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On the Microeconomics of Specialization: An Application to Agriculture 

 

1. Introduction 

Adam Smith (1776) first pointed out that there are productivity gains from specialization. 

Using a pin factory as an example, Smith (1776, p. 4) argued that producing pins in a system 

where workers are specialized across tasks can generate very large increases in productivity. 

According to Smith (1776, p. 6-8), a key factor is the amount of time workers spend switching 

from one task to another: this time can be saved under increased specialization. Other aspects of 

the benefits of firm specialization relate to the role of knowledge and coordination cost (e.g., as 

emphasized by Becker and Murphy (1992) and Caliendo and Rossi-Hansberg (2012)). Somewhat 

surprisingly, little empirical evidence has been presented documenting the source or magnitude 

of gains from specialization at the firm level. This suggests a need for a refined analysis of the 

productivity effects of specialization. The main objective of this paper is to develop new insights 

into the microeconomics of firm organization and the motivations for firm 

diversification/specialization strategies.1  

Where do the productivity gains from firm specialization come from? This paper shows 

that there are two main factors that affect the benefits of specialization: returns to scale and 

nonconvexity of the technology. The role of returns to scale is not new: it has been noted in 

previous literature (e.g., Stigler 1951, Krugman, 1980, Melitz, 2003). But other factors also play 

a role. Smith’s example of a pin factory provides useful insights. As noted above, Smith (1676, p. 

6-8) argued that the gains from specialization come in part from saving in time lost switching 

from one task to the next. A similar argument would apply to the time used in learning how to 

manage a new task (Becker and Murphy, 1992; Caliendo and Rossi-Hansberg, 2012; Coviello et 
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al., 2014). To the extent that the time lost switching between tasks (or learning to manage a new 

task) does not contribute to any output, this introduces fixed cost in the analysis. This suggests 

that reductions in fixed cost can be important sources of gains from specialization. This point has 

been made by Baumol et al. (1982, p. 75) in their analysis of economies of scope for a 

multiproduct firm. Fixed cost is a well-known source of non-convexity. Perhaps more 

importantly, these issues can arise independently of any scale effects. For example, in his 

discussion of a pin factory, Smith does not mention any role for firm size. This indicates that the 

productivity effects of specialization can be present within a firm irrespective of scale effects. 

This suggests a need to explore the role of non-convexity in the microeconomics of firm 

specialization.  

This paper explores the microeconomics of specialization, with a focus on the role of 

non-convexity. It is well known that a technology that exhibits increasing returns to scale (IRS) 

is also non-convex. Yet, in this paper we stress that non-convexity can arise in ways that are 

unrelated to scale effects. Indeed, IRS is a form of non-convexity that applies in a very restrictive 

way: returns to scale consider only proportional changes in all inputs and outputs. We show that 

other forms of non-convexity (besides IRS) can have a large influence on the gains from 

specialization. More fundamentally, we think that the common idea that IRS and non-convexity 

tend to go together has contributed to hiding the deeper role played by non-convexity.  

This paper makes three contributions to the literature. First, it evaluates conceptually the 

role played by both returns to scale and non-convexity in the economics of firm specialization. 

Relying on a directional distance function, we propose a measure of gains from specialization 

and use it to identify the distinct role played by returns to scale versus non-convexity. We obtain 

the following key result: the gains of firm specialization are negative under increasing returns to 
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scale and a convex technology; alternatively, the gains of firm specialization are positive under 

decreasing returns to scale and a non-convex technology. Thus, our analysis shows that non-

convexity can be an important factor contributing to the gains from firm specialization. This 

indicates a need to assess empirically the nature of returns and scale and non-convexity for a 

firm.  

Our second contribution is to study the effects of non-convexity on specialization 

incentives. The analysis is based on a general measure of non-convexity. The measure is 

evaluated empirically using a non-parametric method. The non-parametric method is flexible in 

the sense that it allows for the presence of non-convexity in any part of the technology.2 It 

provides a good basis to evaluate the role of management in firm specialization decisions.  

Our third contribution is to apply our approach to a sample of Korean farms. An 

application to farms is of interest as most farms produce more than one output, allowing us to 

observed different patterns of output specialization across farms. In addition, farms are typically 

family farms where the head of the household is the manager and most labor is provided by 

family labor. In this case, we can expect the gains from specialization to be closely associated 

with the managerial skills of the farm manager, i.e. his ability to manage multiple farm 

production activities. Our empirical analysis documents the relative role played by returns to 

scale and non-convexity on Korean farms. The results identify the presence of non-convexity as 

well as scale effects. We show that non-convexity varies across farm types: non-convexity tends 

to be more common on larger farms. We also find that non-convexity effects are more important 

than scale effects on larger farms. It means that scale effects are not likely to be the major/single 

factor affecting firm specialization (as documented below). By showing how non-convexity 

varies with farm size, our analysis provides useful insights into the microeconomics of 
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specialization. It helps explain why larger farms tend to be more specialized (Chavas, 2001). 

Finally, our application evaluates the linkages between management and non-convexity. We find 

that non-convexity varies with the education and experience of the farm manager. We also find 

that non-convexity generates large productivity benefits from specialization on larger farms (but 

not on smaller farms), providing a strong incentive for large farms to specialize. By evaluating 

the linkages between non-convexity, firm size and management, our analysis provides new 

insights into the role of management and the economics of specialization.  

The paper is organized as follows. Section 2 presents a conceptual approach to the 

economics of firm specialization, with a focus on the role of returns to scale and non-convexity. 

Section 3 presents specific measures of economies of scale and non-convexity. And section 4 

shows how these measures can be evaluated empirically using nonparametric methods. Section 5 

presents an empirical application to a data set of Korean farms. Finally, section 6 concludes.  

 

2. The Microeconomics of Specialization 

Consider a production process involving m netputs z  (z1, …, zm)  Rm. Given z  (z1, 

…, zm), we use the netput notation where inputs are negative (zi ≤ 0 for input i) and outputs are 

positive (zj ≥ 0 for output j). The production technology is represented by the feasible set T  

Rm, where z  T means that the netput vector z is feasible. The set T provides a global 

characterization of the underlying technology. Two specific properties of the technology will be 

examined in this paper: returns to scale and convexity properties. First, the technology T is said 

to exhibit 

increasing returns to scale (IRS)

constant returns to scale (CRS)

decreasing returns to scale (DRS)

 
 
 
 
 

 if T =

 
 
 
  

  T for any scalar  > 1; and the 

technology is said to exhibit variable returns to scale (VRS) if no a priori restriction is imposed 
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on returns to scale. Second, the technology is said to be convex if the set T is convex, i.e. if it 

satisfies [ za + (1-) zb]  T for any za  T, zb  T, and   [0, 1]. A convex technology is 

equivalent to the intuitive concept of “decreasing marginal productivity.” Alternatively, the 

technology is non-convex if the set T is not convex. Throughout the paper, we assume that the 

technology T satisfies free disposal, where free disposal means that T = T – m

+R .  

