold so that there exists some g ∈ {1, 2, . . . , k − 1} for which
one has F (g; s)− F (g; s′) > 0. Define then the index h by:

h = min {g | F (g; s)− F (g; s′) > 0} (26)

Given that index h, one can also define l by :

l = min {g > h | F (j; s)− F (j; s′) ≤ 0 ,∀j ∈ [g, k]} . (27)

Such a l exists because F (k; s)−F (k; s′) = 0. Notice that, by definition of such
l, one has:

F (l − 1; s)− F (l − 1; s′) > 0 and F (l; s)− F (l; s′) ≤ 0 , (28)

Hence, one has (using the definition of F provided by (5)), that nsl < n
s′

l . We
now establish that there exists some i ∈ {1, 2, . . . , h− 1} such that:

F (i; s)− F (i; s′) < 0 and F (g; s)− F (g, s′) = 0 ,∀g < i . (29)

Indeed, since FH(g; s) ≤ FH(g; s′) for all g = 1, 2, . . . , k − 1, one has either:

FH(1; s) < FH(1; s
′)

⇐⇒ (thanks to expression (8))

F (1; s) < F (1; s′) (30)

or:
F (1; s) = F (1; s′) (31)

If case (30) holds, then the existence of some i ∈ {1, 2, . . . , h − 1} for which
expression (29) holds is established (with i = 1). If, on the other hand, we are
in case (31), then, since FH(2; s) ≤ FH(2; s

′) holds, we must have either:

FH(2; s) < FH(2; s
′)

⇐⇒ (thanks to expression (9))

2F (1; s) + F (2; s) < 2F (1; s′) + F (2; s′) (32)

or:
2F (1; s) + F (2; s) = 2F (1; s′) + F (2; s′) (33)

Again, if we are in case (32), we can conclude (since F (1; s) = F (1; s′)) that
F (2; s) < F (2; s′), which establishes the existence of some i ∈ {1, 2, . . . , h− 1}
for which expression (29) holds (with i = 2 in that case). If we are in case
(33), we iterate in the same fashion using the definition of FH provided by (9).
We notice that the index i for which (29) holds must be strictly smaller than
h because assuming otherwise will contradict, given the definition of h and the
(iterated as above) definition of FH , the fact that FH(g; s) ≤ FH(g; s

′) holds
for all g = 1, 2, . . . , k − 1. We finally note that, because of the definition of F
provided by (5), the definition of the index i just provided entails that:

nsi < n
s′

i (34)
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and:
nsg = n

s′

g

for all g = 1, ..., i − 1. We now proceed by defining a new society - s1 say -
that belongs to Cn, that has been obtained from s′ by means of a Hammond’s
transfers and that is such that s �H s1 ≻H s′. For this sake, we define the
numbers δ1 and δ2 and δ by:

δ1 = n
s′

i − n
s
i ; δ2 = n[F (l− 1; s)− F (l − 1; s

′)] and δ = min(δ1, δ2) (35)

We note that, by the very definition of the index i, one has δ1 > 0. We notice
also that, using (28) and the definition of the index l, one has 0 < δ2 ≤ n

s′

l −n
s
l .

Define then the society s1 by:

ns
1

g = ns
′

g , ∀ g = i, i+ 1, l ;

ns
1

i = ns
′

i − δ ; n
s1

i+1 = n
s′

i+1 + 2δ ; n
s1

l = ns
′

l − δ ;

It is clear that such a society belongs to Cn. Moreover, s1 has been obtained from
s′ by δ Hammond transfers as per definition 3 where the indices g, h, i and j of
this definition are, here, i, i + 1, i + 1 and l (respectively)). By virtue of what
has been established above, this implies that s1 ≻H s′. We further notice that:

F (g, s1) =

g∑

e=1

ns
1

e /n

=

g∑

e=1

ns
′

e /n

= F (g, s′) (37)

for all g = 1, ..., i− 1. Also one has:

F (i, s1) =
i∑

e=1

ns
1

e /n

= F (i− 1, s′) + ns
1

i /n

= F (i− 1, s′) + (ns
′

i − δ)/n

= F (i, s′)− δ/n (38)

F (i+ 1, s1) = F (i, s1) + ns
1

i+1/n

= F (i, s′)− δ/n+ ns
1

i+1/n

= F (i, s′)− δ/n+ ns
′

i+1/n+ 2δ/n

= F (i+ 1, s′) + δ/n (39)
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Furthermore, for g = i+ 2, ..., l − 1, one has:

F (g, s1) = F (i+ 1, s1) +

g∑

e=i+2

ns
1

e /n

= F (i+ 1, s′) + δ/n+

g∑

e=i+2

ns
1

e /n

= F (i+ 1, s′) + δ/n+

g∑

e=i+2

ns
′

e /n

= F (g, s′) + δ/n (40)

While finally, for g = l, ..., k:

