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Chapter 1

Basic Ideas

The aim of this handout is to introduce to the basic ideas of the

bootstrap and to show that it can be useful in several problems of

Statistical Inference: bias and variance estimation, confidence

intervals and testing hypothesis. It shows also how to apply these

ideas in different fields of application.

The handout is thus an invitation to the bootstrap, showing its

flexibility and its limitations. It is not a basic theoretical reference.

More is available in the literature. It is mainly inspired from Efron

and Tibshirani (1993) and Davison and Hinkley (1997). The presen-

tation in Sections 1.1-1.3, follows some of the ideas in Politis (1995).

1.1 The Aim of Statistical Inference

• The Data Generating Process (DGP): X = (X1, . . . , Xn) is an

i.i.d. sample from a population with c.d.f. F (x) = P (Xi ≤ x) ; F is

unknown (nonparametric case) or F (.) = Fτ (.) where only τ ∈ IRk

is unknown (parametric case).

1
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• Quantity of interest θ(F ) (mean, median, variance,. . . ). Examples:

θ1(F ) =

∫
x dF (x),

θ2(F ) =

∫
x2 dF (x),

θ3(F ) = (1 − α)-quantile of F (x) : P (X ≤ θ3(F )) = 1 − α

• A statistic T (X ) is an estimator of θ(F ). Examples:

T1(X ) = X̄ =
1

n

n∑

i=1

Xi,

T2(X ) = X2 =
1

n

n∑

i=1

X2
i ,

T3(X ) = (1 − α)-quantile of Fn(x) =
1

n

n∑

i=1

I(Xi ≤ x)

• Measures of the accuracy of the estimator T (X ) ?

Quantities of interest:

BiasF (T ) = EFT (X ) − θ(F )

V arF (T ) = EFT 2(X ) − (EFT (X ))2

MSEF (T ) = EF ((T (X ) − θ(F ))2)

G(x) = DistT,F (x) = PF (T (X ) ≤ x)

• Often these quantities are unavailable (F is unknown), sometimes

some asymptotic approximations are available (as n → ∞).
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• Example: finding confidence intervals for θ(F ): (T (X ) − θ(F ))

is called a root. Quantity of interest here:

H(x) = PF (T (X ) − θ(F ) ≤ x)

where H(x) = DistT,F (x + θ(F )) = G(x + θ(F ))

– If H(x) is known, (T (X ) − θ(F )) is called a pivotal root:

– PF

(
u(α

2
) ≤ T (X ) − θ(F ) ≤ u(1 − α

2
)
)

= 1 − α,

where u(a) = H−1(a) is the a−quantile of H(·), i.e.

H(u(a)) = PF (T (X ) − θ(F ) ≤ u(a)) = a

– An equal-tailed (1 − α)100% confidence interval for θ(F ) is

then [
T (X ) − u(1 − α

2
), T (X ) − u(

α

2
)
]

– If H(x) is not known: useless.

•Basic Question: What are the sampling properties of such roots?

– Example 1: estimating the mean in a Normal population:

X ∼ N(µ, σ2)

– Possible roots:

R1n =
√

n(X̄ − µ) ∼ N(0, σ2)

R2n =
√

n
(X̄ − µ)

S
∼ tn−1

where S2 = 1
n−1

∑n
i=1(Xi − X̄)2.
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– Confidence interval for µ using R1n if σ known:
[
X̄ − z(1−α/2)

σ√
n
, X̄ − zα/2

σ√
n

]

where zα/2 = −z(1−α/2) is the (α/2)-quantile of N(0, 1).

– Confidence interval for µ using R2n if σ unknown:
[
X̄ − tn−1,(1−α/2)

S√
n
, X̄ − tn−1,α/2

S√
n

]

where tn−1,α/2 = −tn−1,(1−α/2) is the (α/2)-quantile of tn−1.

– When σ is unknown, R1n is a root and R2n is a pivotal root.

– Example 2: estimating the mean in an unknown population:X ∼
(µ, σ2) where both (µ, σ2) are unknown

– Only asymptotic results

– R1n is a root with R1n ∼ AN(0, σ2)

– R2n is an asymptotically pivotal root : R2n ∼ AN(0, 1).

– Example 3: estimating the median of an unknown population:

only few asymptotic results for some particular population.

– Example 4: nonparametric statistics, even more complicated.

• Problem: except for simple problems (where the root is piv-

otal), sampling distribution of roots are difficult to obtain and/or

depend on F which is unknown. Moreover, the results are generally

asymptotic ones (approximations).
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• The bootstrap provides easy-to-use and powerful methods for this

purpose.

– Provides approximations of sampling distribution of “any” root

T (X − θ(F )) or of “any” statistics T (X )

– Even if asymptotic results are available, bootstrap generally pro-

vides better approximations.

– In complicated problems, there are often no alternatives . . .

– There are a few cases where the bootstrap does not work.

• The term BOOTSTRAP : Adventures of Baron Munchausen

(R.E. Raspe 18th century) : “to pull oneself up by ones’ bootstrap”.

1.2 The Bootstrap Principle

1.2.1 The Plug-in Principle

• The problem comes from the fact that F is unknown. We have a

“good” estimator of F : Fn the empirical c.d.f. (putting a mass 1
n

at

each Xi).

Fn(x) =
1

n

n∑

i=1

I(Xi ≤ x)

• The Plug-in Principle: replace F by Fn (an old idea !)

θ(F ) =

∫
xdF (x)

T (X ) = θ̂(F ) = θ(Fn) =

∫
xdFn(x) =

1

n

n∑

i=1

Xi = X̄
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• The Bootstrap Principle:

– Real world: the DGP provides a sample X = {X1, . . . , Xn}
drawn from an unknown population with unknown c.d.f. F .

– A statistic T (X ) provide an estimator of the unknown θ(F )

– Sampling properties of T (X ) rely on the (often) unknown

G(x) = DistT,F (x) = PF (T (X ) ≤ x).

– Bootstrap world: consider the DGP∗, where a pseudo-sample

X ∗ = {X∗
1 , . . . , X

∗
n} is drawn from the given population X

with known c.d.f. Fn (mass 1/n at each observed Xi).

- conditionally to X , each observation X∗
i has a c.d.f.:

P (X∗
i ≤ x|X ) = Fn(x)

- the function T (·) applied to X ∗ provide an estimator T (X ∗)

of θ(Fn), which, conditionally to X is known

- conditionally to X , the sampling properties of the estimator

T (X ∗) depends only on Fn, so are known (although they

might be difficult to compute: see below).

– The bootstrap idea:

The known sampling properties of T (X ∗) could mimic the

(unknown) sampling properties of T (X )
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• Bootstrap estimates for the quantities of interest :

Bias∗(T ) = BiasFn
(T ) = EFn

T (X ∗) − θ(Fn)

V ar∗(T ) = V arFn(T ) = EFnT
2(X ∗) − (EFnT (X ∗))2

MSE∗(T ) = MSEFn(T ) = EFn

(
[T (X ∗) − θ(Fn)]2

)

Dist∗T (x) = DistT,Fn
(x) = PFn

(T (X ∗) ≤ x) = P (T (X ∗) ≤ x | X )

• In particular, Ĝ(x) = DistT,Fn
(x) is the bootstrap estimate of

G(x) = DistT,F (x) = PF (T (X ) ≤ x)

N.B.: the bootstrap estimate of H(x) = PF (T (X ) − θ(F ) ≤ x) is

given by

Ĥ(x) = PFn
(T (X ∗) − θ(Fn) ≤ x)

= P (T (X ∗) − θ(Fn) ≤ x | X )

= Ĝ(x + θ(Fn))

• The Key relation:

under “regularity conditions” (see below), when n is large:

Ĝ(x) = DistT,Fn(x) ≈ DistT,F (x) = G(x)
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• Remarks

1. Often, but not necessarily, T (X ) = θ(Fn). This may depend

on the appropriate definition of θ(F ). More generally, T (X ) =

gn(θ(Fn)), where gn is known (example: S2 = n
n−1

σ2(Fn)).

2. Parametric Bootstrap:

- If F (.) = Fτ (.) where only τ ∈ IRk is unknown.

- Same approach but here Fn(.) = Fτ̂ (.) where τ̂ = τ̂ (X ) is a

(consistent) estimator of the parameter(s) τ

3. In the bootstrap world, conditionally onX , everything is known

but may be difficult to compute:

⇒ Monte-Carlo approximations

The next (simple) example show a case where some bootstrap esti-

mates can be computed analytically.

• Example: Nonparametric Bootstrap, Estimation of a mean µ by

X̄ where X ∼ (µ, σ2).

– Let (X∗
1 , X

∗
2 , . . . , X

∗
n) be an i.i.d. sample drawn from the DGP∗

– We have in the real world: X ∼ F (·)

EF (X) = µ

V arF (X) = σ2
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– We have in the bootstrap world: X∗|X ∼ Fn(·)

E∗(X∗) = EFn
(X∗) =

1

n

n∑

i=1

Xi = X̄

V ar∗(X∗) = V arFn
(X∗) = EFn

(X∗ − EFn
(X∗))2

=
1

n

n∑

i=1

(Xi − X̄)2 =
n − 1

n
S2

– Sampling properties:

- Sample moments in the real world:

E(X̄) = EF (X̄) =
1

n

n∑

i=1

EF (X) = µ and Bias(X̄) = 0

V ar(X̄) = V arF (X̄) =
1

n
V arF (X) =

σ2

n

- Sample moments in the bootstrap world:

E∗(X̄∗) = EFn(X̄
∗) =

1

n

n∑

i=1

EFn(X
∗) = X̄

V ar∗(X̄∗) = V arFn(X̄
∗) =

1

n
V arFn(X

∗) =
n − 1

n

S2

n

- Bootstrap estimates of Bias and of V ar of X̄ :

Bias(X̄) ≈ B̂ias(X̄) = Bias∗(X̄∗) = E∗(X̄∗) − X̄ = 0

V ar(X̄) ≈ V̂ ar(X̄) = V ar∗(X̄∗) =
n − 1

n

S2

n
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1.2.2 Computational aspects: Monte-Carlo Methods

• If F is known: Monte-Carlo approximations are available

– In the simplest cases, BiasF (T ), V arF (T ), MSEF (T ) and DistT,F (x)

could eventually be calculated by analytical methods.

– Example: If Xi ∼ Expo (µ) with µ = E(Xi) (see the Appendix

A). We chose the statistic T (X ) = X̄ :

- then X̄ ∼ Γ(n, µ/n)

G(x) = PF (X̄ ≤ x) = DistT,F (x) =

∫ x

0

un−1 exp(−nu/µ)

(µ/n)nΓ(n)
du

- if n is large, then X̄ ∼ AN(µ, µ2/n)

G(x) = PF (X̄ ≤ x) = DistT,F (x) ≈ Φ

(
x − µ

µ/
√

n

)

– G(x) can also be approximated by Monte-Carlo simulations:

- Draw B samples (X (b), b = 1, . . . , B) from the known F ,(where

B is large).

- This provides B samples X (b) = (X
(b)
1 , . . . , X

(b)
n ) where X

(b)
i

is drawn independently from F .

- Compute T (X (b)), b = 1, . . . , B, (in our example, T (X (b)) =

X̄(b) = (1/n)
∑n

i=1 X
(b)
i ).

- Monte-Carlo approximations: strong law of large numbers

G(x) = DistT,F (x) ≈ 1

B

B∑

b=1

I(T (X (b)) ≤ x)
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– The quality of the approximations depends on B which can

be set as large as we want (only computer limitations).

– We have also the Monte-Carlo estimates of the Bias, V ar

and MSE:

BiasF (T ) ≈ 1

B

B∑

b=1

T (X (b)) − θ(F )

V arF (T ) ≈ 1

B

B∑

b=1

T 2(X (b)) −
(

1

B

B∑

b=1

T (X (b))

)2

MSEF (T ) ≈ 1

B

B∑

b=1

((T (X (b)) − θ(F ))2)

where, since F is known, θ(F ) is also known.

– Often useless because either we know the sampling distribution

of T (X ) or we know at least an asymptotic approximation.

– Example: Illustration of the Monte-Carlo principle.

- Exponential population: Xi ∼ Expo (µ); µ = 50, n = 10

θ(F ) = µ and T (X ) = θ(Fn) = X̄

- True sampling distribution : X̄ ∼ Γ(n, µ
n)

- CLT approximation : X̄ ∼ AN(µ, (µ2

n
))

- B Monte-Carlo simulations: empirical distribution of X̄(b),

b = 1, . . . , B: see Figure 1.1.



c©2008, L. Simar, Institut de Statistique, UCL, Belgium 12

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 1.1: Sampling distribution of X̄, Xi ∼ Expo (µ = 50) with n = 10. True Gamma
(dashed), Normal approximation (dashdot) and MC approximation (solid): top B = 500 and
bottom B = 5000.

• Remark :

Always impossible to perform Monte-Carlo approximations in

practical applications:

since we do not know F !
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• Sampling distributions in the Bootstrap world: Fn is known!

Monte-Carlo approximations are always available!

– Draw B samples (X ∗(b), b = 1, . . . , B) from Fn.

– This provides B “pseudo-samples” X ∗(b) = (X
∗(b)
1 , . . . , X

∗(b)
n )

where X
∗(b)
i is drawn independently from Fn,

– practically, X
∗(b)
i is drawn with replacement fromX = (X1, . . . , Xn).

– Compute T (X ∗(b)), b = 1, . . . , B.

– Monte-Carlo approximations of the bootstrap estimates:

Bias∗(T ) ≈ 1

B

B∑

b=1

T (X ∗(b)) − θ(Fn)

V ar∗(T ) ≈ 1

B

B∑

b=1

T 2(X ∗(b)) −
(

1

B

B∑

b=1

T (X ∗(b))

)2

MSE∗(T ) ≈ 1

B

B∑

b=1

((T (X ∗(b)) − θ(Fn))
2)

Ĝ(x) = Dist∗T (x) ≈ 1

B

B∑

b=1

I(T (X ∗(b)) ≤ x)

• The bootstrap principle is the plug-in principle and NOT the sim-

ulation principle which is only a way for computing the bootstrap

estimates (See Figure 1.2: the bootstrap analogy).

• Remark: parametric bootstrap, the same but here Fn = Fτ̂ , the

X
∗(b)
i are independently drawn from the cdf Fτ̂ .

Example: If X ∼ Expo(µ) then X∗ ∼ Expo(x̄).
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Figure 1.2: The bootstrap analogy: the russian dolls (from Hall, 1992).
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• Example: Nonparametric bootstrap X ∼ (µ, σ2), n = 5
The DGP is completely unknown: we observe the data,

(X1, X2, X3, X4, X5) = (22 10 15 18 20)
original data vector xbar S^2

22 10 15 18 20 17.00 22.00

bootstrap data vectors xbar* for b=1,10

10 10 18 18 20 15.20

10 20 10 18 20 15.60

20 22 10 22 15 17.80

15 22 22 15 15 17.80

20 10 15 22 15 16.40

20 20 20 18 10 17.60

15 18 15 18 15 16.20

15 22 18 20 15 18.00

20 20 18 15 18 18.20

22 20 20 18 10 18.00

. . . . . .

. . . . . .

bootstrap mean and bootstrap variance of xbar* for B=1000

17.0504 3.3949

Sampling distribution: see figure 1.3.

8 10 12 14 16 18 20 22 24
0

0.05

0.1

0.15

0.2

Sampling distribution of the bootstrap values of xbar*

Figure 1.3: Ĝ(x), the bootstrap sampling distribution of X̄,n = 5 and B = 1000.
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• Example: Bootstrapping the correlation

Let a sample be generated from a bivariate Normal distribution

X ∼ N2

((
0

0

)
,

(
4 1.5

1.5 1

))

Here ρ = 0.75. The MLE estimator is ρ̂(X ) = r, the empirical

correlation.

– We want the sampling distribution of ρ̂(X )

– Let a sample of size n = 100 giving µ̂ = (−0.1077 − 0.0908)′

and S =

(
4.2567 1.3662

1.3662 0.9974

)
. So, r = 0.6631.

– no real alternatives here to estimate the sampling distribu-

tion of ρ̂(X )

(N.B. some asymptotic results exist leading to Normal distribu-

tions, using Fisher information matrix or, nonparametric delta

methods,. . . ).

– We obtain the bootstrap approximations of the unknowns

E(ρ̂) and V ar(ρ̂):

E∗(ρ̂) = (1/5000)

5000∑

b=1

ρ̂(X ∗,b)

= 0.6622

V ar∗(ρ̂) = (1/5000)

5000∑

b=1

ρ̂2(X ∗,b) −
(

(1/5000)

5000∑

b=1

ρ̂(X ∗,b)

)2

= 0.0023.
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– Figure 1.4 displays the Bootstrap distribution of ρ̂(X ∗)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

500

600

700

800

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

9

Figure 1.4: Nonparametric Bootstrap approximation, B = 5000 of the sampling distribution
of ρ̂(X ). Left panel: histogram, right panel smoothed density estimate.

• Example: Duration times data: n = 10 observations of duration

times (failures,...)

X = (X1, . . . , X10) = (1 5 12 15 20 26 78 145 158 358)

The exponential model might be reasonable for X : X ∼ Expo(µ)

where µ = E[X ].

Figure 1.5 shows that the exponential model might be reasonable

but no enough observations (n = 10) to be sure. We have x̄ = 81.80

and s = 112.94 (Note the small overdispersion w.r.t. exponential

assumption: µ = σ).
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Figure 1.5: Empirical cdf and exponential cdf of Expo(x̄).

We are interested in the sampling distribution of T (X ) = X̄ , as

potential estimator of µ. We have E[X̄ ] = µ and V ar[X̄ ] = σ2/n.

We are offered different approaches.

1. Parametric analysis small sample: if we believe in the exponen-

tial model, we have the exact result: X̄ ∼ Γ(n, µ/n). This can

be estimated by

X̄ ∼ Γ(n,
x̄

n
)

This kind of result is not always available (if more complicated

statistics and/or models)!

2. Parametric case, asymptotic result: if we believe in the expo-

nential model, σ = µ, so that X̄ ∼ N(µ, µ2/n). This can be
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estimated by

X̄ ∼ N(x̄,
x̄2

n
)

This kind of result is not always available (if more complicated

statistics and/or models)!

3. Parametric bootstrap: if we believe in the exponential model,

we simulate B = 5000 samples X ∗(b) of size n = 10 drawn

from Expo(x̄) and compute for each X̄∗(b). The 5000 values

X̄∗(b), b = 1, 5000 provide the emprical parametric bootstrap

approximation of the sampling distribution of X̄ . This result is

always available.

4. Non-Parametric asymptotic result: we do not believe in the ex-

ponential model, so that X̄ ∼ N(µ, σ2/n). This can be esti-

mated by

X̄ ∼ N(x̄,
s2

n
)

This kind of result is not always available (if more complicated

statistics and/or models)!

5. Non-Parametric bootstrap: we simulate B = 5000 samples X ∗(b)

of size n = 10 drawn from X and compute for each X̄∗(b). The

5000 values X̄∗(b), b = 1, 5000 provide the emprical bootstrap

approximation of the sampling distribution of X̄ . This result is

always available.

Figure 1.6 shows the 5 different corresponding densities.
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Figure 1.6: Various estimates of the sampling distributions of X̄. Dotted (big dots) is the
assumed parametric density (gamma), Dash-dot is the parametric normal approximation,
Solid is the parametric bootstrap approximation, Dotted (small dots) is the nonparametric
normal appoximation and Dashed is the nonparametric bootstrap approximation.
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• Remark 1:

– If the Exponential is “true”, the 3 distributions (Gamma, para-

metric bootstrap and parametric asymptotic normal) are similar.