Our analysis of the properties of the technology T will rely on specific measures. Letting 

g  m

+R be a reference bundle satisfying g  0 and following Chambers et al. (1996), consider the 

directional distance function3 

D(z, T) = sup: (z +  g) } if there is a scalar  satisfying (z +  g) },  (1)

 otherwise. 

The directional distance function is the distance between point z and the upper bound of 

the technology T, measured in number of units of the reference bundle g. It provides a general 

measure of productivity. In general, D(z, T) = 0 means that point z is on the frontier of the 

technology T. Alternatively, D(z) > 0 implies that z is technically inefficient (as it is below the 

frontier).4 And D(z, T) < 0 identifies z as being infeasible (as it is located above the frontier). 

Luenberger (1995) and Chambers et al. (1996) provide a detailed analysis of the properties of 

D(z, T). First, by definition in (1), z  T implies that D(z, T)  0 (since  = 0 would then be 

feasible in (1)), meaning that T  {z: D(z, T)  0}. Second, D(z, T)  0 in (1) implies that [z + 

D(z, T) g]  T. When the technology T exhibits free disposal, it follows that D(z, T)  0 implies 

that z  T, meaning that T  {z: D(z, T)  0}. Combining these two properties, we obtain the 

following result: under free disposal, T = {z: D(z, T)  0} and D(z, T) provides a complete 

representation of the technology T. Importantly, besides being convenient, this result is general: 

it allows for an arbitrary multi-input multi-output technology; and it applies with or without 
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convexity.5  

The distance function D(z, T) in (1) can be used to evaluate economies of specialization. 

To see that, consider two situations: one where netput z is produced by a single firm; and one 

where z is produced by K more specialized firms, where the k-th firm produced zk subject to the 

restriction  K

1k zk = z. Here, the constraint  K

1k zk = z requires that the aggregate netputs are the 

same in both situations.  

Definition 1: At points z and (z1, ..., zK) satisfying z =  K

1k zk, define the following measure of 

economies of specialization   

EP(z, z1, ..., zK, T) =  K

1k D(zk, T) - D(z, T).  (2) 

 

EP(z, z1, ..., zK, T) in (2) provides a measure of the potential productivity gains 

(expressed in number of units of the bundle g) obtained from increased specialization. Indeed, 

assuming that z
k
 ≠ z/K for some k, equation (2) evaluates a change in technical inefficiency (as 

measured by D()) comparing two situations: one when netputs z are produced by an integrated 

firm; and one where netputs z are produced by K “more specialized” firms. D(z, T) in (2) is the 

distance to the frontier when netputs z are produced in an integrated production process. And   

 K

1k D(zk, T) is the distance when netputs z are produced in K “more specialized” production 

processes, zk being the netputs used in the k-th production process. Given z = 
K

1k zk, it follows 

that EP(z, z1, ..., zK, T) in (2) has the following interpretation. When EP(z, z1, ..., zK, T) > 0, the 

K specialized firms (z1, ..., zK) can produce EP additional units of g compared to an integrated 

firm, implying that specialization improves productivity. It follows that EP(z, z1, ..., zK, T) > 0 

reflects economies of specialization. Alternatively, when EP(z, z1, ..., zK, T) < 0, the production 
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potential of the K specialized firms (z1, ..., zK) is reduced by |EP| units of g compared to an 

integrated firm, implying that specialization reduces productivity. It follows that EP(z, z1, ..., zK, 

T) < 0 reflects diseconomies of specialization.         

This is illustrated in Figure 1 which considers the production of two outputs (y1, y2) using 

inputs x, where z = (-x, y1, y2). Figure 1 involves a comparison between an integrated firm 

producing outputs (y1, y2) using inputs x and two specialized firms: a firm producing outputs (y1, 

0) using inputs x/2, and a firm producing outputs (0, y2) using inputs x/2. Figure 1 compares the 

productivity of the integrated firm producing at point A with the productivity of two specialized 

firms producing respectively at point C1 (with netputs z1 = (-x/2, y1, 0)) and point C2 (with 

netputs z
2
 = (-x/2, 0, y2)). Note that, as defined, z = z

1
 + z

2
. The evaluation of productivity in 

Figure 1 relies on the output set Y(x)  {(y1, y2): (-x, y1, y2)  T}. Figure 1 shows that point A is 

on the frontier of Y(x), with D(z, T) = 0. Figure 1 also shows that points C1 and C2 are below the 

frontier of Y(x/2). Given a reference bundle g, the two specialized firms can increase production 

by the distances (B1 C1) and (B2 C2). From equation (1), these two distances are given by D(z1, 

T) and D(z2, T), respectively. In this case, using (2) and noting that D(z) = 0, it follows that EP(z, 

z1, ..., zK, T) = D(z1, T) + D(z2, T) > 0 measures the potential gain in productivity associated with 

producing outputs in a specialized manner. Thus, Figure 1 illustrates a situation exhibiting 

economies of specialization, where specialization increases productivity.            

While equation (2) provides a basis to evaluate the gains of specialization, it does not 

identify where these gains come from. We now explore the sources of these gains. We show next 

that economies of specialization are closely related to two fundamental concepts: economies of 

scale and convexity properties of the technology. See the proof in the Appendix.   
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Proposition 1: At points z and (z1, ..., zK) satisfying z =  K

1k  zk, economies of specialization 

EP(z, z1, ..., zK) in (2) can be decomposed as    

EP(z, z
1
, ..., z

K
, T) = ESc(z, T) + ECn(z, z

1
, ..., z

K
, T),  (3) 

where  

ESc(z, T)  K D(z/K, T) – D(z, T)  (4) 

=

 
 
 
  

 0 under 

increasing returns to scale (IRS)

constant returns to scale (CRS)

decreasing returns to scale (DRS)

 
 
 
 
 

,  

ECn(z, z1, ..., zK, T)   K

1k D(zk, T) – K D(z/K, T)  (5) 

 
 
 

 0 
if the technology T is convex

only if the technology T is non-convex

 
 
 

.    

 

Equation (3) decomposes economies of specialization EP(z, z1, ..., zK, T) into two 

additive components: the scale component ESc(z, T), and the convexity component ECn(z, z1, ..., 

zK, T). From equation (4), the scale component ESc(z, T) satisfies ESc(z, T) =

 
 
 
  

 0 under 

IRS

CRS

DRS

 
 
 
 
 

. And from equation (5), the convexity component ECn(z, z1, ..., zK, T) is always non-

positive under a convex technology. It implies that the convexity component ECn(z, z1, ..., zK, T) 

can be positive only under a nonconvex technology.  