F (g, s1) = F (l − 1, s1) +

g∑

e=l

ns
1

e /n

= F (l − 1, s′) + δ/n+

g∑

e=l

ns
1

e /n

= F (l − 1, s′) + δ/n+ ns
′

l /n− δ/n+

g∑

e=l+1

ns
′

e /n

= F (g, s′) (41)

We must now verify that s �H s1 and, therefore, that FH(g; s)− FH(g; s1) ≤ 0
for all g = 1, 2, . . . , k − 1. Since s �H s′, we know already that FH(g; s) −
FH(g, s

′) ≤ 0 for all h = 1, 2, . . . , k− 1. We first observe that, by the definition
just given of s1 one has:

FH(g, s
1) =






FH(g, s′) for g = 1, .., i− 1,
FH(g, s

′)− δ/n for g = i,
FH(g, s

′) for g = i+ 1, ..., l − 1,
FH(g, s

′)− 2g−lδ/n for g = l, ..., k.

(42)

The first line of (42) is indeed clear given expression (37) and the definition of
FH provided by (7).The second line of (42) results from (38) and the definition
of FH provided by (9). Consider now g = i+ 1. One has (using (9) again):

FH(i+ 1, s
1) =

i∑

g=1

(
2i−g

)
F (g; s1) + F (i+ 1; s1)

=
i−1∑

g=1

(
2i−g

)
F (g; s′) + F (i; s′)− δ/n+ F (i+ 1; s1) (by (38))

=
i−1∑

g=1

(
2i−g

)
F (g; s′) + F (i; s′)− δ/n+ F (i+ 1; s′) + δ/n (by (39))

=
i−1∑

g=1

(
2i−g

)
F (g; s′) + F (i; s′) + F (i+ 1; s′)

=
i∑

g=1

(
2i−g

)
F (g; s′) + F (i+ 1; s′) = FH(i+ 1, s

′) (43)
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Combined with (10) and the fact that ns
1

g = ns
′

g for all g = i+2, ..., l−1, equality
(43) establishes the third line of expression (42). As for the last line of (42), we
start with g = l and we use (10) to write:

FH(l, s
1) = 2FH(l − 1; s

1) + ns
1

l /n

= 2FH(l − 1; s
′) + (ns

′

l − δ)/n

= FH(l, s
′)− δ/n (44)

Iterating on this expression using (10) yields:

FH(l + 1, s
1) = 2FH(l; s

1) + ns
1

l+1

= 2(FH(l; s
′)− δ/n) + ns

′

l+1

= FH(l + 1, s
′)− 2δ/n (45)

and therefore, for any g ∈ {l, ..., k}:

FH(g, s
1) = FH(g, s

′)− 2g−lδ/n

as required by the last line of expression (42). We now notice that expression
(42) entails that:

FH(g, s)− FH(g, s
1) =






FH(g, s)− FH(g, s′) for g = 1, .., i− 1,
FH(g, s)− FH(g, s

′) + δ/n for g = i,
FH(g, s)− FH(g, s

′) for g = i+ 1, ..., l− 1,
FH(g, s)− FH(g, s

′) + 2g−lδ/n for g = l, ..., k.
(46)

Since by assumption s �H s′, this establishes that FH(g; s) − FH(g; s
1) ≤ 0

for all g ∈ {1, 2, . . . , i − 1} ∪ {i + 1, ..., l − 1}. Consider now the case g = i.
Using (10), we know that:

FH(i; s)− FH(i, s
′) = 2 (FH(i− 1; s)− FH(i− 1; s

′)) + (nsi − n
s′

i )/n (47)

By definition of i, one has F (h; s)− F (h; s′) = 0 for all h < i, so that the first
term in the right hand side of equation (47) is 0. Recalling then from (35) that
δ1 = ns

′

i − n
s
i > 0 and that δ = min(δ1, δ2), it follows that:

nsi − n
s′

i + δ ≤ 0

By combining equations (46) and (47), we conclude that:

FH(i, s)− FH(i, s
1) = FH(i, s)− FH(i, s

′) + δ/n = nsi − n
s′

i + δ ≤ 0 (48)

Consider finally the case where g = l, . . . , k − 1. By using equation (10) (and
recalling that δ2 = n[F (l− 1; s)− F (l − 1; s

′)]), one has:

FH(l; s)−FH(l; s
′) = 2(FH(l−1; s)−FH(l−1; s

′))+F (l; s)−F (l; s′)−δ2 /n. (49)

Combining (49) with the last line of (46), and remembering that δ ≤ δ2, one
obtains:

FH(l, s)−FH(l, s
1) = 2[(FH(l−1; s)−FH(l−1; s

′)]+F (l; s)−F (l; s′)+(δ−δ2)/n ≤ 0 .
(50)
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Finally, using successive applications of equation (10), one obtains, for any
g = l + 1, . . . , k − 1:

FH(g; s)− FH(g; s
′) = 2g−l+1[FH(l − 1; s)− FH(l − 1; s

′)] +

g−1∑

e=l

2g−1−e[F (e; s)− F (e; s′)]