The bootstrap here is much better te normal approximation.

– The two nonparametric approaches give different results! (Expo-

nential hypothesis is questionable). The nonparametric normal

gives some mass below zero (which is impossible. . . ). We will see

later the bootstrap is approximation should be slightly better.

• Remark 2:

Each sampling distribution provides estimates of E[X̄ ] and of Std[X̄ ]

1. small sample parametric:

Ê[X̄ ] = x̄ = 81.80 and Ŝtd[X̄ ] = x̄/
√

n = 25.87

2. asymptotic parametric:

Ê[X̄ ] = x̄ = 81.80 and Ŝtd[X̄ ] = x̄/
√

n = 25.87

3. bootstrap parametric:

Ê[X̄ ] ≈ 82.15 and Ŝtd[X̄ ] ≈ 26.04

4. asymptotic Non-parametric:

Ê[X̄ ] = x̄ = 81.80 and Ŝtd[X̄ ] = s/
√

n = 35.71

5. bootstrap Non-parametric:

Ê[X̄ ] ≈ 82.52 and Ŝtd[X̄ ] ≈ 33.74
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• A Simulated Example

Bootstrap approximation for the sampling distribution of X̄ with

one simulated sample Xi ∼ Expo (µ = 50), see Figure 1.7.
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Figure 1.7: Sampling distribution of X̄ where Xi ∼ Expo (µ = 50). Dashed line is the
true Gamma Γ(n, µ/n), dot is the estimated Gamma Γ(n, X̄/n), dash-dot is the estimated
Normal approximation N(X̄, s2/n) and solid is the Nonparametric Bootstrap approximation.
Here, B = 5000, top with n = 10 and bottom with n = 100.
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1.3 An Alternative to the Bootstrap: Asymptotic The-

ory

1.3.1 The Parametric Delta Method

• Asymptotics for T = T (X ) ?

– There are other methods for approximating the sampling distri-

bution of a statistic T . Most are based on the CLT. This allows,

in particular to obtain asymptotic expression for the variance of

T (could be useful for the Bootstrap-t method below).

– Often T = T (X ) can be represented in terms of simpler statistics

Uj = Uj(X ), j = 1, . . . , p, such as sample moments, for which

asymptotic sampling distribution can be derived by using the

CLT.

Theorem 1.1. Delta Method. Let
√

n(U − µ) ∼ ANp(0, Σ)

where Σ > 0 and T = g(U) where g : IRp → IRq, q ≤ p and g are

differentiable at u = µ. Then

√
n(T − g(µ)) ∼ ANq(0, ∆

′ Σ ∆)

where

∆ =
∂g′(u)

∂u

∣∣∣∣
u=µ
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Sketch of the proof in the univariate case:

– it comes from Taylor series expansion:

T = g(U) = g(µ) + (U − µ)ġ(µ) + op(n
−1/2),

where ġ(µ) = ∂g(u)/∂u|u=µ.

– Then we have:

T = g(µ) − n−1/2ġ(µ) σ Z + op(n
−1/2),

where Z ∼ N(0, 1) and σ2 = Σ = n V ar(U).

– This provides also the asymptotic mean and variance of T .

• Example:

– In the exponential model we have

X̄ ∼ AN(µ, µ2/n).

Let T = log(X̄) we obtain:

T ∼ AN(log(µ), 1/n).

– More generally X̄ ∼ AN(µ, σ2/n) so that

T = log(X̄) ∼ AN(log(µ), σ2/(nµ2)).
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1.3.2 Nonparametric Delta Method, Influence Functions

– Let T (X ) = θ(Fn) be a plug-in estimator of θ(F ). Let G be a

c.d.f. Under regularity condition on the function θ(·) (It should

be Gâteaux differentiable at F ), the extension of Taylor expan-

sion in functional spaces, can be written as (see Serfling, 1980):

θ(G) = θ(F ) +

∫
Lθ(x; F ) dG(x) + o(||G − F ||),

where Lθ is the Frechet first derivative of θ(·) at F .

- If Hx denote the c.d.f. corresponding to the Dirac measure

at the point x, we have:

Lθ(x; F ) = lim
ε→0

θ ((1 − ε)F + εHx) − θ(F )

ε

=
∂θ ((1 − ε)F + εHx)

∂ε

∣∣∣∣
ε=0

.

- Lθ(x; F ) is called the influence function of θ and its

empirical approximation Lθ(x; Fn) is the empirical influence

function.

- It can be shown that (let G = F in Taylor expansion above):

EF (Lθ(X ; F )) =

∫
Lθ(x; F ) dF (x) = 0.
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– The nonparametric delta method is the application of the ap-

proximation with G = Fn:

θ(Fn) = θ(F ) +

∫
Lθ(x; F ) dFn(x) + op(||Fn − F ||)

≈ θ(F ) +

∫
Lθ(x; F ) dFn(x)

= θ(F ) +
1

n

n∑

i=1

Lθ(xi; F ).

– The CLT applied to the sum provides:

θ(Fn) − θ(F ) ∼ AN(0, varL(F )).

- We have:

E(Lθ(X ; F )) =

∫
Lθ(x; F ) dF (x) = 0

varL(F ) =
1

n
V ar(Lθ(X ; F )) =

1

n

∫
L2

θ(x; F ) dF (x).

– In practice, the latter is approximated by plugging Fn in place

of F :

varL(Fn) =
1

n2

n∑

i=1

L2
θ(xi; Fn)

Note that we have also for the empirical influence functions:
∫

Lθ(x; Fn) dFn(x) =

n∑

i=1

Lθ(xi; Fn) = 0
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• Example

– Sample mean: θ(F ) =
∫

xdF (x) and θ(Fn) = X̄ . We have

- θ ((1 − ε)F + εHx) = (1 − ε)µ + εx so that

Lθ(x; F ) =
∂ ((1 − ε)µ + εx)

∂ε

∣∣∣∣
ε=0

= x − µ.

- Now Lθ(x; Fn) = x − x̄ and Lθ(xi; Fn) = xi − x̄.

- Finally:

varL(Fn) =
1

n2

n∑

i=1

(xi − x̄)2 =
n − 1

n2
s2 =

v

n
.

where v is the (plug-in) empirical variance.

- So that the nonparametric delta method provides

X̄ − µ ∼ AN(0,
v

n
).

– Linear functionals: if θ(F ) =
∫

g(x)dF (x) the same argument

as for the mean gives

Lθ(x; F ) = g(x) − θ(F ) ⇒ Lθ(xi; Fn) = g(xi) − θ(Fn) etc. . .

Examples: all moments of X about zero: g(x) = xk.
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– Function of simple functionals: if θ(F ) = g(θ1(F ), . . . , θp(F )),

we have (by the chain rule)

Lθ(x; F ) =

p∑

j=1

∂g

∂θj
Lθj

(x; F ).

– Correlation coefficient: This is a function of sample moments

(see Davison and Hinkley, 1997, example 2.18)

ρ(F ) =
µ11 − µ10µ01√

(µ20 − µ2
10)(µ02 − µ2

01)
,

where µrs = E[XrY s]. The influence function turns out to be:

Lρ(x, y; F ) = xsys −
1

2
ρ(x2

s + y2
s),

where xs and ys are the centered and reduced versions of x and

y respectively.

– Link with the Jacknife: the Jacknife can be used to approxi-

mate Lθ(xi; Fn) (see Chapter 7).
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1.4 Bootstrap Estimation of Bias and Standard Errors

1.4.1 Plug-in principle

• We want to estimate the bias and standard error of T (X ) as esti-

mator of θ(F ), where T (X ) may or may not be the plug-in estimator

θ(Fn). The bias of T is given by

Bias(T ) = EF [T (X )] − θ(F )

The variance is

V ar(T ) = EF [T 2(X )] − (EF [T (X )])2

– The bootstrap estimation of the bias is thus given by

Bias∗(T ) = EFn
[T (X ∗)] − θ(Fn),

where θ(Fn) is the plug-in version of θ(F ). This is approximated

by:

Bias∗(T ) ≈ 1

B

B∑

b=1

T (X ∗(b)) − θ(Fn)

– The bootstrap estimation of the variance is:

V ar∗(T ) = EFn[T
2(X ∗)] − (EFn[T (X ∗)])2 ,

approximated by:

V ar∗(T ) ≈ 1

B

B∑

b=1

T 2(X ∗(b)) −
(

1

B

B∑

b=1

T (X ∗(b))

)2

.

– The bootstrap estimation of the standard error is thus:

Std∗(T ) =
√

V ar∗(T )
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• How to choose B to obtain a good approximation of the Bias∗(T )?

– Denote by Bias∗B(T ) the approximation and by Bias∗∞(T ) the

true value of the estimate. By the CLT Theorem we have

ProbFn

{∣∣∣∣∣
1

B

B∑

b=1

T (X ∗(b)) − EFn[T (X ∗)]

∣∣∣∣∣ ≤ 2
Std∗(T )√

B

}
≈ 0.95

Equivalently:

ProbFn

{
|Bias∗B(T ) − Bias∗∞(T )| ≤ 2

Std∗(T )√
B

}
≈ 0.95

The “Error Bound” 2 Std∗(T )/
√

B gives a rough bound to the error

in estimating the bias by Bias∗B(T ).

• Examples

1. Ratio of two means: θ = µX/µY , two independent samples

of size n = 10. We obtain T = θ̂ = 2.8574.

x y

137.1112 7.1518

380.0981 1.6332

205.2985 16.4597

2.3561 0.6340

94.6776 25.7834

61.1465 36.0518

145.5394 16.7388

70.8571 88.8102

173.8492 54.0011

7.4148 200.1222

---------------------

xbar ybar

127.8348 44.7386

s_x s_y

111.1522 60.9250
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Value of B Bias∗B(T ) Std∗B(T ) error bound

100 0.5877 2.3578 0.4716

200 0.4843 1.7481 0.2472

400 0.7039 2.1431 0.2143

800 0.5994 2.2919 0.1621

1000 0.6711 2.2518 0.1424

2000 0.6799 2.2247 0.0995

5000 0.6247 2.0510 0.0580

10000 0.6109 2.0707 0.0414

Table 1.1: Choice of B for Bias estimation of µX/µY .

See Table 1.1: for estimating the bias with a precision of, say

10%, we need more than B = 5000 replications. Then, at the

level 95%, the Bias∗B(T ) is bounded by 0.6247+0.0580 = 0.6827.

NB: the two samples were generated from two independent exponentials

with mean µX = 100, µY = 50, so θ = 2.

2. Estimation of the log of a mean: θ = log(µ) with the
estimator T = log(x̄) with a sample of size n = 8. The sample
is

x=(28.7161, 36.2561, 40.2591, 0.8056, 88.3621, 157.1984, 17.5921, 1.8090)

xbar=46.3748 and s_X=52.6274

The estimator turns out to be T = θ̂ = log(x̄) = 3.8368. The

results are reported in Table 1.2, with the same conclusion. Here,

for B = 5000, the negative bias estimate is bounded by −0.0845.

NB: the sample was generated from an exponential with mean µX = 100,

so that θ = 4.6052 and AStd(θ̂) = 1/
√

8 = 0.3536.
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Value of B Bias∗B(T ) Std∗B(T ) error bound

100 -0.0680 0.4069 0.0814

200 -0.0751 0.4052 0.0573

400 -0.0814 0.3984 0.0398

800 -0.0949 0.4310 0.0305

1000 -0.0543 0.4050 0.0256

2000 -0.0702 0.4075 0.0182

5000 -0.0750 0.4119 0.0117

10000 -0.0762 0.4140 0.0083

Table 1.2: Choice of B for Bias estimation for estimating log(µ).

1.4.2 Correction for the bias

– If T (X ) is biased, it is tempting to correct for the bias.

- Usually

Tcorr(X ) = T (X ) − Bias∗(T )

= 2 T (X ) − 1

B

B∑

b=1

T (X ∗(b))

- This can be dangerous in practice: due to the additional noise

in Tcorr(X ) due to the variance of Bias∗(T ): MSEF (Tcorr(X ))

could be greater than MSEF (T (X )).
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– How to compute MSEF?

- we have

V arF (Tcorr(X )) = V arF

(
2 T (X ) − 1

B

B∑

b=1

T (X ∗(b))

)

= 4 V arF (T (X )) + V arF

(
1

B

B∑

b=1

T (X ∗(b))

)

−2 CovF

(
2 T (X ),

1

B

B∑

b=1

T (X ∗(b))

)

= 4 V arF (T (X )) + V arF [E∗(T (X ∗))]

−4 CovF [(T (X ), E∗(T (X ∗)] + O(B−1)

which contains many unknown quantities.

- MSEF (T (X )) can be estimated by the bootstrap

- MSEF (Tcorr(X )) could be estimated by a double bootstrap

(nested boostrap: see below), in order to estimate V ar∗(Tcorr(X ))

and Bias∗(Tcorr(X )).

– In practice, correction is not recommended unless

Bias∗(T ) ≫ Std∗B(T )

and even in this case, it should be better to try to find an better

estimates with lower bias at the start.
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– Efron and Tibshirani (1993) recommend, as a rule of thumb:

If
|Bias∗(T )|
Std∗B(T )

≤ 0.25 don’t correct for the bias,

because in this case, the root mean squarred error of T can not

be larger than about 3.1% of the standard error:

RMSEF (T ) = StdF (T )

√
1 +

(
BiasF (T )

StdF (T )

)2

≈ StdF (T )

{
1 +

1

2

(
BiasF (T )

StdF (T )

)2
}

– In the examples above (with B = 5000):

- For the estimation of the ratio of means we have

|Bias∗(T )|/Std∗B(T ) = 0.6247/2.0510 = 0.3046

θ̂corr = θ̂ − Bias∗(T ) = 2.8574 − 0.6247 = 2.2327

- For the estimation of log(µ) we have

|Bias∗(T )|/Std∗B(T ) = 0.0750/0.4119 = 0.1821

θ̂corr = θ̂ − Bias∗(T ) = 3.8368 − (−0.0750) = 3.9118

but here, the latter correction is certainly not recommended.
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• Monte-Carlo evaluation of BIAS and MSE

– Generate samples of size n from known DGP (F and θ =

θ0 is known). For each simulated sample m = 1, . . . , M ,

compute θ̂m and θ̂corr,m (by bootstrap), we have

BIAS(θ̂) ≈ 1

M

M∑

m=1

(θ̂m − θ0)

MSE(θ̂) ≈ 1

M

M∑

m=1

(θ̂m − θ0)
2

BIAS(θ̂corr) ≈
1

M

M∑

m=1

(θ̂corr,m − θ0)

MSE(θ̂corr) ≈
1

M

M∑

m=1

(θ̂corr,m − θ0)
2

– Example 1: simlation of M = 1000 random samples of size

n = 10 of pairs (Xi, Yi) where X ∼ Exp(µX = 100) and Y ∼
Exp(µY = 50), X independent of Y . We obtain with B =

5000 (comp. time = 352”, pentium M, 1.8 Ghz), θ0 =

µX/µY = 2

BIAS(θ̂) = 0.2175, MSE(θ̂) = 1.2558

BIAS(θ̂corr) = −0.0014, MSE(θ̂corr) = 0.9871.
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– Example 2: simulation of M = 1000 random samples of size

n = 8 from X ∼ Exp(µX = 100). We obtain with B = 5000

(comp. time = 223”, pentium M, 1.8 Ghz), θ0 = log(µ) =

4.6052:

BIAS(θ̂) = −0.0631, MSE(θ̂) = 0.1377

BIAS(θ̂corr) = −0.0099, MSE(θ̂corr) = 0.1358.

% MATLAB code

n=8; a=1; beta=100; mu=a*beta; ttrue=log(mu);

t0=clock; MC=1000; B=5000;

MC_that=[]; MC_tcorr=[];

for mc=1:MC

x=gamrnd(a,beta,n,1);

m=mean(x); t=log(m);

NParT=[];

for bb=1:B

xb=boot(x); mb=mean(xb); tb=log(mb);

NParT=[NParT;tb];

end

mstar=mean(NParT); bias=mstar-log(m); tcorr=t-bias;

MC_that=[MC_that;t]; MC_tcorr=[MC_tcorr;tcorr];

end

TCPU=etime(clock,t0);

fprintf(’ Elapsed CPU time for the MONTE-CARLO :%15.4f \n’, TCPU)

BIASt=mean(MC_that)-ttrue;

BIAStcorr=mean(MC_tcorr)-ttrue;

MSEt=mean((MC_that-ttrue*ones(MC,1)).^2);

MSEtcorr=mean((MC_tcorr-ttrue*ones(MC,1)).^2);
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1.5 Bootstrap Confidence Intervals

1.5.1 Basic bootstrap confidence intervals

• Pivotal Roots: Confidence Interval for θ(F ) can be obtained from

H(x), the c.d.f. of the root T (X ) − θ(F ):

H(x) = PF (T (X ) − θ(F ) ≤ x)

– We have:

PF

(
u(

α

2
) ≤ T (X ) − θ(F ) ≤ u(1 − α

2
)
)

= 1 − α

where u(a) = H−1(a) is the a−quantile of H, i.e.

H(u(a)) = PF (T (X ) − θ(F ) ≤ u(a)) = a

– An equal-tailed (1−α)100% confidence interval for θ(F ) is then
[
T (X ) − u(1 − α

2
), T (X ) − u(

α

2
)
]

– Pivotal roots are needed to be able to find the quantiles u(.):

H(x) has to be known.

• Asymptotic Pivotal Roots

– If T is the MLE:

- Let ℓ(X ; θ) be the log-likelihood function, and ℓ̇(X ; θ) be the

score function, then (under regularity conditions):

T (X ) − θ(F ) ∼ AN
(
0,F−1

n (θ)
)
,

where Fn is the Fisher information.

Fn(θ) = V ar(ℓ̇(X ; θ)) = −E
[
ℓ̈(X ; θ)

]
.
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- Fn(θ) can be estimated by Fn(θ̂), or more simply by its con-

sistent estimator, the observed Fisher information −ℓ̈(X ; θ̂).

– An equal-tailed (1 − α)100% asymptotic confidence interval for

θ(F ) is then
[
T (X ) − z(1 − α

2
)σ̂, T (X ) − z(

α

2
)σ̂
]

where σ̂2 = AV ar(T (X )).

– More generally, if T is the plug-in estimator, or a function of it,

the Delta method could provide the estimates of the asymptotic

variance of T (X ) (with the empirical influence function).

• “Hybrid Appraoch”: We can also use the (eventual) asymptotic

normality, but the variance of T (X ), is obtained by the bootstrap

approximation:

[1] provide the boostrap estimate of the sampling distribution of

T (X ): Ĝ(x) = Dist∗T (x);

[2] by Q-Q plot (or normal probability plot), check for normality;

[3] compute Std∗(T );

[4] the equal-tailed (1−α)100% confidence interval for θ(F ) is then
[
T (X ) − z(1 − α

2
)Std∗(T ), T (X ) − z(

α

2
)Std∗(T )

]
,

where za is the a-quantile of a N(0, 1) where by symmetry

z(α/2) = −z(1 − α/2).
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• The basic bootstrap confidence interval for θ(F ) is when

we want to avoid the Normal approximation by using the bootstrap

estimates Ĝ(x) of the sampling distribution of T (X ), in place of the

Normal, for estimating the unknown quantiles u(a).

The resulting confidence interval is:
[
T (X ) − u∗(1 − α

2
), T (X ) − u∗(

α

2
)
]

where u∗(a) is the a−quantile of Ĥ(x) = Ĝ(x+θ(Fn)), the bootstrap

estimate of H(x):

Ĥ(x) = PFn
(T (X ∗) − θ(Fn) ≤ x)

= P (T (X ∗) − θ(Fn) ≤ x | X )

≈ 1

B

B∑

b=1

I
(
T (X ∗(b)) − θ(Fn) ≤ x

)
.