By definition, diseconomies of specialization exist when EP(z, z1, ..., zK, T)  0. From 

(3)-(5), this condition always holds under non-decreasing returns to scale (i.e., under either IRS 

or CRS) and a convex technology. In such situations, there is a disincentive for firms to 
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specialize (i.e., there is an incentive for firms to diversify). Alternatively, economies of 

specialization exist when EP(z, z1, ..., zK, T)  0. From (3)-(5), this can arise under DRS and/or 

under a non-convex technology. This result indicates that DRS and nonconvexity can provide an 

incentive for firms to specialize.   

The decomposition given in equation (3) suggests that both returns to scale and convexity 

affect the gains from specialization. But are these two factors really different? Indeed, a 

technology exhibiting IRS is a form of non-convexity for T. If so, is the decomposition presented 

in (3) really useful? We argue below that it is. Indeed, IRS is form of non-convexity that applies 

in a very restrictive way: returns to scale consider only proportional changes in all netputs. It 

means that non-convexity can arise in ways that are unrelated to scale effects. We show below 

that these forms of non-convexity are important factors that can generate productivity gains from 

specialization. More fundamentally, as noted in the introduction, we think that the common idea 

that IRS and non-convexity tend to go together has contributed to hiding the deeper role played 

by non-convexity. The challenge is to present convincing arguments that returns to scale and 

non-convexity have different effects on the economies of specialization.  

These arguments are illustrated graphically in Figures 2 and 3. These two figures 

document the independent role of scale versus non-convexity in the evaluation of the gains from 

specialization. Like Figure 1, Figures 2 and 3 consider the production of two outputs (y1, y2) 

using inputs x, where z = (-x, y1, y2). Again, we compare an integrated firm producing outputs 

(y1, y2) using inputs x with two specialized firms: a firm producing outputs (y1, 0) using inputs 

x/2, and a firm producing outputs (0, y2) using inputs x/2. Again, productivity is assessed based 

on the output set Y(x)  {(y1, y2): (-x, y1, y2)  T}.  

Figure 2 evaluates situations where returns to scale can change from IRS to CRS to DRS. 
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But it holds the convexity of the set Y(x) constant by assuming that the upper bound of the 

output set Y(x) is linear. The boundary of the output set Y(x) is given by the line A’A” in Figure 

2. Assuming that the integrated firm is technically efficient, it produces outputs (y1, y2) at point A 

(located on the line A’A”). The two specialized firms produce outputs (y1, 0) and (0, y2), 

respectively. For these two firms, suppose that the boundary of the output set Y(x/2) is given by 

the line Bcrs’Bcrs” under CRS, by the line Birs’Birs” under IRS, and by the line Bdrs’Bdrs” under 

DRS. Under CRS, the two specialized firms are technically efficient (as both (y1, 0) and (0, y2) 

are located on the frontier Bcrs’Bcrs”). In this case, EP(z, z1, z2, T) = 0 and there is zero gain from 

specialization. However, under DRS, the two specialized firms are located at points (y1, 0) and 

(0, y2) that are both below the frontier Bdrs’Bdrs”. Then EP(z, z
1
, z

2
, T) > 0, and there are positive 

potential gains from specialization. Indeed, under DRS, Figure 2 shows that it becomes possible 

for the two specialized firms to increase aggregate production from point A to point Edrs. In 

contrast, under IRS, the two specialized firms cannot feasibly produce outputs (y1, 0) or (0, y2) 

(as these points are located above the frontier Birs’Birs”). In this case, there are potential negative 

gains from specialization and EP(z, z1, z2, T) < 0 as the aggregate production of the two 

specialized firms declines from point A to point Eirs. Thus, Figure 2 presents a case where 

economies of specialization can be made positive, zero or negative by just changing the nature of 

returns to scale. These scale effects are consistent with the results stated in (3) and (4): DRS 

contributes to economies of specialization, while IRS contributes to diseconomies of 

specialization.  

Figure 3 evaluates situations where the convexity of the output set Y(x) no longer holds: 

the output set changes from being convex to non-convex. But it assumes CRS, thus holding 

returns to scale constant. It presents the key argument that economies of specialization can arise 
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for reasons unrelated to scale effects. Again, we start with a technically efficient integrated firm 

producing outputs (y1, y2) at point A, with two specialized firms producing outputs (y1, 0) and (0, 

y2). For the specialized firms, the boundary of the output set Y(x/2) is given in Figure 3 by the 

line Bc’Bc” when Y(x/2) is convex, by the line Blin’Blin” when the upper bound of Y(x/2) is 

linear, and by the line Bnc’Bnc” when Y(x/2) is non-convex. When the upper bound of Y(x/2) is 

linear, the two specialized firms are technically efficient (as both (y1, 0) and (0, y2) are located on 

the frontier Blin’Blin”). In this case, EP(z, z1, z2, T) = 0 and there is zero gain from specialization. 

Alternatively, under a convex set Y(x), the two specialized firms cannot feasibly produce outputs 

(y1, 0) or (0, y2) (as these points are located above the frontier Bc’Bc”). In this case, there are 

negative potential gains from specialization and EP(z, z
1
, z

2
, T) < 0, as the aggregate production 

of the two specialized firms declines from point A to point Ec. Finally, when Y(x/2) is non-

convex, the two specialized firms are located at points (y1, 0) and (0, y2) that are both located 

below the frontier Bnc’Bnc”. Then, EP(z, z1, z2, T) > 0 and there are potential productivity gains 

from specialization. Indeed, under a non-convex Y(x/2), Figure 3 shows that it becomes possible 

for the two specialized firms to increase aggregate production from point A to point Enc. This 

illustrates two important points. First, these convexity effects are consistent with the results 

stated in (3) and (5): convexity contributes to diseconomies of specialization and non-convexity 

contributes to economies of specialization. Second, Figure 3 presents a case where economies of 

specialization can be made positive, zero or negative by just changing the convexity properties of 

the technology, holding returns to scale constant. It means that non-convexity can affect 

economies of specialization in ways that are unrelated to scale effects. This stresses a need for an 

in-depth evaluation of the convexity properties of the technology in the evaluation of economies 

of specialization.  
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3. Evaluating Economies of Scale and Non-Convexity 

The above discussion indicates a need to consider scale effects and the convexity 

property of the technology together to evaluate economies of specialization. This requires 

developing empirical methods that can be used for that purpose. The distance function in (1) 

provides a convenient basis to evaluate the properties of technology.   

Definition 2: Let Th be the convex hull of T, with Th  { za + (1-) zb: za  T, zb  T,   [0, 

1]}  T. At point z, define the following measure of non-convexity  

Cn(z)  D(z, Th) - D(z, T)  0.  (6) 

 

The non-negativity of Cn(z) in (6) follows from (1) and Th  T. From the definition of 

convexity, Cn(z) = 0 when the technology T is convex. Alternatively, Cn(z) > 0 implies the 

presence of non-convexity in T. Thus, Cn(z) in (6) can be interpreted as a local measure 

(expressed in number of units of g) of the strength of departure from convexity. The measure is 

local in the sense that it applies at point z.  