+F (g; s)− F (g; s′)− 2g−lδ2/n

≤ 0

by assumption. Combined with the last line of (46) and the fact that δ ≤ δ2,
this completes the proof that s �H s1. Hence, we have found a society s1

obtained from society s′ by means of a Hammond’s transfers that is such that
s �H s1 ≻H s′. We now show that, in moving from s′ to s, one has "brought
to naught" at least one of the differences |F (h; s)− F (h; s′)| that distinguishes
s from s′. That is to say, we establish the existence of some h ∈ {1, ..., k − 1}
for which one has: ∣∣F (h; s)− FH(h; s1)

∣∣ = 0

and:
|F (h; s)− F (h; s′)| < 0

This is easily seen from the fact that, in the construction of s1, one has either:

δ = δ1 = n
s′

i − n
s
i (51)

or:
δ = δ2 = n[F (l− 1; s)− F (l − 1; s

′)] (52)

If we are in the case (51), one has by definition of the index i and the function
F :

F (i; s)− FH(i; s
1) = 0

and:
F (i; s)− F (i; s′) < 0

If on the other hand we are in case (52), then, we have (using (39)):

F (l − 1; s)− F (l − 1; s1) = F (l− 1, s)− [F (l − 1, s′) + δ2/n]

= 0

while, by definition of the index l, one has:

F (l − 1, s)− F (l − 1, s′) > 0

Now, if s = s1, then the proof is completed. If ¬(s = s1) but s �1 s1, then we
conclude that society s can be obtained from society s′ by means of a finite se-
quence of Hammond’s transfers and increments. If ¬(s = s1) and ¬

{
s �1 s1

}
,

then we can find three categories i, h and l just as in the preceding step and con-
struct a new distribution - say s2 - that can be obtained from distribution s1 by
means of an (integer number of) Hammond’ transfers, satisfying s �H s

2 ≻H s
1

and so on. Generically, after a finite number - t say - of iterations, we will find
a distribution st such that s �H s

t ≻H s
t−1 . In that case, we will have either

s = st or s �1 s
t. As t is finite, since there are only finitely many differences of

the kind |F (h; s)− F (h; s′)| to bring to naught, this completes the proof.
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4 Conclusion

The paper has identified a statistically implementable criterion, calledH−dominance,
that can be viewed as the analogue, for comparing distributions of an ordinally
measurable attribute, of the generalized Lorenz curve used for comparing distri-
butions of a cardinally measurable attribute. It is well-known (see e.g. Shorrocks
(1983)) that a distribution of a cardinally measurable attribute dominates an-
other for the generalized Lorenz domination criterion if and only if it is possible
to go from the dominated distribution to the dominating one by a finite se-
quence of increments of the attribute and/or Pigou-Dalton transfers. The main
result of this paper - theorem 2 - has established an analogous result for the
H-dominance criterion by showing that the latter criterion ranks two distrib-
utions of an attribute in the same way than would the fact of going from the
dominated distribution to the dominating one by a finite sequence of increments
and/or Hammond transfers of the attribute.

We believe the H-dominance criterion, and the Hammond principle of trans-
fers that justifies it, to be a useful tool for comparing distributions of an ordi-
nally measurable attribute that can not be meaningfully transferred à la Pigou-
Dalton. Beside the fact of being justified by clear and meaningful elementary
transformations, the H-dominance criterion has the advantage of being applica-
ble to a much wider class of situations than, for instance, the widely discussed
criterion proposed by Allison and Foster (2004) who is limited to distributions
that have the same median category. The illustration of the criterion that we
have done with the data provided in Abul-Naga and Yalcin (2008) suggests
that its discriminatory power is significant, and that it could be much useful
in practice to perform various kinds of normative evaluation exercises involving
allocations of qualitative or ordinal attribute among individuals. The criterion
could also be useful for comparing distributions of a cardinally measurable at-
tribute provided that one is willing to accept the rather strong egalitarian ethics
underlying the principle of Hammond transfers in such a setting.

A somewhat specific feature of the results established in this paper, as com-
pared to the standard dominance results involving Pigou-Dalton transfers, is
that we have not identified a statistically implementable criterion that coin-
cides with Hammond transfers only. The result provided by theorem 2 shows
that H-dominance coincides with the possibility of going from the dominated
distribution to the dominating one by means of either Hammond transfers or
increments. Those who are interested in obtaining a "pure" notion of inequality
reduction in an ordinal context may feel a bit disappointed by this presence of
increments, that are often seen as reflecting "efficiency", rather than "equity",
considerations. Could we find a criterion that would be associated to Hammond
transfers only? In the standard income-inequality framework, the statistically
implementable criterion that coincides with the possibility of going from a dom-
inated distribution to a dominating one by a finite sequence of Pigou-Dalton
transfers only is generalized Lorenz dominance applied to distributions with the
same mean. Unfortunately, we have not obtained such a "pure" inequality re-
duction criterion that underlies the notion of inequality reduction captured by
Hammond transfers. We clearly believe that obtaining such a criterion to be a
worthwhile objective for future research.
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