1.5.2 Practical computation of the quantiles u∗(a)

• The quantiles of Ĥ(x) are more easily obtained from the quantiles

v∗(a) of Ĝ(x) = Dist∗T (x):

Ĝ(x) = Dist∗T (x) ≈ 1

B

B∑

b=1

I(T (X ∗(b)) ≤ x).

– Here v∗(a) = Ĝ−1(a), so,

PFn

(
T (X ∗) ≤ v∗(a)

)
= Ĝ(v∗(a)) = a
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– Since Ĥ(x) = Ĝ(x + θ(Fn)) we just have to shift the obtained

quantiles to get u∗(a):

u∗(a) = v∗(a) − θ(Fn)

• The quantiles v∗(a) of Ĝ(x) = Dist∗T (x) are directly obtained from

the following bootstrap algorithm :

- Consider the ordered statistics of T (X ∗(b)), b = 1, . . . , B:

T ∗
(1) ≤ . . . ≤ T ∗

(B).

- Let k1 = [B α
2
] + 1 and k2 = [B (1 − α

2
)], where [·] stands for

the integer part.

- Finally:

v∗(
α

2
) = T ∗

(k1)

v∗(1 − α

2
) = T ∗

(k2)

- NB: Most of the modern softwares have build-in procedures

that provide any percentile v∗(a) from the series T (X ∗(b)), b =

1, . . . , B (using linear interpolation).

• Finally, if T (X ) = θ(Fn) (as often the case), the basic bootstrap

confidence interval for θ(F ) is given by:
[
T (X ) + θ(Fn) − v∗(1 − α

2
), T (X ) + θ(Fn) − v∗(

α

2
)
]

=
[
2 T (X ) − v∗(1 − α

2
), 2 T (X ) − v∗(

α

2
)
]
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• Example: Let’s come back to the duration data n = 10:

X = (X1, . . . , X10) = (1 5 12 15 20 26 78 145 158 358)

We have x̄ = 81.80 and s = 112.94.

1. Parametric model: If X is exponential (?) we have an exact

confidence interval and a pivotal root (available in this simple

case).
X̄

µ
∼ Gamma (n,

1

n
)

So that:

µ ∈
[

x̄

q(1 − α
2
)

,
x̄

q(α
2
)

]

where q(a) is the a-quantile of a Gamma(n, 1/n).

2. Asymptotic parametric approximation: If X is exponential (?)

we have an asymptotical pivotal root.

X̄ − µ

µ/
√

n
∼ AN(0, 1)

and by Slutzky’s theorem
√

n(X̄ − µ)/X̄ ∼ AN(0, 1). This

provides

µ ∈ x̄ ± z1−α/2
x̄√
n

3. Asymptotic Non-parametric approximation: we have the asymp-

totical pivotal root
√

n(X̄ − µ)/S ∼ AN(0, 1). This provides

µ ∈ x̄ ± z1−α/2
s√
n
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4. Bootstrap approaches:

(a) Parametric and Non parametric bootstrap:

µ ∈
[
2x̄ − v∗(1 − α

2
) , 2x̄ − v∗(

α

2
)
]

where v∗(a) = Ĝ−1(a) is the a-quantile of the empirical dis-

tribution of X̄∗

• for the parametric bootstrap X∗
i ∼ Expo(x̄),

• for the nonparametric bootstrap X∗
i drawn from X .

(b) Parametric Pivotal-bootstrap: If X is exponential (?), we can

use the pivotal root X̄/µ but use a bootstrap approximation

of its density in place of the Γ(n, 1/n).

µ ∈
[

x̄

q∗(1 − α
2
)

,
x̄

q∗(α
2
)

]

where q∗(a) is the a-quantile of the parametric bootstrap

distribution of X̄∗/x̄ where X∗
i ∼ Expo(x̄). Note that the

latter CI is identical to [v∗(α/2), v∗(1− α/2)] where v∗(·) is

defined above with X∗
i ∼ Expo(x̄).

The results are reported in Table 1.3.
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method lower limit upper limit

Parametric Gamma 47.8788 170.5805

Parametric Pivotal-bootstrap 47.7969 168.9480

Parametric Bootstrap 23.6067 123.9947

Parametric Asymp. Normal 31.1008 132.4992

Nonparametric Asymp. Normal 11.8014 151.7986

Nonparametric Bootstrap 6.8000 137.3000

Table 1.3: Confidence intervals, duration data with n = 10. Here B = 5000

• Example: Estimation of a variance. We simulate n = 10 obser-

vation from a N(50, 32). We obtain

X = (48.70 45.00 50.38 50.86 46.56 53.57 53.57 49.89 50.98 50.52)

We have the following statistics x̄ = 50.0038, the unbiased estimate

of σ2 is s2 = (1/(n − 1))
∑n

i=1(xi − x̄)2 = 7.3456 and the plug-in

estimate is v = (1/n)
∑n

i=1(xi − x̄)2 = 6.6110. Figure 1.8 shows the

estimated sampling distributions of S2, obtained by sampling theory,

parametric and nonparametric bootstrap (B = 5000).
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Figure 1.8: Estimates of the sampling distribution of S2: estimated Gamma (dotted), para-
metric bootstrap (solid), nonparametric bootstrap (dashed).

• Note that the estimates (nonparametric bootstrap) of the bias are

Bias∗(S2) = 0.0575 and Std∗(S2) = 2.7492

Bias∗(V ) = −0.6094 and Std∗(V ) = 2.4743

So that vcorr = 7.2204 is very similar to s2 = 7.3456.

The confidence intervals for σ2 obtained by the parametric and non-

parametric bootstrap distribution of S2 are:

parametric bootstrap = [−1.7756 , 11.7803]

nonparametric bootstrap = [1.3987 , 12.2273]
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1.6 Summary Table of the Bootstrap Ideas

REAL WORLD BOOTSTRAP WORLD

F unknown Given X = (X1, . . . , Xn), Fn is known
θ(F ) unknown θ(Fn) known

DGP F : X ∼ F DGP∗ Fn : X∗ ∼ Fn

⇓ ⇓
X = (X1, . . . , Xn) X ∗ = (X∗

1 , . . . , X
∗
n)

T (X ) estimator of θ(F ) T (X ∗) estimator of θ(Fn)

G(x) = PF (T (X ) ≤ x) Ĝ(x) = PFn
(T (X ∗) ≤ x)

Moments Moments
EF (T (X )) EFn

(T (X ∗))
V arF (T (X )) V arFn

(T (X ∗))

W = T (X ) − θ(F ) W ∗ = T (X ∗) − θ(Fn)

H(x) = PF (W ≤ x) ⇒ u(a) = H−1(a) Ĥ(x) = PFn
(W ∗ ≤ x) ⇒ û(a) = Ĥ−1(a)

⇓ ⇓
CI for θ Bootstrap CI for θ

[T (X ) − u(1 − α/2), T (X )− u(α/2)] [T (X ) − û(1 − α/2), T (X )− û(α/2)]

S = T (X )−θ(F )
σ̂(X )/

√
n

S∗ = T (X ∗)−θ(Fn)
σ̂(X ∗)/

√
n

K(x) = PF (S ≤ x) ⇒ y(a) = K−1(a) K̂(x) = PFn
(S∗ ≤ x) ⇒ ŷ(a) = K̂−1(a)

⇓ ⇓
CI for θ Bootstrap CI for θ[

T (X ) − y(1 − α/2) σ̂(X )√
n

, T (X ) − y(α/2) σ̂(X )√
n

] [
T (X ) − ŷ(1 − α/2) σ̂(X )√

n
, T (X ) − ŷ(α/2) σ̂(X )√

n

]



Chapter 2

More on Confidence Intervals

2.1 The Percentile Method

• Suppose there exist some unknown monotone transformation of

T (X ) = θ(Fn), say U = h(T ) which has a symmetric distribution

around η = h(θ). So, h(T ) is an unbiased estimator of h(θ).

– If we knew h, a confidence interval could be obtained for η as

[U(X ) − uU(1 − α/2), U(X ) − uU(α/2)] ,

where uU(a) is the a-quantile of the sampling distribution of

U − η.

– Due to the symmetry of the sampling distribution of U − η

around 0, we have here

−uU(α/2) = uU(1 − α/2)

so the confidence interval can be written as

[U(X ) + uU(α/2), U(X ) + uU(1 − α/2)]

46
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• Basic Bootstrap approximation:

– If we knew h, we could use the basic bootstrap method to obtain

an approximation of the confidence interval for η as follows:

[U(X ) + u∗
U(α/2), U(X ) + u∗

U(1 − α/2)]

where u∗
U(a) is the a-quantile of the bootstrap distribution of

U∗ − η̂, with U∗ = U(X ∗) = h(T (X ∗)) and η̂ = U(X ) =

h(T (X )).

– Since u∗
U(a) = v∗U(a) − U(X ) this is equivalent to

η ∈
[
v∗U(

α

2
), v∗U(1 − α

2
)
]

where v∗U(a) is the a-quantile of the bootstrap distribution of

U(X ∗).

• Due to the monotonicity of h, this confidence interval for η can be

transformed back to a confidence interval for θ,

– We have

v∗U(a) = h(v∗(a)),

where v∗(a) is the a-quantile of the bootstrap distribution of

T (X ∗).

– We obtain for θ(F ) the bootstrap percentile interval:

θ(F ) ∈
[
v∗(

α

2
), v∗(1 − α

2
)
]
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• This does not depend on h and so can be implemented with-

out knowing h. Note that the bootstrap precentile interval has the

transformation invariance property (for any monotone in-

creasing mapping).

• It is also called a backward bootstrap interval since it looks for

critical values in the “wrong” tails. Indeed, compare in the θ scale:

Percentile
[
T (X ) + u∗(

α

2
), T (X ) + u∗(1 − α

2
)
]

Basic bootstrap
[
T (X ) − u∗(1 − α

2
), T (X ) − u∗(

α

2
)
]

• It is more popular than the basic bootstrap confidence interval

because it works very well in many applications. It is more stable to

original sampling variations. Compare both intervals:

Percentile
[
v∗(

α

2
), v∗(1 − α

2
)
]

Basic bootstrap
[
2 T (X ) − v∗(1 − α

2
), 2 T (X ) − v∗(

α

2
)
]
.

• Remarks:

– The percentile interval is always contained in the domain of θ(F ),

because v∗(a) is in the domain of T (X ).

– The percentile interval is correct if and only if such a monotone

transformation h exists (but we do not need to know it).

– The symmetry of the distribution in the transformed scale im-

plies that U is an unbiased estimator of η.

– If h(T ) = T , Basic bootstrap ≈ Percentile.
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2.2 The BC (bias-corrected) Percentile Method

• Suppose there exist some unknown monotone (increasing) transfor-

mation of T (X ) = θ(Fn), say U = h(T ) which has (at least asymp-

totically) a Normal distribution around η −w where η = h(θ). In a

sense w is the “bias” of U(X ):

h(T ) ∼ N(h(θ) − w, 1)

U − η ∼ N(−w, 1)

Note that the scaling factor to obtain a variance equal to 1 may be

introduced in the monotone transformation h (if V ar(U) does not

depend on η: otherwise we should use the BCa method below).

• How to estimate w ?

– Since U − η + w = Z ∼ N(0, 1) we have:

P (U > η) = P (Z − w > 0)

= P (Z > w).

– Now, due to the (increasing) monotonicity of h:

P (U > η) = P (h(T ) > h(θ)) = P (T > θ) = P (Z > w)

– This involve an equation in w:

P (T ≤ θ) = P (Z ≤ w) = Φ(w)

the solution is:

w = Φ−1 (P (T ≤ θ)) .
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– The bootstrap estimate of w is then:

ŵ = Φ−1 (P (T (X ∗) ≤ θ(Fn) | X ))

= Φ−1 (PFn(T (X ∗) ≤ θ(Fn)))

= Φ−1
(
Ĝ(θ(Fn))

)

= Φ−1

(
#
[
T (X ∗(b)) ≤ θ(Fn)

]

B

)

• How to obtain confidence interval for θ?

– Since U − η + w = Z ∼ N(0, 1), we have:

P
(
zα/2 ≤ U − η + w ≤ z1−α/2

)
= 1 − α

P
(
U + w − z1−α/2 ≤ η ≤ U + w − zα/2

)
= 1 − α

P
(
U + w + zα/2 ≤ η ≤ U + w + z1−α/2

)
= 1 − α

P
(
η̂α/2 ≤ η ≤ η̂1−α/2

)
= 1 − α,

where η̂a = U + w + za.

– Finally, confidence interval for θ: use the inverse transform.

P
(
θ̂α/2 ≤ θ ≤ θ̂1−α/2

)
= 1 − α

where θ̂a = h−1(η̂a).

• But h(·) is unknown, so is θ̂a.
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• We will use the Normality of U , to evaluate θ̂a.

– We have

Ĝ(θ̂a) = P
(
T (X ∗) ≤ θ̂a|X

)
= P (U(X ∗) ≤ η̂a|X )

– Since η̂a = U(X ) + w + za this gives:

Ĝ(θ̂a) = P (U(X ∗) − U(X ) + w ≤ 2 w + za|X ) , Boot. world

≈ PF (U(X ) − η + w ≤ 2 w + za) , Real world

– Now, since U − η + w = Z ∼ N(0, 1), we have:

Ĝ(θ̂a) ≈ Φ (2 w + za)

• Finally we obtain

θ̂a = Ĝ−1 (Φ(2 w + za))

= v∗ (Φ(2 w + za))

where w will be estimated by ŵ:

θ̂a = v∗
(

Φ

[
2 Φ−1

(#[T (X ∗(b)) ≤ θ(Fn)]

B

)
+ za

])

• Note that if w = 0, the BC method coincides with the usual

percentile method: θ̂a = v∗(a).
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2.3 The BCa Percentile Method

• The basic idea

– Suppose there exist some unknwon monotone (increasing) trans-

formation h(·) of θ̂ = T (X ), say η̂ = h(T (X )) which has (at

least asymptotically) a Normal distribution around η = h(θ)

with a bias w and a variance which may depend on η:

HBCa
:

η̂ − η

ση
∼ N(−w, 1),

where ση = ση0
[1+a(η−η0)] where η0 is any convenient reference

point on the scale of η values: the idea is that we approximate

(when n is large) ση by a linear function. To simplify we will

chose below η0 such that ση0
= 1. Again, the scaling factor to

obtain the variance 1 in the normal approximation can be tuned

in the monotome function h.

– As above (BC-percentile method) w accounts for a possible bias

in η̂ as estimator of η but we allow here the variance of η̂ being

a function of η: here a is called the acceleration factor (rate of

change of the std deviation of η̂ as a function of η).

– The hypothesis HBCa holds for a large class of problems where

the error in the approximation is of order Op(n
−1) (usually, CLT

holds with an error of order Op(n
−1/2)).
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• Confidence intervals for η

– From HBCa, we obtain for large n:

Prob(η̂ − η + wση ≤ z1−α/2ση) = 1 − α/2.

Since ση − ση̂ = a(η − η̂) we have:

Prob(η̂ − η + wση̂ + aw(η − η̂) ≤ z1−α/2(ση̂ + a(η − η̂)) = 1 − α/2,

from which it is easy to derive (by noticing that z1−α/2 = −zα/2):

Prob

(
η ≤ η̂ + ση̂

w + zα/2

1 − a(w + zα/2)

)
= α/2.

– A (1−α)× 100% level confidence interval for η is thus obtained

by

Prob(η̂α/2 ≤ η ≤ η̂1−α/2) = 1 − α,

where η̂β = η̂ + ση̂
w + zβ

1 − a(w + zβ)
.

• Confidence intervals for θ

We have to come back to the θ scale.

– Since h is monotone we have

Prob(θ̂α/2 ≤ θ ≤ θ̂1−α/2) = 1 − α,

where θ̂β = h−1(η̂β). But h and h−1 are unknown.
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– Let Ĝ(·) be the cdf of θ̂∗ = T (X ∗). We have, in the bootstrap

world:

Ĝ(θ̂β) = Prob(θ̂∗ ≤ θ̂β|X ) = Prob(η̂∗ ≤ η̂β|X )

= Prob

(
η̂∗ ≤ η̂ + ση̂

w + zβ

1 − a(w + zβ)

∣∣X
)

= Prob

(
η̂∗ − η̂

ση̂
+ w ≤ w +

w + zβ

1 − a(w + zβ)

∣∣X
)

.

– This is the bootstrap analog of the real world quantity:

ProbF

(
η̂ − η

ση
+ w ≤ w +

w + zβ

1 − a(w + zβ)

)
,

so (by HBCa) we obtain:

Ĝ(θ̂β) ≈ Φ

(
w +

w + zβ

1 − a(w + zβ)

)
,

from which we derive an estimate of θ̂β:

θ̂β = Ĝ−1

[
Φ

(
w +

w + zβ

1 − a(w + zβ)

)]

= v∗
[
Φ

(
w +

w + zβ

1 − a(w + zβ)

)]
,

where v∗(·) is the quantile of the bootstrap distribution of T (X ∗).

– We remark that if a = 0 we are back to the BC-percentile

method and if a = w = 0 we are back to the percentile method.

The 3 methods are looking to the same bootstrap distribution

of T (X ∗), but the levels of the quanriles are adjusted to correct

for bias (BC) or to correct for bias and acceleration (BCa).
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• Estimation of w and a

– For the bias w, the same as the BC method:

G(θ) = ProbF (θ̂ ≤ θ) = ProbF (η̂ ≤ η)

= ProbF (
η̂ − η

ση
≤ 0) = Prob(Z ≤ w) = Φ(w)

So that w = Φ−1(G(θ)) which can be estimated by the bootstrap

approximation:

ŵ = Φ−1
(
Prob(θ̂∗ ≤ θ̂|X )

)
= Φ−1(Ĝ(θ̂))

= Φ−1

(
#{θ̂∗,b ≤ θ̂}

B

)
.

– For the acceleration a, the method is very easy to use but its

justification is more elaborated (see Efron-Tibshirani, Chapter

22). A consitent nonparametric estimator of a is given by:

â =

∑n
i=1 L3

θ(xi, Fn)

6
[∑n

i=1 L2
θ(xi, Fn)

]3/2
,

where Lθ(xi, Fn) is the empirical influence component defined in

Section 1.3. An easy way to estimate it (see Chapter 7 below) is

by using the ith jacknife value:

â =

∑n
i=1

(
θ̂(•) − θ̂(i)

)3

6
[∑n

i=1

(
θ̂(•) − θ̂(i)

)2]3/2
,

where θ̂(i) = T (X(i)) is the jacknife value of θ̂ obatined by apply-

ing the statistics T (·) to the original sample with the ith point Xi

deleted (leave-one-out), and θ̂(•) =
∑n

i=1 θ̂(i)/n is their average.
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2.4 The Bootstrap-t Method

2.4.1 Studentization in the Real World

• Suppose we have access to (asymptotic) pivotal roots (MLE, or by

Delta method,. . . ):

S =
√

n

(
T (X ) − θ(F )

σ(F )

)

where σ2(F ) = n V arF (T (X )).

– Suppose we know the (asymptotic) sampling distribution of S

H(x) = P (S ≤ x) = P

{√
n

(
T (X ) − θ(F ))

σ(F )

)
≤ x

}
.

Let xa be the a-quantile of H: xa = H−1(a).