Definition 3: Let Tc be the cone of T, with Tc  { z, z  T,   R+}  T. At point z, define the 

following measure of economies of scale  

Sc(z)  D(z, Tc) - D(z, T)  0.  (7) 

 

The non-negativity of Sc(z) in (7) follows from (1) and T
c
  T. From the definition of 

returns to scale, Sc(z) = 0 when the technology exhibits constant returns to scale (CRS). 

Alternatively, Sc(z) > 0 implies a departure from constant returns to scale. Thus, Sc(z) in (7) can 

be interpreted as a local measure (expressed in number of units of g) of the strength of departure 
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from CRS. The measure is local in the sense that it applies at point z.  

 

4. Empirical Evaluation of the Technology  

The empirical measurements in (6) and (7) require representations of the technology T. 

Consider a data set involving observations of m netputs chosen by N firms: zi = (z1i, …, zmi), 

where zji is the j-th netput used by the i-th firm, i  N  {1, …, N}. Following Varian (1984), 

Färe et al. (1994) and Banker et al. (2004), consider first the following nonparametric 

representations of technology  

Ts = {z: z  ii zi; i  R+, i , ii  Ss},  (8) 

where s  {v, c}, with Sv = 1 under variable returns to scale (VRS) and Sc = R+ under constant 

returns to scale (CRS).6 Under free disposal, Tv in (8) is the smallest convex set containing all 

data points; and Tc is the smallest convex cone containing all data points. For these reasons, the 

representations given in (8) have been called “Data Envelopment Analysis” (DEA). Since Sv  

Sc, it follows from (8) that Tv  Tc. Note that the sets Tv and Tc are both convex.  

Next, we want to consider representations of the technology that allow for non-convexity. 

One possibility is given by the following nonparametric representations 

TFDHs = {z: z  i i zi; i  {0, }, i ; ii = ;   Ss}.  (9) 

where FDH stands for “free disposal hull” (Deprins et al., 1984; Kerstens and Eeckaut, 1999), s 

 {v, c}, and the Ss’s are as defined above. Again, Sv = 1 corresponds to variable returns to scale 

(VRS) while Sc = R
+
 corresponds to constant returns to scale (CRS). Under free disposal, TFDHv 

is the smallest set containing all data points, while TFDHc is the smallest cone containing all data 

points. Since Sv  Sc, it follows from (9) that TFDHv  TFDHc. Note that each of the sets Tv and Tc 

is in general non-convex. Finally, note that the 's are restricted to take discrete values in (9) but 
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not in (8). It follows that TFDHs  Ts, i.e. that TFDHs is a subset of Ts, for s  {v, c}.    

While the FDH approach allows for non-convexity, it seems to be overly restrictive. 

Indeed, under VRS, FDH can find non-convexity everywhere marginal products are positive and 

bounded, which seems too extreme (Chavas and Kim, 2014). Thus, there is a need to develop 

some alternative and more general characterization of a non-convex technology. For that 

purpose, define a neighborhood of z  (z1, …, zm)  Rm as Br(z, ) = {z': Dp(z, z')  r: z'  Rm} 

 Rm, where r > 0 and Dp(z, z')  
m

j=1 [(|zj – zj'|/j)
p]1/p is a weighted Minkowski distance 

between z and z', with weights  = (1, …, m)  m

++R and based on a p-norm 1  p < .7 

Following Chavas and Kim (2014), let I(z, r) = {i: zi  Br(z, ), i N}  N, where I(z, r) is the 

set of firms in N that are located in the neighborhood Br(z, ) of z.8  

Definition 4: Define a neighborhood-based representation of the technology T as  

Trs
* = i Trs(zi),  (10) 

where 

Trs(z) = {z: z  i(z,r)i zi; i  R+, i (z, r); i(z,r)i  Ss}.   (11) 

with s  {v, c}, and the Ss’s are as defined above. 

 

The representation of technology given in (10)-(11) is obtained in two steps. In a first 

step, equation (11) defines Trs(z) as a local representation of the technology T in the 

neighborhood of point z under free disposal and returns to scale characterized by s  {v, c}. 

Since Sv  Sc, it follows from (11) that Trv(z)  Trc (z). Again, note that, for a given z, the sets 

Trv(z) and Trc (z) are convex. In a second step, equation (10) defines the set Trs
* as the union of 

the sets Trs(zi), i  N. Since the union of convex sets is not necessarily convex, it follows that Trs
* 
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defined in (10) is not necessarily convex for each s  {v, c}. Equation (10) is our proposed 

neighborhood-based representation of technology. It allows for non-convexity to arise in any part 

of the feasible set.9 The properties of Trs
* are presented next. (See the proof in the Appendix).   

Proposition 2: For s  {v, c},   

limr→ Trs
* = Ts,   (12) 

limr→0 Trs
* = TFDHs,  (13) 

and  

TFDHs  Trs
*  Tr’s

*  Ts, for any r’ > r > 0.  (14)  

 

Given s  {v, c}, equations (12) and (13) show that Trs
* includes two important special 

cases. From equation (8), the set Trs
* reduces to the set Ts when r  , i.e. when the 

neighborhood Br(z, ) of any z becomes “very large”. And from equation (13), the set Trs
* 

reduces to the set TFDHs when r 0, i.e. when the neighborhood Br(zi, ) become “very small” 

for any i  N.  

In addition, equation (14) shows that TFDHs is in general a subset of Ts: TFDHs  Ts, for s  

{v, c}. It also establishes that the set Trs
*, our neighborhood-based representation of technology, 

is bounded between TFDHs and Ts, with TFDHs as lower bound and Ts as upper bound. Noting that 

the set Ts is convex, and the set TFDHs is in general non-convex, it means that Trs
* provides a 

generic way of introducing non-convexity in production analysis (Chavas and Kin, 2014). And 

these representations apply under alternative scale properties: under VRS when s  v (with Sv = 

1), or under CRS when s = c (with Sc = R+). Finally, equation (14) states that the set Trs
* becomes 

larger when r increases, i.e. when the neighborhoods used to evaluate Trs
* become larger. This 

provides some flexibility in the empirical analysis of non-convexity issues.  
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As such, Trs
* has three useful characteristics: 1/ it provides a flexible representation of 

non-convexity; 2/ it nests as (restrictive) special cases both the DEA model and the FDH model; 

and 3/ it is easy to implement empirically. To illustrate this last point, given j and Trs(zj) in 

(11), note that the evaluation of the distance D(z, Trs(zj)) in (1) involves solving the simple linear 

programming problem: D(z, Trs(zj)) = Max: (z +  g)  iI(zj,r)
i zi ; i  R+, i I(zj, r); 

iI(zj,r)
i  Ss}. And it follows from (10) that D(z, Trs

*) = maxi {D(z, Trs(zi)): i}. As noted 

above, D(z, Trs
*) is a measure of technical inefficiency (expressed in number of units of the 

bundle g) for netput z under technology Trs
*. In turn, it provides a basis to evaluate the convexity 

effect Cn(z) given in (6), with Th = T∞s
* and T = Trs

*.10 And it gives a basis to evaluate the scale 

effects Sc(z) given in (7), with Tc = Trc
* and T = Trv

*.  