– If σ is known: confidence interval for θ(F ):

θ(F ) ∈
[
T (X ) − n−1/2σ x1−α/2, T (X ) − n−1/2σ xα/2

]

• If σ is unknown: “Studentization”

– We often have a consistent estimator σ̂(X ). Then the pivotal

root is:

U =
√

n

(
T (X ) − θ(F )

σ̂(X )

)

– If we know the (asymptotic) sampling distribution of U

K(x) = P (U ≤ x) = P

{√
n

(
T (X ) − θ(F ))

σ̂(X )

)
≤ x

}
.
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– The studentized confidence interval for θ(F ) is:

θ(F ) ∈
[
T (X ) − n−1/2σ̂(X )y1−α/2, T (X ) − n−1/2σ̂(X )yα/2

]

where ya be the a-quantile of K: ya = K−1(a).

– Note that if asymptotic is used, K ≡ H (Slutsky’s theorem)

2.4.2 Studentization in the Bootstrap World

• Bootstrap approximations:

– Bootstrap estimates of xa provided by the a-quantiles of Ĥ :

Ĥ(x) = P (S∗ ≤ x | X )

= P

(√
n

(
T (X ∗) − θ(Fn))

σ(Fn)

)
≤ x | X

)
.

– Bootstrap estimates of ya provided by the a-quantiles of K̂ :

K̂(x) = P (U∗ ≤ x | X )

= P

(√
n

(
T (X ∗) − θ(Fn))

σ̂(X ∗)

)
≤ x | X

)
.

• Bootstrap confidence intervals:

– If σ is known:

θ(F ) ∈
[
T (X ) − n−1/2σ x̂1−α/2, T (X ) − n−1/2σ x̂α/2

]
,

where x̂(a) is the a-quantile of Ĥ(x).
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– If σ unknown: usual case (Bootstrap-t CI)

θ(F ) ∈
[
T (X ) − n−1/2σ̂(X )ŷ1−α/2, T (X ) − n−1/2σ̂(X )ŷα/2

]

where ŷ(a) is the a-quantile of K̂(x).

• Accuracy of the CI obtained by bootstrap methods

– An approximate end point of level α, say θ̂α is such that Prob(θ <

θ̂α) ≈ α.

– It is said as being First-order accurate if

Prob(θ < θ̂α) = α + O(n−1/2).

– It is said as being Second-order accurate if

Prob(θ < θ̂α) = α + O(n−1).

– In summary and in general (under regularity conditions: “when

the bootstrap works”):

– Large sample (Normal approximation) is first order accurate

– Basic Bootstrap CIs are first order accurate

– Percentile (when appropriate) is first order accurate

– Bootstrap-t (when available) is second order accurate

– BCa percentile (when appropriate) is second order accurate

– Double bootstrap (see later: estimation of the variance by

an inner bootstrap loop, allowing the use of the bootstrap-t)

are second order accurate

– More will be said in Chapters 3 and 6.
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• Example: Let’s come back to the duration data n = 10:

X = (X1, . . . , X10) = (1 5 12 15 20 26 78 145 158 358)

We have x̄ = 81.80 and s = 112.94.

– Here we have:

U =
√

n

(
X̄ − µ

S

)
∼ AN(0, 1)

The bootstrap-t confidence interval is given by

µ ∈
[
X̄ − n−1/2s ŷ1−α/2, X̄ − n−1/2s ŷα/2

]
,

where ŷ(a) is the a-quantile of K̂(x), the empirical bootstrap

distribution of

U∗ =
√

n

(
X̄∗ − X̄

S∗

)

– The results of Table 1.3 are now completed by the percentile,

BC-percentile (ŵ = 0.0843), BCa-percentile (â = 0.0846) and

the nonparametric bootstrap-t.

method lower limit upper limit
Parametric Gamma 47.8788 170.5805
Parametric Pivotal-bootstrap 47.7969 168.9480
Parametric Bootstrap 23.6067 123.9947
Parametric Asymp. Normal 31.1008 132.4992
Nonparametric Asymp. Normal 11.8014 151.7986
Nonparametric Basic Bootstrap 6.8000 137.3000
Nonparametric Percentile 26.2500 156.8000
Nonparametric BC-Percentile 28.7000 164.2567
Nonparametric BCa-Percentile 35.3754 184.9024
Nonparametric Bootstrap-t 23.3073 230.1239

Table 2.1: Confidence intervals, duration data with n = 10. Here B = 5000
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2.5 Some Simulated Examples

• Example 1: Xi ∼ Expo (µ), simulated data with µ = 10.

– One simulated sample, n = 10, with X̄ = 7.7717 and S2 =

(4.3045)2. Comparison of CI for µ at the level 95%. For the

bootstrap B = 5000. Results in Table 2.2.

method lower limit upper limit
Estimated Gamma 4.5489 16.2066
Estimated As. Normal 2.9548 12.5885
Basic Bootstrap 5.1181 10.1953
Percentile Bootstrap 5.3481 10.4253

Table 2.2: Comparisons of confidence intervals, exponential case with n = 10 and µ = 10.

– Precision in Monte-Carlo experiments:

- How is the precision for the estimation of the coverage prob-

abilities when using a Monte-Carlo experiment?

- If we estimate a proportion p, over a sample of size M , the

Monte-Carlo precision (at level 95%) is roughly

Error bound = 2

√
p(1 − p)

M
.

- If we estimate p ≈ 0.95 we have:

Error bound = 2

√
0.05 ∗ 0.95

1000
= 0.0138

- Table 2.3 displays some values of the error bound as a func-

tion of M .
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Value of M Error bound
100 0.0436
200 0.0308
500 0.0195
1000 0.0138
2000 0.0097
5000 0.0062
10000 0.0044

Table 2.3: Error bound for the Monte-Carlo precision when estimating a probability p = 0.95.

– Evaluation of the performance of confidence inter-

vals by Monte-Carlo experiments:

- we repeat M = 1000 times the simulation of a random sam-

ple of size n as described above for one sample

- we evaluate the average length of the intervals and the cov-

erage probabilities (proportion of time, under the 1000 repli-

cation, that the CI contains the true µ = 10).

- See Table 2.4.

- The MC-precision (error bound) for the coverages is thus

0.0138.

- The asymptotic Normal performs well: CLT for X̄ .

sample size n = 5 n = 10 n = 100 n = 500
method length coverage length coverage length coverage length coverage
Exact Gamma 26.25 0.944 14.90 0.958 3.97 0.949 1.77 0.959
As. Normal 17.76 0.874 12.32 0.908 3.90 0.933 1.76 0.963
Basic Boot. 13.39 0.765 10.68 0.839 3.83 0.924 1.75 0.961
Perc. Boot. 13.39 0.782 10.68 0.865 3.83 0.933 1.75 0.958

Table 2.4: Performances of confidence intervals for µ = 10: average length of the intervals
and estimation of coverage probabilities (nominal level 95%) over M = 1000 Monte-Carlo
experiments. For the bootstrap, B = 5000.
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• Example 2: Same Exponential Model X ∼ Expo(µ): Estima-

tion of the probability of “no event” in one unit time period. We

have an iid sample (X1, . . . , Xn) of exponential duration times.

– Let N be the number of “event” in one unit time period, N ∼
Poisson(1/µ)

- Parameter of interest

π = P (N = 0) = exp(−1/µ)

- The MLE of π is π̂ = exp(−1/X̄).

- What are the sampling properties of π̂? We have here (delta

method) an asymptotic result:

π̂ ∼ AN

(
π,

e−2/µ

nµ2
=

1

n

(
π

µ

)2
)

We see σ(π̂) =
e−1/µ

√
n µ

, it will be estimated by σ̂(π̂) =
e−1/x̄

√
n x̄

.

– Figure 2.1 show the bootstrap sampling distribution of π̂ and the

estimated asymptotic normal (here π = 0.9048) for one sample

with n = 10, π̂obs = 0.9161 and n = 100, π̂obs = 0.0.9136.
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Figure 2.1: Bootstrap approximation for the sampling distribution of π̂ = exp(−1/X̄): here
π = 0.9048 for n = 10 (left) π̂obs = 0.9161 and for n = 100 (right), π̂obs = 0.9136.Here
B = 5000. Dashed line is the estimated Normal approximation and solid is the Bootstrap
approximation

– Monte-Carlo evaluation of the performances of confidence inter-

vals for π.

- The asymtotic CI for π of level (1 − α) is:
[
π̂ − z1−α/2

e−1/x̄

√
nx̄

, π̂ + z1−α/2
e−1/x̄

√
nx̄

]

- For the bootstap-t we have
[
π̂ − ŷ1−α/2

e−1/x̄

√
nx̄

, π̂ − ŷα/2
e−1/x̄

√
nx̄

]

where ŷa is the a-quantile of

K̂(x) = P

(√
n

(
π̂∗ − π̂

π̂∗/X̄∗

)
≤ x | X

)
.

- The results are in Table 2.5.
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sample size n = 5 n = 10 n = 100 n = 500
method length coverage length coverage length coverage length coverage
As. Normal 0.186 0.956 0.122 0.957 0.036 0.952 0.016 0.943
Basic Boot. 0.217 0.817 0.130 0.879 0.036 0.938 0.016 0.941
Perc. Boot. 0.217 0.801 0.130 0.874 0.036 0.942 0.016 0.941
BC-perc. 0.198 0.808 0.124 0.883 0.036 0.940 0.016 0.939
Bootstrap-t 0.155 0.857 0.107 0.908 0.035 0.945 0.016 0.938

Table 2.5: Performances of confidence intervals for π = 0.9048: average length of the in-
tervals and estimation of coverage probabilities (nominal level 95%) over M = 2000 Monte-
Carlo experiments. For the bootstrap, B = 2000.

• Example 3: Correlation coefficient.

X ∼ N2

((
0

2

)
,

(
4 1.5

1.5 1

))

Here ρ = 0.75. The MLE estimator is ρ̂ = r.

– No simple results for the sampling distribution of ρ̂ (see Delta

method above)

– We also have in this case a simple asymptotical pivotal root

(Fisher z-transfrom):

ẑ = tanh−1(r) ∼ AN(tanh−1(ρ),
1

n − 3
)

where tanh−1(x) =
1

2
log

(
1 + x

1 − x

)
and tanh(x) =

ex − e−x

ex + e−x
.

– For one sample with n = 100, where r = 0.7644 see Figure 2.2
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Figure 2.2: Bootstrap approximation for the sampling distribution of ρ̂ = r (left) and of
ẑ = tanh−1(r) (right), original sample has n = 100 and r = 0.7644 whereas the true ρ =
0.75. Dot is the true asymptotic normal (with ρ = 0.75), dashed is the estimated Normal
approximation (with r = 0.7644) and solid is the Bootstrap approximation. Here B = 2000.

– Monte-Carlo evaluation of the performances of CI for ρ. The

asymtotic CI for ρ of level (1 − α) is:

ρ ∈
[
tanh(ẑ − z1−α/2/

√
n − 3 ), tanh(ẑ + z1−α/2/

√
n − 3 )

]

– Results in Table 2.6.

sample size n = 10 n = 20 n = 100
method length coverage length coverage length coverage
As. Normal 0.68 0.953 0.43 0.944 0.18 0.955
Basic Boot. 0.65 0.778 0.40 0.830 0.17 0.912
Perc. Boot. 0.65 0.922 0.40 0.908 0.17 0.945
BC-Perc. 0.73 0.944 0.42 0.926 0.17 0.943

Table 2.6: Performances of confidence intervals for ρ = 0.75: average length of the intervals
and estimation of coverage probabilities (nominal level 95%) over M = 1000 Monte-Carlo
experiments. For the bootstrap, B = 2000.
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• Example 4: An other example for correlation

– Scenario:

– Let X1 ∼ N(0, 1) and X2 ≡ X2
1

– Covariance:

Cov(X1, X2) = E(X1X2) − E(X1)E(X2)

= E(X3
1) − 0 = 0

– ρ = 0 but X1 and X2 are not independent!

– Monte-Carlo evaluation of different confidence intervals see Table

2.7

sample size n = 10 n = 50 n = 100 n = 500
method length coverage length coverage length coverage length coverage
As. Normal 0.95 0.628 0.51 0.616 0.38 0.628 0.17 0.635
Basic Boot. 1.49 0.431 0.95 0.722 0.74 0.816 0.37 0.916
Perc. Boot. 1.49 0.847 0.95 0.891 0.74 0.915 0.37 0.947
BC-Perc. 1.58 0.893 0.95 0.898 0.74 0.918 0.37 0.948

Table 2.7: Performances of confidence intervals for ρ = 0: average length of the intervals
and estimation of coverage probabilities (nominal level 95%) over M = 1000 Monte-Carlo
experiments. For the bootstrap, B = 2000.
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– For one sample with n = 100, where r = −0.3856 see Figure 2.3
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Figure 2.3: Bootstrap approximation for the sampling distribution of ρ̂ = r (left) and of
ẑ = tanh−1(r) (right), original sample has n = 100 and r = 0.0942 whereas the true ρ = 0.
Dot is the “true” but wrong asymptotic normal (with ρ = 0), dashed is the estimated Normal
approximation (with r = −0.3856) and solid is the Bootstrap approximation. Here B = 2000.

– For one sample with n = 500, where r = −0.0416 see Figure 2.4
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Figure 2.4: Bootstrap approximation for the sampling distribution of ρ̂ = r (left) and of
ẑ = tanh−1(r) (right), original sample has n = 500 and r = −0.1183 whereas the true
ρ = 0. Ddot is the “true” but wrong asymptotic normal (with ρ = 0), dashed is the estimated
Normal approximation (with r = −0.0416) and solid is the Bootstrap approximation. Here
B = 2000.
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• Example 5: Failure of the Bootstrap.

Xi ∼ U(0, θ)

– The problem is to estimate θ.

– MLE θ̂:

θ̂ = X(n) = max(X1, . . . , Xn)

– Here we know the exact sampling distribution of θ̂

θ̂ = X(n) = max(X1, . . . , Xn)

– Let’s try the nonparametric bootstrap, with one simulated sam-

ple of size n with a true value of θ = 1

- Here f(x(n)) = nxn−1
(n) on [0, 1]

- Results in Figure 2.5 with n = 100 and n = 500.
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Figure 2.5: Bootstrap approximation for the sampling distribution of X(n), original sample
has n = 100 and x(n) = 0.9806 (left) and n = 500 and x(n) = 0.9966 (right). Here B = 2000.
Solid line is the bootstrap approximation, dashdot line is the true sampling density.

The bootstrap does not work here !!
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– The problem: the proportion of X
∗(b)
(n) equal to x(n) over the

B = 2000 replications is equal to 0.6285 in Figure 2.6 (left) and

to 0.6520 in Figure 2.6 (right): see next chapter for more details.
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Figure 2.6:

But there are solutions: smoothed bootstrap and subsampling.

– Smoothed bootstrap: resample from a nonparametric density

estimator of f(x). See Figure 2.7: We see indeed that the dis-

tribution has recovered the shape, but there is a shift due to the

inherent bias of the estimator.

- Left: original sample has n = 100 and x(n) = 0.9806 .

Bias∗ = −0.0058 and Std∗ = 0.0055

- Right: original sample has n = 500 and x(n) = 0.9966.

Bias∗ = −0.0024 and Std∗ = 0.0023

- As shown in Table 2.8, this distribution allows to recover the

coverages for the basic bootstrap
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- The percentile approaches (even done on bias corrected esti-

mators) do not work: we are far from a symetric distribution

for X(n).
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Figure 2.7: Smoothed-Bootstrap approximation of the sampling distribution of X(n), original
sample has n = 100 and x(n) = 0.9806 (left) and n = 500 and x(n) = 0.9966 (right). Here
B = 2000. Solid line is the bootstrap approximation, dashdot line is the true sampling
density.

sample size n = 10 n = 50 n = 100 n = 500
method length coverage length coverage length coverage length coverage
Basic Boot. 0.2865 0.8790 0.0748 0.9340 0.0386 0.9350 0.0077 0.9450
Perc. Boot. 0.2865 0.5480 0.0748 0.6140 0.0386 0.6310 0.0077 0.6430
BC-Perc. 0.3895 0.5150 0.1077 0.5890 0.0559 0.5980 0.0112 0.6110

Table 2.8: Performances of confidence intervals: average length of the intervals and estima-
tion of coverage probabilities (nominal level 95%) over M = 1000 Monte-Carlo experiments.
For the bootstrap, B = 2000.

– Subsampling: resample (with or without replacement) in X a

random sample of size m = [nγ] where γ < 1.

– Not easy to choose γ: Work still in progress. . .
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2.6 Some Programs in MATLAB

2.6.1 Basic bootstrap functions

function xb=boot(x)

%

% written by L. SIMAR, Institute of Statistics,

% University of Louvain, Louvain-la-Neuve, Belgium

%

% function xb=boot(x)

% xb is a resample with replacement from a vector x

% x MUST BE A COLUMN VECTOR !!!!!!!!!

%

[n,k]=size(x);

if k>1

disp(’warning: x is not a column in function boot’)

end

xb=x(floor(n*rand(size(x))+1));

function xb=resample(x,m)

%

% written by L. SIMAR, july 2001,Institute of Statistics,

% University of Louvain, Louvain-la-Neuve, Belgium

%

% function xb=resample(x,m)

% xb is a resample with replacement from a matrix x: (n x k)

% the entire ROW of x is drawn at each step

% m can be smaller, equal or larger than n

%

[n,k]=size(x);

sample=floor(n*rand(m,1)+1);

xb=x(sample,:);

%
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2.6.2 Example for X̄ in Expo(µ)

% Bootstrap on xbar for exponential law (Program written by L. SIMAR)

%

% one sample of size n from expo(mu)

% where mu is the MEAN (usually 1 over lambda)

%

% select B (bootstrap replications), mu and n

ngrid=100

B=5000

mu=50

n=50

%

x=exprnd(mu,n,1);

xbar=mean(x);s=std(x);

disp(’smpl mean smpl std’)

disp([xbar s])

xbarb=[];

for b=1:B

xb=boot(x);

mb=mean(xb);

xbarb=[xbarb;mb];

end

xbarbar=mean(xbarb);sxbar=std(xbarb);

disp(’xbarbar sxbar’)

disp([xbarbar sxbar])

%

% kernel smoothing of the histogram: select the bandwith

s1=std(xbarb);r1=iqr(xbarb);h1=1.06*min([s1 r1/1.349])*B^(-1/5)

%

% bootstrap approx

[t1,f1]=Nkernel(xbarb,h1,ngrid);

plot(t1,f1,’-’)

hold on

alf=n;bet=mu/n;

%

% true gamma

y=gampdf(t1,alf,bet);

plot(t1,y,’-.’)