 

5. Empirical Analysis 

The analysis presented above is general: it applies to any firm, irrespective of its institutional 

form or organization. This section illustrates the usefulness of our approach through an empirical 

application. The application is to a panel data set of production activities from a sample of 

Korean rice farms. Focusing on farms is of interest as most farms produce more than one output, 

allowing us to observed different patterns of specialization across farms. In addition, farms are 

typically family farms with a simple organizational structure: the head of the household is the 

manager. And most of the labor is typically provided by family labor, meaning that coordination 

issues among workers are minimal. To the extent that labor and management are often performed 

for the same person, we can expect the gains from specialization to be closely associated with the 

managerial skills of the farm manager, i.e. his ability to manage multiple farm production 

activities. Our empirical analysis will evaluate the nature of scale effects Sc() given in (6) and 
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non-convexity effects Cn() given in (7). In turn, we will examine the factors contributing to non-

convexity.  

 

5.1. Data 

The analysis uses farm household level data from Korea, data collected in a Farm 

Household Economy Survey between 2003 and 2007 by the National Statistical Office (Kim et 

al., 2012). This annual survey provides data on the farm household economy and agricultural 

management. The data come from a sample of 3,140 farm households surveyed annually from 

314 enumeration districts. These districts are sampled first using a proportional sampling scheme 

based on the number of farm households from Agricultural Census at 2000. Although this survey 

includes 8 different farm household types which are determined by the largest proportion of the 

farm household revenue including paddy rice farming and vegetables farming, our empirical 

analysis focuses on a sample of farms classified as “paddy rice farms” located in the Jeon-Nam 

province in the southern part of Korea. While most farms produce more than one output, the 

farms in our sample have a relatively high share of farm revenue coming from rice. The reason 

why we focus only on rice farms in Jeon-Nam province is that this area has an extensive 

irrigation network supporting rice production and is known as a rice-producing province. 

Moreover, being in the same region, it is relatively safe to assume that all farms face similar 

agro-climatic conditions. The sample includes 86, 120, 101, 101, 122 number of rice farms for 

the year of 2003, 2004, 2005, 2006, and 2007, respectively. This unbalanced panel dataset 

contains data on nine netputs: four outputs and five inputs. The outputs are: rice, vegetable, 

livestock and other outputs. The inputs are family labor, paddy land owned, non-paddy land 

owned, land rented, and other inputs. Family labor input is measured in hours, and land inputs 
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are measured in hectares (ha). Other netputs are measured in value, assuming that all farmers 

face the same prices. Summary statistics are presented in Table 1. The average revenue from rice 

production is 14,990.5 (measured in 1,000 won11), accounting for 64.2% of total farm revenue. 

The second largest source of revenue is vegetable production: 3,177.0 (measured in 1,000 won), 

accounting for 15.1% of total farm revenue. The average size of a farm is 2.58 ha (including both 

land owned and land rented). The sample reflects the type of farms commonly found in Asia 

where farms are typically small and with some degree of specialization in rice production.   

 

5.2. Results 

The analysis relies on nonparametric representations of the technology Trs
*
 given in (10). 

The distance function D(z, T) in (1) is evaluated based on the bundle g = (g1, …, gm) such that gi 

= 0 for the i-th input and gj is the sample mean for the j-th output. Thus, our reference bundle g = 

(g1, …, gm) is the typical bundle associated with the outputs of an average farm. This choice 

leads to a simple interpretation of our directional distance estimates. For example, for a given T, 

finding that D(zi, T) = 0.2 means that the i-th farm is technically inefficient: it could move to the 

production frontier and increase its outputs by 20 percent of the average outputs in the sample. 

This interpretation remains valid under alternative characterizations of the technology T.  

Our neighborhood-based assessment of technology Trs
* requires the definition of a 

neighborhood. Letting Mj = MaxiN {zji} - MiniN {zji} be the sample range of the j-th netput, we 

considered dividing the sample range into four equally spaced intervals and defined 

neighborhoods as Br(z, ) = {z': – Mj/4  zj – zj'  Mj/4; j = 1, …, m; z'  Rm}.12 Based on these 

neighborhoods, our empirical analysis generates farm-specific estimates of technical inefficiency 

measured by D(zi, Trs
*), i  N. And it permits an evaluation of farm-specific convexity effects 
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Cn(zi) given in (6) and of scale effects Sc(zi) given in (7), i  N.  

The empirical analysis uses annual data on production activities from a sample of 530 

Korean farms over the period 2003-2007. Our results will be evaluated for three farm types: 

small farms, medium farms and large farms. Small farms are defined as farms located in the 

lower 30 percentile distribution of total land; large farms are those farms located in the top 30 

percentile distribution of total land; and medium farms are in between.  

First, we evaluated the convexity effect Cn given in (6), with Th = T∞s
* and T = Trs

*. The 

results are summarized in Table 2. Table 2 presents average values of Cn for each year (2003, 

2004, 2005, 2006 and 2007), for each farm type (small, medium and large farms), and under both 

CRS (s = c) and VRS (s = v). The results show that Cn varies between 0.007 and 0.177. This 

documents that the non-convexity effects can be large. For example, Cn = 0.177 means that non-

convexity effects accounts for a 17.7 percent change in the mean value of all outputs. The 

estimates of Cn are fairly similar for CRS versus VRS, indicating that the presence of non-

convexity is not related to scale effects. In general, Table 2 shows that Cn tends to be moderate 

for small farms (always less than 0.03) but that they increase with farm size. Indeed, with the 

exception of (2005, CRS), the largest Cn estimates are consistently found among large farms. 

This provides evidence that non-convexity effects become stronger on larger farms. It means that 

specialized operators tend to be more productive on larger farms. To the extent that non-

convexity comes from the saving in fixed cost related to labor and managerial resources, this 

would imply that the productivity of specialized management improve more on large farmers. 

Finally, Table 2 shows that some changes in the Cn estimates over time, although not clear 

patterns seem to emerge. This is consistent with a slow technology change in rice production in 

Korea, reflected by a complete irrigation infrastructure and high-yielding rice varieties available 
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by farmers.      

Second, we evaluated the scale measure Sc given in (7), with Tc = Trc
* and T = Trv

*. The 

results are summarized in Table 3. Table 3 presents average values of Sc for each year (2003, 

2004, 2005, 2006 and 2007), for each farm type (small, medium and large farms), and under both 

convexity (when r  ) and non-convexity. The results show that Sc varies between 0.009 and 

0.124. With the exception of (convexity, large farms, 2007), the Sc’s are all below 0.10. This 

documents that scale effects are present, but that the magnitude of scale inefficiency is moderate. 