%

% normal approx with estimated parameters

y=normpdf(t1,xbar,s/sqrt(n));

plot(t1,y,’--’)

hold off
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2.6.3 Monte-Carlo performance evaluation

We present a code for the example of estimating exp(−1/µ) in X ∼
Expo(µ)

% Bootstrap on a function of xbar (Program written by L. SIMAR)

% MONTE-CARLO PERFORMANCES

%

% X is an Expo(mu)

%

% Parameter of interest: p=prob(NO event in one unit of time)=exp(-1/mu)

%

% MLE of p = exp(-1/xbar)

%

% generation of M samples of size n from expo(mu)

% where mu is the MEAN (usually 1 over lambda)

%

% Estimate the coverage probabilities

%

% Select B,M, mu and n

B=2000

mu=10

n=500

alpha=0.05

M=1000

p=exp(-1/mu); % this is the true value of \pi

%

t0 = clock;

MCnorm=[];MCboot=[];MCperc=[];MCtboot=[];

for mc=1:M

x=exprnd(mu,n,1); % this is a random sample of size n \Xs

xbar=mean(x);

s=std(x);

phat=exp(-1/xbar); % this is the MLE \hat \pi

pboot=[];studb=[];

for b=1:B

xb=boot(x); % this is a bootstrap sample \Xs^*(b)

mb=mean(xb);

pb=exp(-1/mb); % this \hat \pi^*(b)

ptb=sqrt(n)*mb*(pb-phat)/pb;

pboot=[pboot;pb];

studb=[studb;ptb];

end

[pboots,I] = sort(pboot);
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[studbs,J]= sort(studb);

k1=floor(B*alpha./2)+1;

k2=floor(B*(1-(alpha./2)));

v1star=pboots(k1);

v2star=pboots(k2);

lowperc=v1star;

upperc=v2star;

lowboot=2*phat - v2star;

upboot=2*phat - v1star;

ylow=studbs(k1);

ysup=studbs(k2);

%

% Normal approximation: delta method p=exp(-1/mu)

%

stdp=phat/(sqrt(n)*xbar);

z2=norminv(1-alpha/2,0,1);

lownorm=phat-z2*stdp;

upnorm =phat+z2*stdp;

%

% Bootstrap-t

%

lowtboot=phat-ysup*stdp;

uptboot=phat-ylow*stdp;

%

MCnorm=[MCnorm;lownorm upnorm];

MCboot=[MCboot;lowboot upboot];

MCperc=[MCperc;lowperc upperc];

MCtboot=[MCtboot;lowtboot uptboot];

%

end

%

t1=etime(clock,t0);

disp(’elapsed time’)

disp([t1])

%

avlengnorm=mean(MCnorm(:,2)-MCnorm(:,1))

avlengboot=mean(MCboot(:,2)-MCboot(:,1))

avlengtboot=mean(MCtboot(:,2)-MCtboot(:,1))

avlengperc=mean(MCperc(:,2)-MCperc(:,1))

covnorm=sum(MCnorm(:,1)<= p & p <= MCnorm(:,2))/M

covboot=sum(MCboot(:,1)<= p & p <= MCboot(:,2))/M

covtboot=sum(MCtboot(:,1)<= p & p <= MCtboot(:,2))/M

covperc=sum(MCperc(:,1)<= p & p <= MCperc(:,2))/M

save CIprop mu p n B M avleng* cov* MC*



c©2008, L. Simar, Institut de Statistique, UCL, Belgium 75

2.6.4 Some useful smoothing functions for densities

function [t,f]=Nkernel(y,h,ngrid)

%

% written by L. SIMAR, Institute of Statistics, University of Louvain

% Louvain-la-Neuve, Belgium

%

% function [t,f]=Nkernel(y,h,ngrid)

% Compute Gaussian Kernel density estimate from

% data vector y, bandwith h for ngrid number of point

% between ymin - (range/6) and ymax + (range/6).

% Plot the obtained density if desired

%

% OUTPUT is t=grid and f= value of density estimates

%

[n,p]=size(y);

r=max(y)-min(y);

t1=min(y)-r/6;t2=max(y)+r/6;

pas=(t2-t1)/(ngrid-1);

t=[t1:pas:t2]’;

a=(t*ones(1,n)-ones(ngrid,1)*y’)/h;

fa=normpdf2(a);

f=sum(fa’)/(n*h);

function f=normpdf2(x)

%

% written by L. SIMAR, Institute of Statistics, University of Louvain

% Louvain-la-Neuve, Belgium

%

% function f=normpdf2(x)

% compute the standard normal pdf for the elements

% of a matrix x

%

f=exp((-0.5).*(x.^2))./sqrt(2*pi);



Chapter 3

The Properties of the Bootstrap

3.1 Why the Bootstrap works

• Consider a simple example where an asymptotical pivotal quantity

is available

– We have (MLE, or Delta Method, . . . ):

S =
√

n

(
T (X ) − θ(F )

σ(F )

)
∼ AN(0, 1)

where σ2(F ) = nAV arF (T (X )).

– The confidence interval could be such that:

P

[
T (X ) − z1−α/2

σ(F )√
n

≤ θ(F ) ≤ T (X ) + z1−α/2
σ(F )√

n

]
≈ 1 − α

• (1) Suppose σ is known.

– Edgeworth expansion (under regularity conditions):

DistS,F (x) = PF (S ≤ x) = Φ(x) + n−1
2p(x)φ(x) + O(n−1)

where Φ(·) and φ(·) are the cdf and pdf of a standard normal, p(·)
is an even quadratic polynomial whose coefficients are cumulants

of S such as skewness,...

76
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– So we obtain:

DistS,F (x) − Φ(x) = O(n−1
2)

First Order Accuracy of the asymptotic approximation

– In the bootstrap world, the bootstrap version of S is:

S∗ =
√

n

(
T (X ∗) − θ(Fn)

σ(Fn)

)

where σ(Fn) = σ̂ and θ(Fn) is usually T (X ).

– Edgeworth expansion for the bootstrap (under same regularity

conditions):

Dist∗S(x) = PFn
(S∗ ≤ x) = Φ(x) + n−1

2 p̂(x)φ(x) + Op(n
−1)

where p̂(·) is the plug-in version of p(·). Now, typically,

p(x) − p̂(x) = Op(n
−1

2)

– So we have here:

Dist∗S(x) − DistS,F (x) = Op(n
−1)

Second Order Accuracy of the bootstrap approximation

– Similar argument will be valid for nonnormal limiting distribu-

tion, provided it does not depend on unknowns.

The bootstrap approximation works better than the asymptotic nor-

mal approximation (if p(x) 6= 0).
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• (2) If σ is unknown adn an estimator is available

– Suppose that an estimator σ̂ = σ̂(X ) is available: we can stu-

dentize the root.

U =
√

n

(
T (X ) − θ(F )

σ̂(X )

)
∼ AN(0, 1)

– The confidence interval here could be such that:

P

[
T (X ) − z1−α/2

σ̂(X )√
n

≤ θ(F ) ≤ T (X ) + z1−α/2
σ̂(X )√

n

]
≈ 1 − α

– The Edgeworth expansion (under regularity conditions):

DistU,F (x) = PF (U ≤ x) = Φ(x) + n−1
2q(x)φ(x) + O(n−1)

where q(·) is an even quadratic polynomial like p(·)

DistU,F (x) − Φ(x) = O(n−1
2)

First Order Accuracy of the asymptotic approximation

– The Bootstrap version of U :

U∗ =
√

n

(
T (X ∗) − θ(Fn)

σ̂(X ∗)

)

where σ̂(X ∗) = σ̂∗ and , as often,θ(Fn) = T (X ).

– The Edgeworth expansion (under regularity conditions):

Dist∗U(x) = PFn(U
∗ ≤ x) = Φ(x) + n−1

2 q̂(x)φ(x) + Op(n
−1)

where q̂(·) is the plug-in version of q(·). Usually again :

q(x) − q̂(x) = Op(n
−1

2)
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– So we have:

Dist∗U(x) − DistU,F (x) = Op(n
−1)

Second Order Accuracy of the bootstrap approximation

– Dist∗U(x) can be used to construct bootstrap-t confidence inter-

vals.
[
T (X ) − n−1/2σ̂(X )u∗

1−α/2, T (X ) − n−1/2σ̂(X )u∗
α/2

]

where u∗(a) is the a−quantile of Dist∗U(x).

– The Bootstrap-t is more accurate than the usual normal approx-

imation (if q(x) 6= 0).

• (3) If σ(F ) is unknown and no estimators are available

– we can not use the bootstrap-t, we only can use the basic boot-

strap or the percentile bootstrap.

– what about the accuracy ? see next section.
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3.2 The Virtue of prepivoting

• Consider the following root and its bootstrap version:

W =
√

n(T (X ) − θ(F ))

W ∗ =
√

n(T (X ∗) − T (X ))

– As a matter of fact, we have:

W = σS = σ(F )S

W ∗ = σ̂S∗ = σ(Fn)S
∗

where S and S∗ are defined in the preceding section.

– So, we have successively:

DistW,F (x) = PF (W ≤ x) = PF (S ≤ x

σ
)

= Φ(
x

σ
) + n−1

2p(
x

σ
)φ(

x

σ
) + O(n−1)

Dist∗W (x) = PFn
(W ∗ ≤ x) = PFn

(S∗ ≤ x

σ̂
)

= Φ(
x

σ̂
) + n−1

2 p̂(
x

σ̂
)φ(

x

σ̂
) + Op(n

−1)

– Now we have:

Dist∗W (x) − DistW,F (x) = Φ(
x

σ̂
) − Φ(

x

σ
) + Op(n

−1)

= (σ̂ − σ)R(x) + Op(n
−1)

– Since (σ̂ − σ) = σ(Fn) − σ(F ) = Op(n
−1/2), we obtain:

Dist∗W (x) − DistW,F (x) = Op(n
−1

2)

First Order Accuracy of the bootstrap approximation
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– It is always better to Studentize, if possible!

– It is not less accurate than the usual Normal approximation

- NB1: Normal approximation is often unavailable;

- NB2: Normal approximation is often useless if σ is unknown

and no estimators available.

– Dist∗W (x) can be used to construct confidence intervals for θ(F )

(Basic bootstrap method):
[
T (X ) − 1√

n
w∗(1 − α

2
), T (X ) − 1√

n
w∗(

α

2
)

]

where w∗(a) is the a−quantile of Dist∗W (x).

– If appropriate, percentile or BC-percentile can also be used.

• Conclusion : the bootstrap may improve the approximation when

(asymptotic) pivotal quantities are available.

• If such an estimator of σ is not available : iterated bootstrap could

be a solution (see below).
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3.3 Consistency of the Bootstrap

• We consider here a general situation. We have a root Rn(X , F )

and we are looking for an estimate of:

GF,n(x) = DistRn,F (x) = PF (Rn ≤ x)

– We suppose the root has been properly scaled such that Rn(X , F )

has a nondegenerate limiting distribution Q(x, F ).

- For example Rn(X , F ) = n1/2(X̄ − µ) ∼ AN(0, σ2).

- The bootstrap version of the root is R∗
n = Rn(X ∗, Fn) for

instance, R∗
n = n1/2(X̄∗ − X̄).

– The bootstrap estimate of GF,n(x) is

ĜF,n(x) = GFn,n(x) = Dist∗Rn
(x) = DistRn,Fn(x) = PFn(R

∗
n ≤ x)

– Under mild regularity conditions, we often have an asymptotic

expansion for GF,n(x):

DistRn,F (x) = Q(x, F ) + n−1
2q1(x, F ) + n−1q2(x, F ) + o(n−1)

where Q is the asymptotic cdf of Rn, q1(x, F ) is an even function

of x for each F and q2(x, F ) is an odd function of x for each F .

– The bootstrap version for the distribution of R∗
n is:

Dist∗Rn
(x) = Q(x, Fn) + n−1

2q1(x, Fn) + n−1q2(x, Fn) + op(n
−1)

– Usually, for i = 1, 2, uniformly in x, we have :

qi(x, Fn) − qi(x, F ) = Op(n
−1

2)
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• So that we have:

Dist∗Rn
(x) − DistRn,F (x) = Q(x, Fn) − Q(x, F ) + Op(n

−1)

• The key of the bootstrap: the idea.

– if Q is sufficiently “smooth” in F (see below),

Q(x, Fn) − Q(x, F ) = Op(Fn(x) − F (x)) = Op(n
−1

2)

– so that the bootstrap works: we have the consistency!

Dist∗Rn
(x) − DistRn,F (x) = Op(n

−1
2)

• With an appropriate chosen root it is even more accurate than the

usual first order asymptotic approximation Q(x, F ).

– Suppose we have an asymptotic pivotal root :

Q(x, F ) = Q(x) = Q(x, Fn)

- this is for example the case for

Rn(X , F ) =
√

n
X̄ − µ

S
∼ AN(0, 1),

for all F such that µ and σ2 finite.

– In this case:

Dist∗Rn
(x) − DistRn,F (x) = Op(n

−1)

Second order approximation for the bootstrap,

with (asymptotical) pivotal roots
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• Consistency of the Bootstrap: a general theorem

Consider a neighbourhood F of F in a suitable functional space of

cdf. Suppose that F is such that:

P (Fn ∈ F) → 1 as n → ∞

If:

1. for all cdf A ∈ F , GA,n = DistRn,A converges weakly to Q(·, A):
∫

g(x) dGA,n(x) →
∫

g(x) dQ(x, A), as n → ∞,

for all intergrable function g(·);

2. the convergence is uniform on F ;

3. the mapping A → Q(·, A) is continuous in A,

then

∀x and ∀ǫ > 0, P (|DistRn,Fn
(x) − Q(x, F )| > ǫ) → 0 as n → ∞.

- The first condition ensures that there is a limit to converge to,

for GF,n but also for GFn,n.

- As n increases, Fn changes. The second and third conditions are

needed to ensure that GFn,n(·) approaches Q(·, F ) along every

possible sequence of Fn.

- All the 3 conditions are necessary to get a set of sufficient con-

ditions for consistency.
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• Example of a failure : Xi ∼ F (0, θ), i = 1, . . . , n.

– Consider the root

Rn(X , F ) = n
θ − X(n)

θ

where X(n) = max(X1, . . . , Xn)

– The bootstrap version is

R∗
n = Rn(X ∗, Fn) = n

X(n) − X∗
(n)

X(n)

where X∗
(n) = max(X∗

1 , . . . , X
∗
n)

– It is easily seen that

PFn
(R∗

n = 0) = 1 − (1 − 1

n
)n

Therefore

lim
n→∞

PFn(R
∗
n = 0) = 1 − exp(−1) = 0.6321

– Whereas, generally, the asymptotic distribution of Rn(X , F ) is
continuous and so

PF (Rn = 0) = 0

- Example, if F is uniform U(0, θ), the asymptotic distribution
of Rn(X , F ) is

Q(x, F ) = Q(x) = Expo(1)

- DistRn,Fn
cannot converge to Q(x, F ), the standard expo-

nential.

– Here the second condition above fails: the distributional conver-
gence for the root is not uniform on useful neighbourhoods of
F .
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3.4 Some Useful Tools for the Asymptotics

As pointed above, we can see the problem as to analyse the asymp-

totic behavior of Q(x, Fn) − Q(x, F ). So we need some topological

tools on space of cdf.

• The “Mallows metric”

– We will consider the following functional space:

Γp =

{
G |

∫
|x|pdG(x) < ∞

}
.

– The “Mallows metric” defines a distance between G and H in

Γp. It is defined by:

dp(G, H) = inf
C(X,Y )

(E(|X − Y |)p)
1
p

where C(X, Y ) is the set of pairs of random variables (X, Y )

having marginal cdf G and H respectively.

– Remark: x could be multidimensional, then |·| denotes the usual

euclidean norm ‖ · ‖.

– For random variable X and Y having distributions G and H

respectively, G and H in Γp, we write with an abuse of notation:

dp(X, Y ) = dp(G, H),

and we say, with an abuse of language:

X and Y ∈ Γp.
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• Basic properties

– (P1): Let Gn, G ∈ Γp, then dp(Gn, G) → 0 as n → ∞ if and

only if

Gn → G , weakly, and∫
|x|pdGn(x) →

∫
|x|pdG(x)

– (P2): If Xi, i = 1, . . . , n is a random sample i.i.d. with cdf

F ∈ Γp, we have:

as n → ∞, dp(Fn, F ) → 0, a.s.

– (P3): For any scalar a, and random variables U and V ∈ Γp, we

have:

dp(aU, aV ) = |a| dp(U, V ).

– (P4): For any random variables U and V ∈ Γ2, we have:

[d2(U, V )]2 = [d2(U − E(U), V − E(V ))]2 + |E(U) − E(V )|2

– (P5): For any two sequences of independent r.v. Ui and Vi in

Γp, we have:

dp(
n∑

i=1

Ui,
n∑

i=1

Vi) ≤
n∑

i=1

dp(Ui, Vi)

– (P6): For any two sequences of independent r.v. Ui and Vi in Γ2

with E(Ui) = E(Vi), we have:
[
d2(

n∑

i=1

Ui,
n∑

i=1

Vi)

]2

≤
n∑

i=1

[d2(Ui, Vi)]
2
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• A simple example: bootstrapping a vector of mean.

– Consider a random sample Xi ∈ IRk with cdf F ∈ Γ2. Let

E(X) = µ. Define the root and its bootstrap analog:

Un =
√

n(X̄ − µ) and U∗
n =

√
n(X̄∗ − X̄)

– Denote K(x) = PF (Un ≤ x) and its bootstrap estimate K̂(x) =

PFn(U
∗
n ≤ x).

– We have successively:

d2(K̂, K) = d2(
√

n(X̄∗ − X̄)),
√

n(X̄ − µ))

= d2

(
1√
n

n∑

i=1

(X∗
i − X̄),

1√
n

n∑

i=1

(Xi − µ)

)

=
1√
n

d2

(
n∑

i=1

(X∗
i − X̄),

n∑

i=1

(Xi − µ)

)
by [P3]

≤ 1√
n

√√√√
n∑

i=1

[
d2(X∗

i − X̄, Xi − µ)
]2

by [P6]

– Since the sampling is iid the latter is equal to

√
n(d2(X

∗
1−X̄,X1−µ))2√

n
:

d2(X
∗
1 − X̄, X1 − µ) = d2(X

∗
1 − E∗(X∗

1 ), X1 − E(X1))

(by [P4]) =

√
[d2(X∗

1 , X1)]
2 − ‖ E∗(X∗

1 ) − E(X1) ‖2

=

√
[d2(Fn, F )]2 − ‖ X̄ − µ ‖2

– Since the two terms in the last expression tends a.s. to zero when

n → ∞, the d2-consistency of the bootstrap is proven:

as n → ∞, d2(K̂, K) → 0, a.s.



Chapter 4

Hypothesis Testing

4.1 Introduction

• We want to test an hypothesis on F : H0 : F = F0

– Simple hypothesis: F0 is fully specified (example: F = N(0, 1))

– Composite hypothesis: F0 has some not determined aspects (ex-

ample: F0 = N(0, σ2)).

– We call the additional parameters η, the nuisance parameters

(example: η = σ2 if we want to test a fixed value of the mean of

a normal variable)

• Test statistics:

Suppose the test statistic is T (X ) and we reject H0 if T (X ) is too

large (or too small).

– p-value of H0

- Let t = Tobserved: we reject if t is too large.

89
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- The p-value or Attained Significance Level is

p = Prob(T (X ) ≥ t |H0).

– Critical value for a test of size α:

- We want to size the type I error at the level α

- Rejection Region: {t ≥ tα} where tα such that:

Prob(T (X ) ≥ tα|H0) = α

– How to compute p-value and/or tα?

• We need to approximate the sampling distribution of T (X ) under

H0: Use of Monte-Carlo methods

– if H0 is simple: easy

– either we know the sampling sampling distribution of T (X )

under H0

– either we simulate it by MC techniques:

∗ simulation of iid random samples of size n: X ∗ drawn

from F0

∗ take the Monte-Carlo empirical distribution of T (X ∗) as

approximation.
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– if H0 is composite: more complicated

– the p-value is not clearly defined because Prob(T (X ) ≥
tα|F ∈ H0) may depend upon which F satisfying H0 is

taken.

– in some case no problem: example the Student-t test T (X )

has the same distribution for any F verifying H0

• The main idea of bootstrap test: estimate p-values by

p̂ = Prob(T (X ) ≥ t | F̂0).

where F̂0 is a cdf which satisfies H0.

– simulate X ∗b under F̂0, for b = 1, . . . , B

– Compute t∗b = T (X ∗b), b = 1, . . . , B

– We have B+1 values t, t∗1, . . . , t
∗
B under H0, equally likely values

for T (X ), so estimate of p:

p̂ =
#{t∗b ≥ t} + 1

B + 1

Problem: How to choose F̂0?

depends on the problem!
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4.2 Parametric Bootstrap tests

• Suppose, in a parametric model, we are testing H0 : θ = θ0,

in the presence of nuisance parameters η. We have:

F (x) = F (x|θ, η)

• Suppose the rejection region is: T (X ) too large.