For example, Sc = 0.009 (convexity, medium farm, 2004) means that scale inefficiency amounts 

to a 0.9 percent change in the mean value of all outputs. As might be expected, Table 3 shows 

that most of the scale inefficiency is due to IRS for small farms, but DRS for large farms. As 

discussed in section 2, we expect DRS (IRS) to contribute positively (negatively) to economies 

of specialization. As a result, scale effects would provide incentives for large farms to specialize. 

Yet, the relative small magnitudes of Sc indicate that scale effects are moderate, which is 

consistent with long-lasting small-scale rice farming in Korea. And they tend to be smaller than 

the non-convexity effects Cn reported in Table 2. It generates one of our key findings: convexity 

effects tend to dominate scale effects in Korean agriculture. In other words, while scale effects 

can affect the gains from specialization, our results point to a dominant role played by non-

convexity. From table 3, these results seem to hold both under a convex technology and a non-

convex technology, indicating that scale effects appear to be unrelated to non-convexity. Finally, 

Table 3 shows some changes in the Sc estimates over time, although not clear patterns seem to 

emerge. This may reflect slow technology change in rice production in Korea.  

 Next, we examined the factors associated with non-convexity. Using our farm-specific 

estimates of Cn, we regressed them on selected explanatory variables. Since the Cn’s have zero 
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as a lower bound, we use censored/Tobit regression. If non-convexity is associated with the 

saving in fixed cost related to labor and managerial resources, then the rise of non-convexity 

would likely be linked with human capital. On that basis, we include age, schooling, and their 

interactions as explanatory variables in the Tobit model. And to examine whether non-convexity 

varies with size, we also include farm size as an explanatory variable. Summary statistics for 

these variables are presented in Table 4.  

We estimated the Tobit model using the Cn estimates obtained under CRS as well as 

VRS. The Tobit estimates are reported in Table 5. The estimates show that age, schooling and 

their interaction have each statistically significant effects on non-convexity. This is consistent 

with our interpretation of non-convexity being associated with saving in fixed cost related to 

labor and managerial resources. Our results indicate that managerial ability likely changes with 

both experience and education. Interestingly, due to the interaction effects, the marginal impacts 

of age or schooling on non-convexity can be either positive or negative. The marginal impact of 

age is found to be negative but only for “low schooling.” Similarly, the impact of schooling is 

found to be negative but only for young individuals. Evaluated at sample mean of schooling, we 

found a negative relationship between age and non-convexity. This indicates that younger 

individuals have more incentive to specialize in rice production holding other variables constant. 

Evaluated at sample mean of age, we found a positive relationship between schooling and non-

convexity. This implies that education contributes to specialization in rice production. To the 

extent that non-convexity contributes to gains from specialization, our results indicate that young 

and better educated individuals would have more incentive to specialize. Given the fact that 

larger rice farms are generally operated by relatively younger individuals seeking specialization 

benefits associated with rice farming by increasing the size of paddy land, this result seems 
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plausible in a Korean rice production context. Alternatively, older and less educated individuals 

would have less incentive to specialize. This suggests that the pattern of specialization would 

vary with education and with the life cycle of individuals. The Tobit estimates reported in Table 5 

also show that farms that are more specialized in rice exhibit more non-convexity. This likely 

reflects the presence of significant fixed cost associated with rice production. Finally, Table 5 

shows that farm size has a strong and positive relationship with non-convexity. This is consistent 

with the results reported in Table 2: non-convexity effects tend to be more important on large 

farms. Again, we interpret this result as evidence that the productivity of specialized 

management improve more on larger farmers.  

Finally, simulations of economies of specialization (EP given in (2)) and its scale 

component (ESc given in (4)) and convexity component (ECn given in (5)) are presented in 

Table 6 for selected farm types. Two farm types are evaluated: a moderate-size farm with 1.77 ha 

of land, and a large farm size with 5.23 ha of land. The simulation involves two specialization 

schemes (K = 2), with z1 being specialized in rice and z2 being specialized in other (non-rice) 

activities.13 Table 6 reports economies of specialization for the large farm (with EP = 0.608), but 

diseconomies of specialization for the moderate-size farm (with EP = -0.262). Importantly, these 

specialization effects are large. For example, the reference bundle g representing average farm 

outputs in the sample, EP = 0.608 measures productivity effects amounting to a 60.8 percent 

increase in average revenue. This illustrates that the incentives to specialize are strong on large 

farms but not on smaller farms. Table 6 also shows that the scale component ESc is negative for 

both farm types (ESc = -0.091 for moderate size, and ESc = -0.137 for large farm). From 

equation (4), this corresponds to situations of increasing returns to scale (IRS), which tends to 

reduce the benefit of specialization. Finally, Table 6 shows that the convexity component ECn is 
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negative for the moderate-size farm (ECn = -0.171), but positive for the large farm (ECn = 

0.745). As stated in equation (5) above, ECn is necessarily negative under a convex technology; 

and it can turn positive only in the presence of non-convexity. Thus, Table 6 shows two 

important results: 1/ the productivity benefits of specialization come in large part from non-

convexity; and 2/ non-convexity is prevalent in large farms and not in smaller farms. This 

documents the role of non-convexity and its effects on the incentive for farms of different types 

to specialize. In a way consistent with our earlier results, it reveals significant productivity 

benefits from specialized management on larger farms, providing a strong incentive for large 

farms to specialize.  

 

6. Concluding Remarks 

This paper has presented an analysis of the microeconomics of firm specialization. We 

have proposed a measure of economies of specialization, reflecting the productivity effects of 

greater firm specialization. We have identified the distinct role played by returns to scale versus 

non-convexity. Our conceptual analysis showed that diseconomies of firm specialization occur 

under increasing returns to scale and a convex technology. Alternatively, economies of firm 

specialization arise under decreasing returns to scale and a non-convex technology. This 

indicates that a need for a combined empirical assessment of the nature of returns and scale and 

non-convexity. In this context, we developed measures of economies of scale and non-convexity 

and proposed methods to evaluate them empirically. The usefulness of the approach was 

illustrated in an empirical application to a data set of Korean farms. The analysis documented the 

presence of non-convexity as well as scale effects. We showed that non-convexity varies across 

farm types. Non-convexity was found to be more common on larger farms, indicating that 



25 

 

specialized operators have a greater ability to improve productivity on larger farms. We also 

found that non-convexity effects are more important than scale effects on larger farms. This has 

two implications. First, it means that scale effects are not the major factor affecting farm 

specialization. Second, the changes in non-convexity effects across farm size can help explain 

why larger farms tend to be more specialized. Our empirical analysis also evaluates the linkages 

between management and non-convexity. Most farms being family farms, we find that non-

convexity varies with the education and experience of the farm manager. This provides new 

insights into the role of management and its implications for firm productivity and the economics 

of specialization.  

Our analysis could be extended in several directions. First, the gains of specialization 

need to be analyzed at the aggregate level. This means examining how the micro effects analyzed 

in this paper translate into macro effects. This should provide new insights into the aggregate 

gains from trade. In particular, our analysis indicates that the gains from trade likely vary across 

industries depending on the convex (or non-convex) nature of the technology. Second, our 

application has focused on agriculture. There is a need to expand the empirical analysis to other 

industries. Third, while we documented that the linkages between specialization and a non-

convex technology, there is a need for further empirical studies of the linkages between 

management and specialization gains. Exploring these issues appears to be good topics for future 

research.  
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Appendix 

Proof of Proposition 1: Equation (2) can be alternatively written as EP(z, z1, ..., zK, T) =  K

1k

D(z
k
, T) – K D(z/K, T) + K D(z/K, T) – D(z, T). Given (4) and (5), this gives the decomposition 

in (3).  

For K > 1, note that T =

 
 
 
  

 K T under 

IRS

CRS

DRS

 
 
 
 
 

. It follows from (1) that D(z, T) = 

sup: (z +  g) } =

 
 
 
  

 sup: (z +  g) } under 

IRS

CRS

DRS

 
 
 
 
 

. Letting b = /K, we 

have sup: (z +  g) } = K supb {b: (z/K + b g) } = K D(z/K, T). Combining these 

results gives the inequalities in (4).  

From (1), we have D(zk, T) = supk : (z
k + k g) } and  K

1k (1/K) D(zk, T) = 

sup
K

1k k/K: (zk + k g) k = 1, …, K}. Assume that the set T is convex. Then, (zk + k g) 

T for all k implies that  K

1k [zk/K + (k/K) g] Letting  =  K

1k k/K, it follows that 

sup
K

1k k/K: (zk + k g) k = 1, …, K}  sup: ( K

1k zk/K +  g) } = D( K

1k zk/K, 

T). When z = 
K

1k zk, this yields 
K

1k (1/K) D(zk, T)  D(z/K, T), which gives the first inequality 

in (5).  

 

Proof of Proposition 2:  

Note that limr→ I(z, r) = N for any finite z  Rm. It follows from (8), (10) and (11) that 

Ts = limr→ Trs(zi) = limr→ Trs
* for any i  N and s  {v, c}. This gives (12).  

We have limr→0 Br(zi, ) = {zi} and limr→0 I(zi, r) = {i} for any i  N. Using equation 
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(11), it follows that limr→0 Trs(zi) = {z: z  γ zi, γ  Ss}. Equation (10) can be alternatively 

written as Trs
* = {i i Trs(zi): i  {0, 1}, i ; ii = 1}. Letting ηi = αi γ, this implies 

that limr→0 Trs
*
 = {z: z  i ηi zi; ηi  {0, γ}, i ; iηi = γ, γ  Ss}. Using equation (9), 

this gives (13).  

We have limr→0 Br(zi, ) Br(zi, ) Br’(zi, ) limr→ Br(zi, ) for any r’ > r > 0. 

Thus, for any r’ > r > 0, limr→0 I(zi, r) I(zi, r)  I(zi, r’)  limr→ I(zi, r) = N. Then, equation 

(11) implies that limr→0 Trs(zi)  Trs(zi)  Tr’s(zi) limr→ Trs(zi) for any r’ > r > 0 and any i  N. 

Using equations (10), (12) and (13), this proves (14).  
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Table 1. Descriptive statistics 

 
Variables  Number of 

observations 

Sample 

mean 

Standard 

deviation 

Minimum Maximum 

      

rice revenue (in 1,000 won) 530 14990.6 19413.5 603.7 161260.9 

vegetable revenue (in 1,000 won) 530 3176.8 4724.3 0 39649.2 

livestock revenue (in 1,000 won) 530 1659.2 3383.1 0 24517.0 

other revenue (in 1,000 won) 

 

530 3114.9 5725.3 0 73816.2 

production costs (in 1,000 won) 530 10185.9 10763.6 617.5 72654.9 

family labor (hours) 530 891.9 565.9 71.5 3634.6 

paddy land owned (in ha) 530 1.09 1.40 0 13.52 

land owned except paddy land owned (in ha) 

land  

 ownedupland (in ha) 

530 0.48 0.66 0 6.13 

land rented (in 1,000 won) 

 

 

 

530 1.01 1.51 0 16.37 

Note: 1,000 won (the Korean currency) is approximately equivalent to 0.89 US dollar. 
 

 

 

Table 2. Average Non-Convexity Effects Cn() under CRS and VRS, by Farm Size over 

Time
 
 

  

 

2003 2004 2005 2006 2007 

Under CRS (with Sc = R
+
) 

     
Small farm

a
 0.021 0.012 0.017 0.016 0.007 

Medium farm 0.026 0.058 0.069 0.051 0.036 

Large farm 0.103 0.143 0.067 0.177 0.113 

Under VRS (with Sv = 1) 

     
Small farm 0.015 0.007 0.010 0.008 0.006 

Medium farm 0.030 0.062 0.068 0.053 0.038 

Large farm 0.051 0.143 0.086 0.144 0.080 

Note: a/ Farm size is identified by the size of total land. Small farms are defined as farms being in the 0 to 

30 percentile of the sample distribution of farm size, medium farms are between the 30 percentile and 

70 percentile, and large farms are in the 70 to 100 percentile.  
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Table 3. Average Scale Effects Sc() under Alternative Representations of the Technology, 

by Farm Size over Time  

 

 

2003 2004 2005 2006 2007 

Under Convexity: Tv versus Tc 

  Small farms
a
 

Average Sc() 0.021 0.017 0.021 0.017 0.017 

Sc() due to IRS 0.018 0.017 0.020 0.016 0.015 

Sc() due to DRS 0.003 0.0000 0.001 0.001 0.002 

 

  Medium farms      

Average Sc() 0.041 0.009 0.033 0.020 0.023 

Sc() due to IRS 0.002 0.005 0.013 0.015 0.007 

Sc() due to DRS 0.039 0.004 0.020 0.005 0.016 

 
  Large farms      

Average Sc() 0.084 0.047 0.031 0.089 0.124 

Sc() due to IRS 0.001 0.002 0.007 0.001 0.001 

Sc() due to DRS 0.083 0.045 0.024 0.088 0.123 

Under Non-Convexity: Trv
*
 versus Trc

*
 

Average Sc()      

For small farms 0.015 0.011 0.014 0.009 0.017 

For medium farms 0.046 0.013 0.032 0.023 0.025 

For large farms 0.032 0.046 0.050 0.056 0.090 

Note: a/ Farm size is identified by the size of total land. Small farms are defined as farms being in the 0 to 

30 percentile of the sample distribution of farm size, medium farms are between the 30 percentile and 
70 percentile, and large farms are in the 70 to 100 percentile.  

 

Table 4. Descriptive Statistics for the Analysis of Non-Convexity  

Variable Obs. Sample mean Std. deviation Min. Max. 