Computation of the p-value:

– How to define F̂0?

- Let η̂0 be the MLE of η computed under the null θ = θ0

∗ Under regularity conditions, η̂0 converges in probability

to a limit η0 called the pseudo-true value of η

- Then:

F̂0(x) = F (x|θ0, η̂0)

– We generate X ∗b under F̂0

– Finally:

p̂ =
#{t∗b ≥ t} + 1

B + 1

• Example: separate family test

– We want to test

H0 : f(x) = f0(x|ζ)

H1 : f(x) = f1(x|ξ)
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– Here η = (ζ, ξ) and θ = 0 or 1 as indicator of the model.

– The likelihood ratio statistics is

T (X ) = n−1 log

(
L1(ξ̂)

L0(ζ̂)

)

where ζ̂ and ξ̂ are the MLEs and Li is the likelihood under Hi.

– We reject H0 in favor of H1 if T (X ) is too large.

– The parametric bootstrap algorithm:

- We generate B random samples X ∗ of size n from f0(x|ζ̂)

- For each sample we compute ζ̂∗ and ξ̂∗ by maximizing the

log likelihoods of the simulated samples X ∗:

ℓ∗0(ζ) =
∑

log(f0(x
∗
i |ζ))

ℓ∗1(ξ) =
∑

log(f1(x
∗
i |ξ))

- We compute the simulated log likelihhod ratio statistics:

t∗ = n−1
{
ℓ∗1(ξ̂

∗) − ℓ∗0(ζ̂
∗)
}

- The bootstrap distribution of t∗ = T (X ∗) approximates the

distribution of T (X ) under the null H0.

– The p-value is estimated by:

p̂ =
#{t∗b ≥ t} + 1

B + 1

where t = Tobserved.
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• Numerical example: Duration data (see above).

– We want to test a Gamma pdf for X against a Lognormal
pdf:

f0(x|ζ) =
xα−1e−x/β

Γ(α)βα

f1(x|ξ) =
1

σx
φ

(
log x − µ

σ

)
.

– The MLE’s are ζ̂ and ξ̂

ζ̂ = (α̂, β̂) = (0.5798, 141.0716)

ξ̂ = (µ̂, σ̂2) = (3.3333, 2.8540)

– The likelihood ratio test statistics is (after some calculation):

t = n−1
{

ℓ1(ξ̂) − ℓ0(ζ̂)
}

= −1

2
log(2πσ̂2) − 1

2
+ log(Γ(α̂)) − α̂µ̂ + α̂ + α̂ log(β̂)

– We observe t = 0.0036.

– Bootstrap algorithm:

- We generate B = 1000 iid sample X ∗ of size n = 10 from a
Gamma(α̂, β̂)

- For each sample X ∗ we compute ζ̂∗ and ξ̂∗ and the value t∗

- The estimate p-value is

p̂ =
#{t∗ ≥ t} + 1

B + 1
= 0.2717

– We do not reject the Gamma hypothesis.



c©2008, L. Simar, Institut de Statistique, UCL, Belgium 95

– If we want to test an Exponential against a Gamma, we have

f0(x|µ) =
e−x/µ

µ

f1(x|ζ) =
xα−1e−x/β

Γ(α)βα

– The MLE’s are ζ̂ and µ̂

ζ̂ = (α̂, β̂) = (0.5798, 141.0716)

µ̂ = 81.8000

– The likelihood ratio test statistics is (after some calculation):

t = n−1
{
ℓ1(ζ̂) − ℓ0(µ̂)

}

= (α̂ − 1)

(
1

n

∑
log(xi)

)
+ log(µ̂) + 1 − log(Γ(α̂)) − α̂ − α̂ log(β̂)

– We observe t = 0.1241.

– Bootstrap algorithm:

- We generate B = 1000 iid sample X ∗ of size n = 10 from a
Expo(µ̂)

- For each sample X ∗ we compute ζ̂∗ and µ̂∗ and the value t∗

- The estimate p-value is p̂ = (#{t∗ ≥ t} + 1)/(B + 1) =
0.1440

– We do not reject the Exponential hypothesis (n = 10: no clear
definite answer).

– Here, we have a nested test (H0 is a restriction of H1): the
Chi-square test (asymptotic!) can be used:

If H0 is true 2
{
ℓ1(ζ̂) − ℓ0(µ̂)

}
∼ χ2

(1) when n → ∞.

p-value = P (χ2
(1) ≥ 0.1241∗2∗n) = P (χ2

(1) ≥ 2.4818) = 0.1152.
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4.3 Nonparametric Permutation Tests

• An old idea (R.A. Fisher in the 1930’s)

– No particular form assumed for data distribution

– But how to define F̂0 in this nonparametric setup?

- One solution: try to choose T (X ) such that T (X ) is distribution-

free under H0 (example: nonparametric rank tests, see e.g.

Gibbons 1971)

- Other solution, more widely applicable: eliminate the re-

maining unknown parameters when H0 is true by condition-

ing on a sufficient statistics under H0.

- If S is a sufficient statistics under the H0, the conditional

p-value may be computed as:

p = Prob(T (X ) ≥ t |H0, S = s).

• Permutation tests: comparative tests (involving two sets of ran-

dom variables) when under the null H0, empirical cdfs are sufficient

statistics.

– In standard one sample models, the cdf Fn or, equivalently, the

order statistics (X(1), . . . , X(n)) is a sufficient statistics

– In permutation comparative tests, S will be appropriate empiri-

cal cdfs or, equivalently, appropriate order statistics, depending

on the problem.
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– Permutations tests are particularly useful as confirmatory test

procedure when we have a “candidate” test statistics correspond-

ing to some plausible parametric model: some T (X ) with a rea-

sonable rejection region. Example, for comparison of two treat-

ments: difference of means, or of medians, etc...

• Example 1: The two-sample problem

– We have two independent samples Y = {y1, . . . , ym} and Z =

{z1, . . . , zn} drawn from possibly different DGP, FY ans FZ . Let

FY be the control distribution and Z be the treatment distribu-

tion.

– We want to test H0 : FY = FZ

- Suppose we observe θ̂observed = z̄ − ȳ ≫ 0, we expect that

H0 could be wrong and that the treatment has a positive

effect.

- We reject “H0 : no difference” in favor of “H1 : positive

effect” if θ̂ is too large.

- the p-value is

p − value = P (θ̂ > θ̂observed|H0).

- The parametric approach, FY = N(µY , σ2) and FZ =

N(µZ, σ2) leads to the Student-t test.

p − value = P (tn+m−2 > tobs),
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with

t =
z̄ − ȳ

sp

√
1/n + 1/m

,

where s2
p = ((n − 1)s2

z + (m − 1)s2
y)/(n + m − 2).

- In nonparametric models, for evaluatingP (θ̂ ≥ θ̂observed|H0)

we don’t have the trick of the Student’s method to solve the

problem: permutation test is one solution (bootstrap will be

another below).

– Permutation test for the two-sample problem:

- If the null is true, each observation zi and/or yi could have

come from either distribuion.

- We combine the N = m + n observation in a single sample

X = (Y ,Z)

- Under the null, the sufficient statistics is the emprical cdf

FN(x), or equivalently, the order statistics for the pooled

sample s = (x(1), . . . , x(N)).

- The p-value of H0 is thus given by

p − value = P (θ̂(X ) > θ̂observed |S = s, H0)

- Now, given that S = s, a random sample X can only be a

random permutation of s. The first m elements forming Y
will be obtained by taking a random sample of size m with-

out replacement from X , the second sample Z will be

formed by the n remaining ones. This is a random permu-

tation of the sample: denoted by X ∗.
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- Permutation property: Under H0, all the

(
N

m

)
permuta-

tion samples X ∗ are equally likely.

- The p-value of H0 is now given by

p − value = P (θ̂(X ) > θ̂observed |S = s, H0)

= P (θ̂(X ∗) > θ̂observed)

=
# of permutations such that θ̂(X ∗) ≥ θ̂observed(

N

m

)

where θ̂(X ∗) is a permutation replication of θ̂(X ).

– In practice we simulate B random permutations of (x1, . . . , xN)

and calculate θ̂(X ∗(b)), b = 1, . . . , B and approximate the p-

value by:

p̂ =
1 + #{θ̂(X ∗(b)) ≥ θ̂observed}

B + 1
.

• Numerical illustration

– Case 1: Two independent samples drawn from

normal populations

FY = N(10, (1.5)2), sample size n = 7

FZ = N(12, (1.5)2), sample size m = 10

- we observe the following statistics

ȳ = 10.0236 s2
y = 1.7213

z̄ = 11.3601 s2
z = 1.1464
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- The student statistics (s2
p = 1.3763 and θ̂obs = 1.3365) takes

the value tobs = 2.3116.

- The (exact here) p-value is P (t15 ≥ tobs) = 0.0177

- The permutation test on θ̂ = Z̄ − Ȳ over B = 1000 simula-

tion provides

p̂ =
1 + #{θ̂(X ∗(b)) ≥ 1.3365}

B + 1
= 0.0105

- Figure 4.1 illustrates the simulated empirical density of the

B = 1000 values of θ̂(X ∗(b)).
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Figure 4.1: Permutation simulated estimates of the sampling distribution of θ̂(X ∗) = z̄∗− ȳ∗.
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– Case 2: Two independent samples of survival times from

unknown populations

- we have the samples m = 10 and n = 7:
z=(2.5884 1.4106 8.6561 1.4820 26.1792 0.7062 0.7625 1.0254 5.0447 15.6797)

y=(0.4306 0.1853 0.2734 0.3542 4.7347 0.1250 0.4149)

- we have the following statistics

ȳ = 0.9312 s2
y = 2.8260

z̄ = 6.3535 s2
z = 71.2146

- The student statistics (s2
p = 43.8591 and θ̂obs = 5.4223) takes

the value tobs = 1.6614.

- The p-value is P (t15 ≥ tobs) = 0.0587

- The permutation test on θ̂ = Z̄ − Ȳ over B = 1000 simula-

tion provides

p̂ =
1 + #{θ̂(X ∗(b)) ≥ 5.4223}

B + 1
= 0.0300

- Figure 4.2 illustrates the simulated empirical density of the

B = 1000 values of θ̂(X ∗(b)).

- Here the normal theory with equal variance is not very ap-

propriate.
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Figure 4.2: Permutation simulated estimates of the sampling distribution of θ̂(X ∗) = z̄∗− ȳ∗.

• Remark

Any other test statistics could be used with the permutation test:

difference of trimmed means (robustness to outliers), difference of

medians, etc...
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• Example 2: The Permutation test for Correlation

– Suppose we have Xi = (Yi, Zi) is a random sample of n pairs.

We want to test the independence between Y and Z.

- if the observed value of the empirical correlation is large (ρ̂ ≫
0), we will be tempted to reject the null. The p-value is then

P (ρ̂ ≥ ρ̂obs|H0) (one-sided case).

- in general, the bivariate Fn(x) : Fn(y, z) is the minimal

sufficient statistics for F

- under the null, F = FY FZ , the minimal sufficient statis-

tics S is the two sets of orders statistics (Y(1), . . . , Y(n)) and

(Z(1), . . . , Z(n)) (or, equivalently, the two empirical marginal

cdfs FY,n and FZ,n).

- The observed value of s is:

s = (y(1), . . . , y(n), z(1), . . . , z(n))

– Under the null and under the constraint that S = s, the random

sample X = {Xi = (Yi, Zi)|i = 1, . . . , n} is equivalent to the

random sample

X ∗ = {(y(1), Z
∗
1), . . . , (y(n), Z

∗
n)},

where Z∗
1 , . . . , Z

∗
n is a random permutation of (z(1), . . . , z(n)).
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– There are n! such equally likely random permutations, so

p − value = P (ρ̂(X ) ≥ ρ̂observed |S = s, H0)

= P (ρ̂(X ∗) ≥ ρ̂observed)

=
# of permutations such that ρ̂(X ∗) ≥ ρ̂observed

n!

– In practice we simulate B random permutations of (z(1), . . . , z(n))

and calculate ρ̂(X ∗(b)), b = 1, . . . , B and approximate the p-

value by:

p̂ =
1 + #{ρ̂(X ∗(b)) ≥ ρ̂observed}

B + 1
.

• Numerical illustration

– Case 1: Two independent samples (n = 20) drawn from two

normal populations ( µ1 = 0, µ2 = 2, σ1 = 2 and σ2 = 1). The

obtained sample is ploted in Figure 4.3. We obtain the following

results from the permutation test (B = 1000):

ρ̂ = 0.0929

p̂ = 0.3337

The right panel of Figure 4.3 provides the sampling distribution

of ρ̂(X ∗) under H0.
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Figure 4.3: Two independent normal variates. Left panel: a simulated sample (n = 20).
Right panel: simulated estimates of the sampling distribution of ρ̂(X ∗) under H0. Here,
ρ̂ = 0.0929

– Case 2: A random sample (n = 20) from a dependent bivariate

normal with µ1 = 0, µ2 = 2, σ1 = 2, σ2 = 1 and ρ = 0.50. The

obtained sample is ploted in Figure 4.4. We obtain the following

results from the permutation test (B = 1000):

ρ̂ = 0.7205

p̂ = 0.0010

The right panel of Figure 4.4 provides the sampling distribution

of ρ̂(X ∗) under H0.
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Figure 4.4: A random sample from bivariate normal with ρ = 0.50. Left panel: a simulated
sample (n = 20). Right panel: simulated estimates of the sampling distribution of ρ̂(X ∗)
under H0. Here, ρ̂ = 0.7205

– Case 3: A random sample (n = 100) from dependent bivariate

normal with σ1 = 2, σ2 = 1 and ρ = 0.25. The obtained sample

is ploted in Figure 4.5. We obtain the following results from the

permutation test (B = 1000):

ρ̂ = 0.2560

p̂ = 0.0050

The right panel of Figure 4.5 provides the sampling distribution

of ρ̂(X ∗) under H0.
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Figure 4.5: A random sample from bivariate normal with ρ = 0.25. Left panel: a simulated
sample (n = 100). Right panel: simulated estimates of the sampling distribution of ρ̂(X ∗)
under H0. Here, ρ̂ = 0.2506.
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4.4 Nonparametric Bootstrap Tests

• The same idea as nonparametric permutation tests but resampling

with replacement and not without replacement, but can be applied

to much wider class of problems.

– We must resample from a F̂0 which satisfies H0: it cannot be

simply Fn.

- Depends on the problem

- Many candidates here for F̂0, depending on the restrictions

imposed in addition to H0.

– Then the procedure is the same. If the rejection region is of the

from T (X ) too large, the p-value obtained by the bootstrap is:

p̂ = P (T (X ∗) ≥ Tobserved | F̂0)

≈ 1 + #{T (X (∗b)) ≥ Tobserved}
B + 1

• Example 1: Two-sample test

– As above, we can choose many different statistics

- Difference of the means θ̂ = z̄ − ȳ

- We can studentize it (same variance):

t =
z̄ − ȳ

sp

√
1/n + 1/m

,
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- We could also use (different variance):

t =
z̄ − ȳ√

s2
Z/n + s2

Y /m
,

– FN , the empirical cdf of X , is a natural estimator of the common

cdf of Y and Z.

– Numerical illustration:

- 2 independent samples from unknown populations (see above)
z=(2.5884 1.4106 8.6561 1.4820 26.1792 0.7062 0.7625 1.0254 5.0447 15.6797)

y=(0.4306 0.1853 0.2734 0.3542 4.7347 0.1250 0.4149)

- we had the following statistics

ȳ = 0.9312 s2
y = 2.8260

z̄ = 6.3535 s2
z = 71.2146

θ̂obs = 5.4223

- The permutation test on θ̂ = Z̄ − Ȳ over B = 1000 simula-

tions provided p̂ = 0.0300.

– The boostrap test, with B = 1000 replications, provides

p̂ =
1 + #{θ̂(X ∗(b)) ≥ 5.4223}

B + 1
= 0.0390

– Figure 4.6 illustrates the simulated empirical density of the B =

1000 values of θ̂(X ∗(b)).
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Figure 4.6: Bootstrap estimates of the sampling distribution of θ̂(X ∗) = z̄∗ − ȳ∗.

– Extension: testing the equality of the density of two popula-

tions H0 : fZ = fY : nonparametric bootstrap test based on

kernel density estimates. Test statistics is an estimation of the

integrated squarred error between the two densities

ISE =

∫
(fZ(u) − fY (u))2 du

see Li (1996, 1999).

• Example 2: One-sample test

– We want to test if µ = µ0 in an unknown population from a

sample of size n. The alternative is µ > µ0.

– We can use many statistics: we choose here

T (X ) =
X̄ − µ0

S/
√

n

– How to select F̂0?
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- It cannot be Fn: it does not obey H0.

- We shift the empirical cdf so that it has mean µ0

x̃i = xi − x̄ + µ0

F̂0 is the empirical cdf of the x̃’s.

- The bootstrap test statistics is then

T (X̃ ∗) =
¯̃X∗ − µ0

S̃∗/
√

n

where ¯̃X∗ and S̃∗ are the sample mean and std deviation of

the bootstrap samples X̃ ∗ obtained by drawing with replace-

ment in the shifted values X̃ .

– The p-value is then obtained by

p̂ = P (T (X̃ ∗) ≥ Tobserved | F̂0)

– Note that in this case, the bootstrap statistics can also be cal-

culated without explicitely shifting:

T (X̃ ∗) ≡ X̄∗ − X̄

S∗/
√

n

where X̄∗ and S∗ are the sample mean and std deviation of the

usual bootstrap samples X ∗.
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• Example 3: Test of independence

– Suppose we have Xi = (Yi, Zi) is a random sample of n pairs.

We want to test the independence between Y and Z.

- if the observed value of the empirical correlation is large (ρ̂ ≫
0), we will be tempted to reject the null. The p-value is then

P (ρ̂(X ) ≥ ρ̂obs|H0) (one-sided case).

- The bootstrap estimate of the p-value is obtained as

p̂ = P (ρ̂(X ∗) ≥ ρ̂obs|H0)

where X ∗ = {Y∗,Z∗} with Y∗ and Z∗ being independent

bootstrap samples from Y and Z respectively.

- In practice we simulate B bivariate random samples X ∗(b)

and calculate ρ̂(X ∗(b)), b = 1, . . . , B and approximate the

p-value by:

p̂ =
1 + #{ρ̂(X ∗(b)) ≥ ρ̂observed}

B + 1
.