Non-convexity 530 0.060 0.138 0.000 1.201 

Age 530 63.29 9.32 39.00 85.00 

Years of schooling 530 6.78 3.77 0.00 16.00 

Farm size 530 2.57 2.69 0.18 22.62 

Time trend 530 3.10 1.41 1.00 5.00 

Rice revenue ratio 530 0.64 0.16 0.28 1.00 
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Table 5. Tobit Estimation of Factors Affecting Non-convexity (Dependent variable = Cn)  

 

Variables (a) Under CRS (b) Under VRS 

 

Coefficients Standard errors Coefficients Standard errors 

     
Intercept     0.188 0.186 0.086 0.212 

Age           -0.006
**

 0.003 -0.006
**

 0.023 

Schooling     -0.049
**

 0.020 -0.048
**

 0.023 

Age*Schooling 0.001
**

 0.000 0.001
**

 0.000 

Farm size          0.014
***

 0.005 0.007 0.005 

Time trend             0.004   0.008 0.004 0.010 

Rice revenue ratio 0.202
***

 0.075 0.263
***

 0.087 

Sigma        0.230 0.011 0.252 0.014 

Note: Stars denote the significance level: *** for the 1 percent significance level; ** for the 5 

percent significance level; and * for the 10 percent significance level.   
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Table 6. Simulations of EP, ESc and ECn for Selected Farm Types
a/ 

 

 

Economies of specialization  
EP 

Scale component 
ESc 

Convexity component  
ECn 

EP = ∑k D(z
k
, T)  

– D(z, T) 

ESc = K D(z/K, T)  

– D(z, T) 

ECn = ∑k D(z
k
, T)  

– K D(z/K, T) 

Moderate-size farm 
 -0.262 

 
-0.091 -0.171 

Large farm 0.608 
 

-0.137 0.745 

 Note: The farm size is 1.77 ha for a moderate-size farm and 5.23 ha for a large farm. The 

simulated specialization schemes are: K = 2, with z
1
 being specialized in rice and z

2 
being 

specialized in other (non-rice) activities.   
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Figure 1: Evaluating the benefit of specialization: the case of two outputs (y1, y2)  Y(x) 
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Figure 2: Evaluating the benefit of specialization: the role of returns to scale, (y1, y2)  Y(x) 
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Figure 3: Evaluating the benefit of specialization: the role of convexity, (y1, y2)  Y(x) 
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Footnotes 

 

                                                 
1
 While our analysis focuses at firm level, there is an extensive literature on the aggregate benefits of 

specialization. The two approaches (micro versus macro) are obviously related. By arguing that the 

division of labor is "limited by the extent of the market", Smith (1676, p. 13-17) first stressed that the 

benefits of specialization can be obtained only in the presence of exchange (see also Stigler (1951)). 

In this context, economists have shown that the aggregate gains from trade are positive (e.g., Ricardo, 

1817; Samuelson, 1962). Yet, some controversy remains about the magnitude of these gains. The 

empirical measurements of aggregate gains from trade have typically been relatively small. For 

example, Arkolakis et al. (2012, p. 95) have estimated that the welfare gains from trade for the US 

have ranged from 0.7% to 1.4% of income. This has stimulated the search for new models that could 

generate larger gains from specialization and trade. In particular, the roles of economies of scale, 

product differentiation, imperfect competition and firm heterogeneity have been examined (e.g., 

Krugman, 1980; Melitz, 2003; Bernard et al., 2003; Balistreri et al., 2011; Melitz and Trefler, 2012; 

Caliendo and Rossi-Hansberg, 2012; Melitz and Redding, 2013). Yet, Arkolakis et al. (2012) showed 

that these new inquiries have not had much of an impact on the aggregate gains from specialization 

and trade. By focusing at the micro level, our paper does not examine the macro side of gains from 

specialization. Yet, we see our analysis as an important building block toward a better understanding 

of the economics of specialization at any level.     

2
 This paper is a follow-up to Kim et al. (2012). While Kim et al. (2012) relied on parametric method, this 

paper uses a more flexible nonparametric method to investigate the economics of specialization. On 

stressed below, our analysis provides new insights on the role of management in specialization 

incentives.  

3
 The directional distance function D(z, T) in (1) is the negative of Luenberger’s shortage function (see 

Luenberger, 1995). 

4
 Note that D(z, T) includes as special cases many measures of technical inefficiency that have appeared 

in the literature. Relationships with Shephard’s distance functions (Shephard, 1953) or Farrell’s 

measure of technical efficiency (Farrell, 1957) are discussed in Chambers et al. (1996) and Färe and 

Grosskopf (2000).   

5
 In the special case where the set T is convex, then the distance function D(z, T) is concave in z 

(Luenberger, 1995).   
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6
 Note that (8) could be modified to distinguish between IRS, CRS or DRS. Indeed, replacing [ii  

Ss] in (8) by iNi  1 ( 1) would correspond to imposing non-increasing returns to scale (non-

decreasing returns to scale).   

7
 For example, when p = 2, this corresponds to the Euclidean distance: D2(z, z’)  

m

j=1 [(|zj – 

zj'|/j)
2
]

1/2
. And when p → , this corresponds to the Chebyshev distance: limp Dp(z, z’) = Maxj {|zj 

– zj'|/j: j = 1, …, m}.   

8
 The choice of the neighborhood Br(z, ) is further discussed in section 4 below.   

9
 Nonparametric analyses of non-convex technology have been previously analyzed by Petersen (1990), 

Bogetoft (1996), Agrell et al. (2005) and Podinovski (2005). The relationships between our approach 

and previous analyses are discussed in Chavas and Kim (2014).  

10
 Noting that limr→ Trs

*
 = Ts from (12), it follows that D(z, T∞s

*
) can be obtained more directly as D(z, 

Ts) = Max: (z +  g)  iNi zi ; i  R+, i I; iNi  Ss}. 
 

11
  Note that 1,000 won (the Korean currency) = 0.89 US dollars. 

12
 We also conducted the analysis based of alternative choices of neighborhoods. As expected (from 

Proposition 2), we found that choosing smaller (larger) neighborhoods contributed to uncovering more 

(less) evidence of non-convexity. The results are available upon requests.  

13
 In the simulation, the specialized netputs z

1
 and z

2
 are defined as follows. Compared to the original 

farm (z), the farm specialized in rice (z
1
) produces 70 percent of the rice output, 30 percent of the non-

rice outputs, and 50 percent of inputs. And compared to the original farm, the farm specialized in non-

rice (z
2
) produces 30 percent of the rice output, 70 percent of the non-rice outputs, and 50 percent of 

inputs. In a way consistent with equation (2), this guarantees that z = z
1
 + z

2
. We chose this pattern of 

partial output specialization as no farm in our sample was observed to be completely specialized (i.e., 

producing only rice or only non-rice outputs).    