- Poor power of the test is expected, unless bivariate normal

population.
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• Numerical illustration (as above)

– Case 1: Two independent samples (n = 20) drawn from two

normal populations ( µ1 = 0, µ2 = 2, σ1 = 2 and σ2 = 1). The

obtained sample is ploted in Figure 4.7. We obtain the following

results from the bootstrap test (B = 5000):

ρ̂ = 0.1584

p̂ = 0.2490

The right panel of Figure 4.7 provides the sampling distribution

of ρ̂(X ∗) under H0.
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Figure 4.7: Two independent normal variates. Left panel: a simulated sample (n = 20).
Right panel: simulated estimates of the sampling distribution of ρ̂(X ∗) under H0. Here,
ρ̂ = 0.1584
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– Case 2: A random sample (n = 20) from a bivariate normal

with µ1 = 0, µ2 = 2, σ1 = 2, σ2 = 1 and ρ = 0.50. The obtained

sample is ploted in Figure 4.8. We obtain the following results

from the bootstrap test (B = 5000):

ρ̂ = 0.7823

p̂ = 0.0002

The right panel of Figure 4.8 provides the sampling distribution

of ρ̂(X ∗) under H0.
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Figure 4.8: A random sample from bivariate normal with ρ = 0.50. Left panel: a simulated
sample (n = 20). Right panel: simulated estimates of the sampling distribution of ρ̂(X ∗)
under H0. Here, ρ̂ = 0.7823

– Case 3: A random sample (n = 100) from bivariate normal

with σ1 = 2, σ2 = 1 and ρ = 0.25. The obtained sample is

ploted in Figure 4.5. We obtain the following results from the

bootstrap test (B = 5000):

ρ̂ = 0.1820

p̂ = 0.0366
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The right panel of Figure 4.10 provides the sampling distribution

of ρ̂(X ∗) under H0.
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Figure 4.9: A random sample from bivariate normal with ρ = 0.25. Left panel: a simulated
sample (n = 100). Right panel: simulated estimates of the sampling distribution of ρ̂(X ∗)
under H0. Here, ρ̂ = 0.1820.

– Case 4: Y ∼ N(0, 1) and Z = Y 2, so that ρ = 0.

– We obtained with n=100, ρ̂ = 0.0953 and p̂ = 0.1622: non

reject H0 : ρ = 0.

– Not powerful test of independence here.
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Figure 4.10: Left panel: a simulated sample (n = 100). Right panel: simulated estimates of
the sampling distribution of ρ̂(X ∗) under H0. Here, ρ̂ = 0.0953.



Chapter 5

The Bootstrap in Regression Models

5.1 Regression Models

• Consider the following linear regression model:

y = X β + ǫ

where y : (n × 1), X : (n × p), β : (p × 1) and ǫ : (n × 1).

Element by element we have:

yi = xi β + ǫi

where xi : (1 × p) is the ith row of X (the first element being a one

is the model has an intercept).

• The main assumptions are as follows:

– The matrix X is not random

– The ǫi are i.i.d. with common cdf F with mean 0 and constant

variance σ2:

ǫi ∼ F (0, σ2)

116
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– In matrix notation:

ǫ ∼ (0, σ2 In)

– As n → ∞,
1

n
X ′X → V > 0

• Statistical analysis.

– OLS estimators:

β̂ = (X ′X)−1X ′y

σ̂2 =
1

n − p
(y − Xβ̂)′(y − Xβ̂)

– The asymptotic:

√
n(β̂ − β) → Np(0, σ

2V −1).

– In particular we obtain the multivariate asymptotic root:

(X ′X)1/2 β̂ − β

σ
∼ ANp(0, Ip)

– Element by element, we have a Studentized asymptotic pivotal

root for βj, for j = 1, . . . , p:

Uj =
β̂j − βj

σ̂
√

cjj
∼ AN(0, 1)

where cjj is the (j, j)th element of the matrix (X ′X)−1 .

– Asymptotic confidence intervals:
[
β̂j − σ̂

√
cjj z1−α/2, β̂j − σ̂

√
cjj zα/2

]
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• Properties of Residuals:

ǫ̂ = y − Xβ̂

= y − X(X ′X)−1X ′y

= MX y

where MX = In − X(X ′X)−1X ′ = In − HX .

– HX is the hat matrix. Note that:

HX X = X

MX X = 0

– Moments of ǫ:

EF (ǫ̂) = 0

V arF (ǫ̂) = MX(σ2In)MX = σ2MX = σ2(In − HX)

– So that, element by element, we have:

EF (ǫ̂i) = 0

V arF (ǫ̂i) = (1 − hi)σ
2

where hi is the (i, i)th element of HX : hi = xi(X
′X)−1x′

i.
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5.2 Bootstrapping the Residuals

• In the real world the data generating process P is characterized

by

P = (β, F )

then, for a given xi,

yi = xiβ + ǫi, where ǫi ∼ F (0, σ2).

This provides the original sample: X = {(xi, yi) | i = 1, . . . , n}.

• In the bootstrap world the data generating process is

P̂ = (β̂, Fn)

where Fn is either the empirical cdf of the centered residuals (non-

parametric bootstrap) or F (0, σ̂2), if F is a given parametric cdf

(parametric bootstrap).

• The (nonparametric) bootstrap algorithm is implemented as fol-

lows:

– If the model has no intercept, EFn
(ǫ̂i) 6= 0 without centering the

residulas, ⇒ center the residuals:

ǫ̃
(1)
i = ǫ̂i −

1

n

n∑

i=1

ǫ̂i

– We define here Fn as the empirical cdf of ǫ̃
(1)
i , i = 1, . . . , n.

– Draw independently from Fn to produce the bootstrap residuals

ǫ∗i , i = 1, . . . , n.
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– Generate with P̂ the bootstrap values:

y∗i = xiβ̂ + ǫ∗i , i = 1, . . . , n

– The pseudo-sample X ∗ = {(xi, y
∗
i ) | i = 1, . . . , n} provides the

bootstrap value of β̂:

β̂∗ = (X ′X)−1X ′y∗

– The bootstrap analog of the root for βj is:

U∗
j =

β̂∗
j − β̂j

σ̂∗√cjj
,

where cjj is the (j, j)th element of the matrix (X ′X)−1 and

σ̂∗2 =
1

n − p
(y∗ − Xβ̂∗)′(y∗ − Xβ̂∗).

– In particular, the bootstrap-t confidence interval for βj is:
[
β̂j − σ̂

√
cjj u∗

1−α/2, β̂j − σ̂
√

cjj u∗
α/2

]

where u∗
a is the a−quantile of Dist∗Uj

(x).

• It can be proven that the bootstrap-t achieve 3rd order accuracy

for the slopes parameters (Op(n
−3/2)).
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• Additional refinement:

– Since V arF (ǫ̂i) = (1 − hi)σ
2 6= σ2, we may also correct for the

second moment and then center the obtained residuals.

– Define the corrected residuals:

ǫ̃
(2)
i =

ǫ̂i√
1 − hi

−
n∑

j=1

ǫ̂j√
1 − hj

– Now we define Fn as the empirical cdf of ǫ̃
(2)
i , i = 1, . . . , n.

5.3 Monte-Carlo Performances of Confidence Intervals

• We simulated data according the following model:

– The regression model is

yi = 2 + xi + ǫi

– The error term is a shifted gamma distribution with mean zero:

ǫi ∼ Gamma(a, c) − µ

where µ = ac and σ2 = ac2.

– We choose a = 2 and c = 1/
√

2 to get σ = 1.

– We choose a fixed design for xi:

xi = (1/n, 2/n, . . . , n/n)

• We compare the performances of the asymptotic normal method,

the percentile method and the bootstrap-t method.
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– We choose M = 1000 Monte-Carlo replications: so, in Table

5.1, the coverage probabilities of nominal level 0.95 with an error

bound of 0.0138 (see Table 2.3).

sample size n = 5 n = 10 n = 20 n = 100
method length coverage length coverage length coverage length coverage
As. Normal 5.505 0.855 4.127 0.918 2.917 0.931 1.350 0.950
Perc. Boot. 4.210 0.763 3.695 0.881 2.763 0.913 1.337 0.948
Bootstrap-t 8.620 0.941 4.824 0.953 3.096 0.943 1.363 0.952

Table 5.1: Performances of confidence intervals for β2 = 1, here σ = 1: average length of
the intervals and estimation of coverage probabilities (nominal level 95%) over M = 1000
Monte-Carlo experiments. For the bootstrap, B = 2000.

• Same scenario as above with refinements for the bootstrap:

– we bootstrap on the residuals ǫ̃
(2)
i , i = 1, . . . , n. The results are

in Table 5.2.

sample size n = 5 n = 10 n = 20 n = 100
method length coverage length coverage length coverage length coverage
As. Normal 5.350 0.854 4.104 0.909 2.964 0.940 1.346 0.943
Perc. Boot. 5.232 0.849 4.106 0.905 2.967 0.941 1.344 0.944
Bootstrap-t 8.424 0.954 4.794 0.946 3.158 0.960 1.358 0.944

Table 5.2: Performances of confidence intervals for β2 = 1, Refined bootstrap algorithm
for correcting the variance of the residuals. Here σ = 1: average length of the intervals
and estimation of coverage probabilities (nominal level 95%) over M = 1000 Monte-Carlo
experiments. For the bootstrap, B = 2000.

– The improvements are only significant for small sample sizes and

especially for the percentile method.
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– Table 5.3 gives an idea of the sampling variation of the correction

terms
√

1 − hi: they depend on the chosen design for the x’s.

The max value is at the center of the design.

Sample size Min Max
n = 5 0.63 0.90
n = 10 0.81 0.95
n = 20 0.90 0.97
n = 100 0.98 0.995

Table 5.3: Extreme values of
√

1 − hi for the fixed design.

5.4 Bootstrapping the Pairs

• Often, the values of X are not fixed in advance but are rather

resulting from random sampling the observed units in a population.

So we observe the pairs (xi, yi) and obtain X .

– The sampling theory above is still valid if we add an “exogeneity

condition” on the X ’s, namely:

∀i, E(x′
iǫi) = 0

– We need also an additional regularity assumptions on X to get

the asymptotics:

∀i, E(x′
ixi) = V > 0

– Bootstrapping on the residuals is OK, if we work conditionnally

on the observed values X1, . . . , Xn.
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• How to take into account for the randomness of the X ’s?

– The idea then is to bootstrap the pairs by sampling with replace-

ment in the set X

– This produce a pseudo-sample X ∗:

X ∗ = {(x∗
i , y

∗
i ) | i = 1, . . . , n}

– For each pseudo-sample we compute

β̂∗ = (X∗′X∗)−1X∗′y∗,

where X∗ is the design matrix (n × p):

X∗ =




x∗
1

x∗
2
...

x∗
n




where, remember, x∗
i has a one in first position if the model has

an intercept.

– Here we have

σ̂∗2 =
1

n − p
(y∗ − X∗β̂∗)′(y∗ − X∗β̂∗)

– The bootstrap analog of the root for βj is then:

W ∗
j =

β̂∗
j − β̂j

σ̂∗√c∗jj
,

where c∗jj is the (j, j)th element of the matrix (X∗′X∗)−1.
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– The bootstrap-t confidence interval for βj is:
[
β̂j − σ̂

√
cjj w∗

1−α/2, β̂j − σ̂
√

cjj w∗
α/2

]

where w∗
a is the a−quantile of Dist∗Wj

(x).

• Advantages and drawbacks:

– If the linear homoskedastic model is true, bootstrapping the

residuals will be more accurate and more stable because it follows

more the real data generating process. It uses more information.

– Similarly, if we know the parametric family of distributions to

which F (0, σ2) belongs, the parametric bootstrap will be more

accurate.

– Bootstrapping the pairs should be more robust to small devia-

tions from the linear homoskedastic model.

- Bootstrapping the pairs is less sensitive to the model as-

sumptions: we generate data without taking the model into

account.

– In case of heteroskedasticity: EF (ǫ2
i ) = σ2

i .

- Bootstrap still consistent but bootstrapping on the pairs

should be more stable.

- Only percentile methods should work here (Bootstrap-t in-

appropriate root).

- We can also use the Wild bootstrap (Mammen, 1993).
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• Example for an homoskedastic case

– Same scenario as above except that now X ’s are random vari-

ables, we chose the random design X ∼ U(0, 1) to be comparable

with the above scenario.

– We do not analyze the case n = 5: boostrapping on the pairs

implies drawing 5 rows among 5 original rows, this produces

too many singular X∗′X∗ in the full Monte-Carlo experiment (5

identical rows with probability 1/625 at each bootstrap draw for

each Monte-Carlo trial).

– Table 5.4 show the results when bootstrapping on the residuals

and Table 5.5, when bootstrapping on the the pairs: no signifi-

cant differences.

- First row of two tables should be the same (2 different MC

experiments).

sample size n = 10 n = 20 n = 100 n = 500
method length coverage length coverage length coverage length coverage
As. Normal 4.441 0.923 3.085 0.934 1.358 0.942 0.606 0.956
Perc. Boot. 3.976 0.889 2.933 0.918 1.343 0.940 0.604 0.952
Bootstrap-t 5.188 0.952 3.281 0.951 1.369 0.944 0.606 0.953

Table 5.4: Performances of confidence intervals for β2 = 1, Bootstrapping on the resid-
ual. Same senario as in Table 5.1 but here, X ∼ U(0, 1), over M = 1000 Monte-Carlo
experiments. For the bootstrap, B = 2000.
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sample size n = 10 n = 20 n = 100 n = 500
method length coverage length coverage length coverage length coverage
As. Normal 4.425 0.917 3.053 0.936 1.360 0.947 0.607 0.961
Perc. Boot. 4.725 0.911 3.011 0.922 1.346 0.941 0.605 0.956
Bootstrap-t 6.273 0.951 3.356 0.926 1.369 0.939 0.606 0.956

Table 5.5: Performances of confidence intervals for β2 = 1, Bootstrapping on the pairs. Same
senario as in Table 5.1 but here, X ∼ U(0, 1), over M = 1000 Monte-Carlo experiments.
For the bootstrap, B = 2000.

• Example of heteroscedastic case

– Scenario:

y = 1 + 2x + ǫ with ǫ ∼ N(0, σ2(x)),

where σ(x) = x and x ∼ U(0, 20).

– Table 5.6 show the results when bootstrapping on the residuals
and Table 5.7 on the pairs: significant differences.

– Results

– First row of two tables should be the same (2 different MC
experiments)

– Asymptotic is inappropriate (even with n = 500)

– As expected, bootstrapping on the pairs outperforms the
other bootstrap (in particular when n ≥ 100).

sample size n = 10 n = 20 n = 100 n = 500
method length coverage length coverage length coverage length coverage
As. Normal 5.038 0.868 3.532 0.913 1.567 0.921 0.701 0.919
Perc. Boot. 4.507 0.827 3.359 0.887 1.550 0.918 0.698 0.917
Bootstrap-t 5.858 0.919 3.761 0.925 1.581 0.919 0.700 0.920

Table 5.6: Performances of confidence intervals for β2 = 2, Bootstrapping on the residual,
over M = 1000 Monte-Carlo experiments. For the bootstrap, B = 2000.
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sample size n = 10 n = 20 n = 100 n = 500
method length coverage length coverage length coverage length coverage
As. Normal 5.038 0.859 3.568 0.911 1.564 0.936 0.701 0.929
Perc. Boot. 5.486 0.882 3.688 0.915 1.677 0.952 0.764 0.957
Bootstrap-t 8.609 0.913 4.443 0.917 1.725 0.951 0.767 0.956

Table 5.7: Performances of confidence intervals for β2 = 2, Bootstrapping on the pairs, over
another M = 1000 Monte-Carlo experiments. For the bootstrap, B = 2000.

5.5 The Wild Bootstrap

• Proposed by Beran (1986), Liu (1988) and Mammen (1993) for
heteroskedasticity of unknown form. See also Davidson and Flachaire
(2001). The model

yi = xiβ + ui

where ǫi are independent with E(ui) = 0 and E(u2
i ) = σ2

i . Write
Ω = Cov(u).

• MacKinnon and White (1985) suggest different forms of HCCME Ω̂
(heteroskedastic consistent covariance matrix estimator) of Ω. Basic

estimator of V ar(β̂OLS) is given by

V ar(β̂OLS) = (X ′X)−1X ′Ω̂X(X ′X)−1,

where typically Ω̂ = diag(û2
1, . . . , û

2
n) and ûi are the (centered) OLS

residuals (refinement: ûi is replaced by ûi/
√

1 − hi).

• The bootstrap DGP:

y∗i = xiβ̂ + u∗
i ,

where u∗
i = ûiεi where εi are mutually independent drawings com-

pletely independent of the original data and such that E(εi) = 0,
E(ε2

i ) = 1 and E(ε3
i ) = 1. Mammen (1993) suggests the use of a
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two-point distribution for εi:

εi =

{
(1 −

√
5)/2 with probability p = (5 +

√
5)/10

(1 +
√

5)/2 with probability 1 − p

• NB: The roots are here:

Wj =
β̂j − βj√

covjj
, and W ∗

j =
β̂∗

j − β̂j√
cov∗jj

,

where covjj is the (j, j)th element of the matrix (X ′X)−1X ′Ω̂X(X ′X)−1

and cov∗jj is the (j, j)th element of the matrix (X ′X)−1X ′Ω̂∗X(X ′X)−1.

• More Monte-Carlo Examples with Wild Bootstrap

Homoskedastic case: simulated data according the model:

– The regression model is

yi = 2 + xi + ǫi

where ǫi ∼ Γ(a, c) − µ, with µ = ac, a = 2, c = 1/ < sqrt2, so
σǫ = 1.

– X ’s are random variables X ∼ U(1, 20).

– We do not analyze the case n = 5 for boostrapping on the
pairs (drawing 5 rows among 5 original rows produces too many
singular X∗′X∗).

– Table 5.8 show the results
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sample size n = 5 n = 10 n = 20 n = 100
method length coverage length coverage length coverage length coverage
OLS As. N. 0.372 0.838 0.235 0.915 0.163 0.934 0.072 0.946
Perc. (Res) 0.284 0.753 0.210 0.885 0.155 0.922 0.071 0.944
Boot-t (Res) 0.627 0.937 0.275 0.954 0.174 0.945 0.073 0.950
Perc. (Pairs) n.a. n.a. 0.255 0.903 0.160 0.919 0.071 0.943
Boot-t (Pairs) n.a. n.a. 0.333 0.946 0.178 0.943 0.073 0.948
HCCME As. N. 0.229 0.684 0.190 0.849 0.146 0.907 0.071 0.944
Perc. (Wild) 0.225 0.671 0.187 0.834 0.145 0.895 0.070 0.938
Boot-t (Wild) 0.533 0.828 0.251 0.887 0.160 0.921 0.072 0.941

Table 5.8: HOMOSKEDASTIC SCENARIO. Performances of confidence intervals for β2 =
1, Bootstrapping on the residual, on the pairs and Wild bootstrap, over M = 1000 Monte-
Carlo experiments with B = 2000.

Heteroscedastic case: simulated data according

– The regression model is

yi = 2 + xi + ǫi

where ǫi ∼ |xi − 10| × (Γ(a, c) − µ), with µ = ac, a = 2, c =
1/
√

2, so σǫ = 1.

– X ’s are random variables X ∼ U(1, 20).

– Table 5.9 show the results.

– NB: Wild bootstrap allows test of hypothesis in the presence of
heteroskedasticity (see below).
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sample size n = 5 n = 10 n = 20 n = 100
method length coverage length coverage length coverage length coverage
OLS As. N. 6.742 0.734 4.623 0.820 3.282 0.806 1.560 0.852
Perc. (Res) 5.127 0.626 4.177 0.772 3.145 0.782 1.553 0.844
Boot-t (Res) 11.139 0.854 5.362 0.869 3.480 0.832 1.575 0.857
Perc. (Pairs) n.a. n.a. 4.964 0.875 3.854 0.897 1.994 0.945
Boot-t (Pairs) n.a. n.a. 10.976 0.929 5.477 0.924 2.109 0.939
HCCME As. N. 4.725 0.590 4.668 0.811 3.831 0.866 2.038 0.932
Perc. (Wild) 4.444 0.569 4.504 0.781 3.743 0.833 2.017 0.919
Boot-t (Wild) 11.838 0.792 6.757 0.895 4.350 0.881 2.046 0.920

Table 5.9: HETEROSKEDASTIC SCENARIO. Performances of confidence intervals for
β2 = 1, Bootstrapping on the residual, on the pairs and Wild bootstrap, over M = 1000
Monte-Carlo experiments with B = 2000.

5.6 Testing Hypothesis

• Suppose we want to test the hypothesis H0 : βj = 0 against the

alternative H1 : βj > 0

– The test statistics can be

T (X ) =
β̂j

σ̂
√

cjj

where cjj is the (j, j)th element of the matrix (X ′X)−1 .

– The p-value is given by:

p = P (T (X ) ≥ Tobserved |H0)

– We have to estimate p by the bootstrap algorithm. How to

generate the samples under H0?

- We estimate β under the null hypothesis:

β̂(0) = (X̃ ′X̃)−1X̃ ′y
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where X̃ is the design matrix X with the jth column deleted.

- We define the residuals under H0 as

ǫ̂(0) = y − X̃β̂(0)

- We draw with replacement n values from ǫ̂
(0)
i , i = 1, . . . , n

to produce the bootstrap residuals ǫ̂
(0),∗
i , i = 1, . . . , n.

– The bootstrap sample under H0 isX (0),∗ = {(xi, y
∗
i )|i = 1, . . . , n}

where

y∗i = x̃i β̂
(0) + ǫ̂

(0),∗
i .

– Finally we have the bootstrap estimation of p

p̂ = P (T (X ∗) ≥ Tobserved|X , H0)

where

T (X ∗) =
β̂∗

j

σ̂∗√cjj

where β̂∗
j is the jth element of β̂∗ = (X ′X)−1X ′y∗ and σ̂∗2 =

(y∗ − Xβ̂∗)′(y∗ − Xβ̂∗)/(n − p).

• Testing a linear restrictions H0 : Aβ = a where A : (q × p) and

a : (q × 1).

– Here, the OLS under the null is (see Härdle and Simar, 2003,

p.196):

β̂(0) = β̂ − (X ′X)−1A′[A(X ′X)−1A′]−1(Aβ̂ − a)
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– A test statistics would be

T (X ) =
||y − Xβ̂(0)||2

||y − Xβ̂||2
− 1 ≥ 0

and the p-value is

p̂ = P (T (X ∗) ≥ Tobserved|X , H0)

– same approach as above to generate X ∗ by using β̂(0).

– NB: if ǫ ∼ N(0, σ2), we have an exact test:

n − p

q
T (X ) ∼ Fq,n−p if H0 is true

• In case of heteroskedasticity, the Wild bootstrap has to be used.
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• Example

– We have the following bivariate data (n = 8):

x=(0.6093 0.9303 0.3414 0.1874 0.0160 0.6577 0.2924 0.0758)

y=(2.0663 2.4426 1.9896 2.7825 1.6037 2.5204 4.5603 1.0824)

The data are presented in Figure 5.1 with the least squares fit.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5
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3
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4

4.5

5

Figure 5.1: Scatterplot of the data and OLS fit.

– The OLS fit gives β̂ = (2.1458 0.6048)′, we test H0 : β2 = 0

against H1 : β2 > 0.

- Under H0 : β2 = 0 we have β̃1 = ȳ = 2.3810

- The confidence intervals for β2 at 95% are (B = 5000)

Asymptotic Normal: [−1.9590, 3.1686]

Percentile Bootstrap: [−1.5177, 3.0111]

Bootstrap-t method: [−2.7733, 3.4138]

– The p-value are computed as

Student case p = 0.3188

Bootstrap p̂ = 0.3079

– There is no sample evidence to reject H0 at the level 5%.
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5.7 Bootstrapped Prediction Intervals

Consider the problem of the prediction of a new value yf independent

from the yi, i = 1, . . . , n for a given level of the vector xf (Stine,

1985).

• Consider first the real world.

– yf is generated by P as follows:

yf = xfβ + ǫf , where ǫf ∼ F (0, σ2).

– The prediction is given by

ŷf = xf β̂

where β̂ is the estimator of β based on the sample X of size n

generated from P .

– The error of prediction is

ef = yf − ŷf = xf(β − β̂) + ǫf

we have:

EF (ef) = 0

V arF (ef) = σ2
(
1 + xf(X

′X)−1x′
f

)
= σ2(1 + hf)

– The natural root is

R =
yf − ŷf

σ̂
√

1 + hf
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– Under Normal assumption, we have R ∼ N(0, 1). The normal

prediction interval is:
[
ŷf − z1−α/2 σ̂

√
1 + hf , ŷf − zα/2 σ̂

√
1 + hf

]

where za is the a-quantile of the N(0, 1).

• Consider now the bootstrap world, where P̂ is characterized by:

y = xβ̂ + ǫ∗, where ǫ∗ ∼ Fn

– y∗f is generated by P̂ as follows:

y∗f = xf β̂ + ǫ∗f , where ǫ∗f ∼ Fn.

– The prediction is given by

ŷ∗f = xf β̂
∗

where β̂∗ is the estimator of β̂ based on the sample X ∗ of size n

generated from P̂ .

– The error of prediction is

e∗f = y∗f − ŷ∗f = xf(β̂ − β̂∗) + ǫ∗f

– The bootstrap root is

R∗ =
y∗f − ŷ∗f

σ̂∗√1 + hf

,

where σ̂∗2 is computed from the sample X ∗.
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– The bootstrap-t prediction interval is:
[
ŷf − u∗

1−α/2 σ̂
√

1 + hf , ŷf − u∗
α/2 σ̂

√
1 + hf

]

where u∗
a is the a-quantile of Dist∗R.

• The algorithm can be summarized as follows:

[1 ] Compute β̂ = (X ′X)−1X ′y, the OLS residuals ǫ̂ = y − Xβ̂,

σ̂2 = ǫ̂′ǫ̂/(n − p) and the prediction ŷf = xf β̂.

[2 ] From the bootstrap sample X ∗ compute, in the same way, β̂∗,

σ̂∗ and the prediction in the bootstrap world ŷ∗f = xf β̂
∗.

[3 ] Generate the value of yf in the bootstrap world: y∗f = xf β̂+ǫ∗f ,

where ǫ∗f is one drawn from the n OLS residuals ǫ̂.

[4 ] Compute the root

R∗ =
y∗f − ŷ∗f

σ̂∗
√

1 + hf

,

[5 ] Redo steps [2] to [4], B times to derive the empirical distribution

of R∗: Dist∗R, from which we obtain the appropriate quantiles

u∗
a.
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• Example

– Back to the preceding example (see Figure 5.1).

- The data:
x=(0.6093 0.9303 0.3414 0.1874 0.0160 0.6577 0.2924 0.0758)

y=(2.0663 2.4426 1.9896 2.7825 1.6037 2.5204 4.5603 1.0824)

- The OLS fit gives β̂ = (2.1458 0.6048)′ and σ̂ = 1.096

– Prediction at xf = 0.5.

- We obtain ŷf = 2.4482

- The prediction intervals (B = 5000):

Asymptotic Normal: [0.1501, 4.7463]

Nonparametric Bootstrap: [−3.3438, 4.4533]

– Remark: This sample was obtained by simulation n = 8 val-

ues of X ∼ U(0, 1) and ǫ ∼ Shifted − Gamma with mean

zero and variance 1. The model is y = 2 + x + ǫ.

– So, the normal approximation is not appropriate here!



Chapter 6

Iterated Bootstrap

6.1 Estimating the variance for prepivoting

• If we have an asymptotical pivotal root

S =
√

n

(
T (X ) − θ(F )

σ(F )

)
∼ AN(0, 1),

where σ2(F ) = n AV arF (T (X )) and if σ̂(X ) is available:

– we could use the studentized root for the bootstrap:

U =
√

n

(
T (X ) − θ(F )

σ̂(X )

)
∼ AN(0, 1),

where σ̂(X ) is a consitent estimator of σ(F ).

– The bootstrap-t confidence interval for θ(F ) is:
[
T (X ) − u∗(1 − α

2
)

σ̂√
n
, T (X ) − u∗(

α

2
)

σ̂√
n

]

where u∗(a) is the a−quantile of Dist∗U(x) the bootstrap distri-

bution of

U∗ =
√

n

(
T (X ∗) − θ(Fn)

σ̂(X ∗)

)

139
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• Suppose that σ̂(X ) is not available.

– The idea: estimate σ2(F ) by a bootstrap method to get σ̂∗2

σ̂∗2 = n V arFn
(T (X ∗))

– Therefore, the original root in the “real world” becomes:

W =
√

n

(
T (X ) − θ(F )

σ̂∗

)

where σ̂∗ is thus obtained by a first level bootstrap.

- The confidence interval for θ(F ) is then:
[
T (X ) − w(1 − α

2
)
σ̂∗
√

n
, T (X ) − w(

α

2
)
σ̂∗
√

n

]

where w(a) is the a−quantile of DistW (x) and σ̂∗ is the first

level bootstrap estimate of σ.

- Since DistW (x) is unknown, we will use a second level

bootstrap to approximate it.

– The bootstrap analog of W in the “bootstrap world” becomes

W ∗:

W ∗ =
√

n

(
T (X ∗) − θ(Fn)

σ̂∗∗

)

- where (σ̂∗∗)2 = n V arF ∗
n
(T (X ∗∗)) is a bootstrap estimator

in the bootstrap world of σ̂∗2 = n V arFn
(T (X ∗)).

∗ F ∗
n is the empirical cdf of the sampleX ∗ andX ∗∗ is sample

drawn from F ∗
n (drawn from X ∗ with replacement).

∗ σ̂∗∗ has to be obtained for each bootstrap sample X ∗
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- σ̂∗∗ has to be derived through a second level bootstrap: a

bootstrap nested inside the first level bootstrap world.

- This is called the double bootstrap

– The final bootstrap-t confidence interval for θ(F ) is
[
T (X ) − w∗(1 − α

2
)
σ̂∗
√

n
, T (X ) − w∗(

α

2
)
σ̂∗
√

n

]

where w∗(a) is the a−quantile of Dist∗W (x) and σ̂∗ is the first

level bootstrap estimate of σ.

– Generally, the double bootstrap recovers the Op(n
−1) precision:

second order accuracy, as the bootstrap-t.

• The algorithm

[1 ] For each first level bootstrap iteration b1, draw a sample X ∗(b1)

from X : this provides T ∗(b1) = T (X ∗(b1)).

[2 ] Estimate the variance of T (X ∗(b1)) ⇒ second level bootstrap:

[2.1 ] Draw B2 samples X ∗∗(b2) from X ∗(b1), for b2 = 1, . . . , B2.

[2.2 ] Compute

V ar∗∗(T ∗(b1)) ≈ 1

B2

B2∑

b2=1

T 2(X ∗∗(b2))−


 1

B2

B2∑

b2=1

T (X ∗∗(b2))




2

[2.3 ] Then:

σ̂∗∗(b1) =
√

n
(
V ar∗∗(T ∗(b1))

)1
2
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[3 ] Compute the bootstrap value of the root:

W ∗(b1) =
√

n

(
T (X ∗(b1)) − θ(Fn)

σ̂∗∗(b1)

)

[4 ] Redo the steps [1]–[3] for b1 = 1, . . . , B1. From the empirical

cdf of W ∗(b1), b1 = 1, . . . , B1 we have Dist∗W (x).

[5 ] Compute also σ̂∗, the first level bootstrap estimate of σ:

σ̂∗ =
√

n


 1

B1

B1∑

b1=1

T 2(X ∗(b1)) −


 1

B1

B1∑

b1=1

T (X ∗(b1))




2



1
2

• The bootstrap-t confidence interval for θ(F ) is:
[
T (X ) − w∗(1 − α

2
)
σ̂∗
√

n
, T (X ) − w∗(

α

2
)
σ̂∗
√

n

]

where w∗(a) is the a−quantile of Dist∗W (x).

• Remark : Computer intensive method : B1∗B2 Monte-Carlo loops

where both B1 should be, say ≥ 2000 and B2 should be, say ≥ 200.
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• Example: Let’s come back to the duration data n = 10:

X = (X1, . . . , X10) = (1 5 12 15 20 26 78 145 158 358)

We have x̄ = 81.80 and s = 112.94.

– Here we can use the bootstrap-t (see above Table 2.1), because

we have s estimator of σ.

– Suppose instead, we use the double bootstrap to estimate σ. The

root is:

W =
√

n

(
X̄ − µ

σ̂∗

)

The Double-bootstrap-t confidence interval is given by
[
X̄ − w∗(1 − α

2
)
σ̂∗
√

n
, X̄ − w∗(

α

2
)
σ̂∗
√

n

]

where w∗(a) is the a-quantile of the empirical bootstrap distri-

bution of

W ∗ =
√

n

(
X̄∗ − X̄

σ̂∗∗

)

- Note that here s = 112.9383 and σ̂∗ = 106.8983 (with B1 =

2000).

- The results of Table 6.1 compare the two bootstrap-t ap-

proaches.

- Figure 6.1 shows the empirical bootstrap densities of the two

roots (usual studentized and bootstrap studentized).
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method lower limit upper limit
Usual bootstrap-t 25.1980 300.7924
Double bootstrap-t 24.0624 288.3107

Table 6.1: Confidence intervals, duration data with n = 10. Here B1 = 2000 and B2 = 200.
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0
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0.3
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Figure 6.1: Empirical bootstrap densities of the two roots: usual studentized (solid) and
bootstrap studentized (dash-dotted).

• Part of the Matlab code for the double bootstrap:

NParXbar=[];

Studboot=[];

Doublboot=[];

for b1=1:B1

xb=boot(x);

mb=mean(xb);

sb=std(xb);

% second level bootstrap for estimating the std of mb

mbb=[];

for b2=1:B2

xbb=boot(xb);

mbb=[mbb;mean(xbb)];

end

sbb=sqrt(n)*std(mbb,1);

%

studb=sqrt(n)*(mb-m)/sb;

studbb=sqrt(n)*(mb-m)/sbb;

%

NParXbar=[NParXbar;mb];

Studboot=[Studboot;studb];% provide the Bootstrap-t sampl. distr.

Doublboot=[Doublboot;studbb];% provide the Double-bootstrap sampl. distr.

end

sbstar=std(NParXbar,1);
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6.2 Calibrating coverage errors of CI

• We know the accuracy of the percentile method and/or of the basic

bootstrap method is only of the first order.

– The coverage probability of the resulting confidence intervals

could be different from the desired nominal level.

– The idea: use a second level bootstrap to estimate the coverage

probability of the obtained confidence interval and recalibrate

the interval to improve the coverage.

• First level bootstrap

– The root and its bootstrap analog are

W = T (X ) − θ(F )

W ∗ = T (X ∗) − θ(Fn)

where very often θ(Fn) = T (X ).

– The basic bootstrap method provides a confidence interval for

θ(F ):

Iα = [T (X ) − w∗(1 − α

2
), T (X ) − w∗(

α

2
)]

– Here w∗(a) is the a−quantile of Dist∗W (x), the empirical cdf

of W ∗ obtained through the B1 Monte-Carlo replications of the

first level bootstrap.
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– The true coverage probability is π(α), and we hope that

π(α) = PF (θ(F ) ∈ Iα) ≈ 1 − α

– For the basic bootstrap (and the percentile) the order of the error

is usually Op(n
−1

2).

– Second level bootstrap to estimate π(α) and then to recali-

brate Iα in order to improve the accuracy and achieve the order

Op(n
−1).

• Second level bootstrap

– The second level bootstrap pseudo-sample is

X ∗∗ = (X∗∗
1 , . . . , X∗∗

n )

where X∗∗
i is drawn with replacement from X ∗ = (X∗

1 , . . . , X
∗
n)

for i = 1, . . . , n.

– Here we have X∗∗
i ∼ F ∗

n where F ∗
n is the empirical cdf of X ∗ =

(X∗
1 , . . . , X

∗
n).

– In the bootstrap world, the second level bootstrap root is

W ∗∗ = T (X ∗∗) − θ(F ∗
n )

where, very often θ(F ∗
n ) = T (X ∗).

– The same method as in the first level above, provides a sec-

ond level bootstrap confidence interval for θ(Fn) (which is

known!):
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I∗
α = [T (X ∗) − w∗∗(1 − α

2
), T (X ∗) − w∗∗(

α

2
)]

– Here w∗∗(a) is the a−quantile of Dist∗∗W (x), the empirical cdf of

W ∗∗ obtained through the B2 Monte-Carlo replications of the

second level bootstrap.

– So, at each iteration b1, b1 = 1, . . . , B1 of the first level boot-

strap, we obtain:

I∗
α = I∗(b1)

α .

– Since θ(Fn) is known, we can estimate π(α) by the observed

proportion of time θ(Fn) ∈ I∗
α:

π̂(α) = PFn(θ(Fn) ∈ I∗
α)

– This is obtained through the following:

π̂(α) ≈ 1

B1

B1∑

b1=1

I(θ(Fn) ∈ I∗(b1)
α )

– This is the proportion of times that I∗
α covers θ(Fn) in repeating

both levels of the Bootstrap many times.
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• Calibration

– Solve in α

π̂(α) = 1 − α0

where 1 − α0 is the desired nominal coverage probability (say,

0.95).

– Let α̂ be the solution :

π̂(α̂) = 1 − α0

– The calibrated confidence interval is Iα̂:

Iα̂ = [T (X ) − w∗(1 − α̂

2
), T (X ) − w∗(

α̂

2
)]

where w∗(a) is, as above, the a−quantile of Dist∗W (x)

– The true coverage probability is π(α̂)

π(α̂) = PF (θ(F ) ∈ Iα̂) ≈ 1 − α0

The order of the error is now generally Op(n
−1).

• The algorithm

[1 ] At each first level bootstrap iteration b1, draw a sample X ∗(b1)

from X : this provides T ∗(b1) = T (X ∗(b1)). Denote F
∗(b1)
n the

empirical cdf of the sample X ∗(b1).

[2 ] Estimate a confidence interval I∗(b1)
α for θ(Fn) from this esti-

mator T (X ∗(b1)) ⇒ second level bootstrap:
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-[2.1 ] Draw a sample X ∗∗(b2) from X ∗(b1), compute T (X ∗∗(b2)), so:

W ∗∗(b1) = T (X ∗∗(b2) − θ(F ∗(b1)
n )

-[2.2 ] Redo the step [2.1] for b2 = 1, . . . , B2 and form the empir-

ical cdf of W ∗∗(b1) denoted by Dist
∗∗(b1)
W (x).

[3 ] Compute the quantiles w∗∗(b1)(α/2) and w∗∗(b1)(1− α/2) from

Dist
∗∗(b1)
W (x).

[4 ] The second level bootstrap confidence interval for θ(Fn) is:

I∗(b1)
α =

[
T (X ∗(b1)) − w∗∗(b1)(1 − α

2
), T (X ∗(b1)) − w∗∗(b1))(

α

2
)
]
.

[5 ] Redo the steps [1]–[4] for b1 = 1, . . . , B1: this provides B1

values of W ∗(b1) = T (X ∗(b1)) − θ(Fn), with their empirical cdf

Dist∗W (x) and B1 values of I∗(b1)
α .

[6 ] Compute

π̂(α) =
1

B1

B1∑

b1=1

I(θ(Fn) ∈ I∗(b1)
α )

[7 ] Solve in α the equation π̂(α) = 1−α0 and call α̂ the solution:

π̂(α̂) = 1 − α0

[8 ] The corrected confidence interval for θ is

Iα̂ = [T (X ) − w∗(1 − α̂

2
), T (X ) − w∗(

α̂

2
)]

where w∗(a) is, as above, the a−quantile of Dist∗W (x)
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• The step [7] can be solved as follows:

– we select a set of values α1, . . . , αk near the desired value α0 and

compute in step [6] π̂(αj) for those selected values

– α̂ is then founded by linear interpolation

– see example below

• Remark : This is a computer intensive method : B1 ∗ B2 Monte-

Carlo loops where B1 and B2 should be large (say, both ≥ 1000).

• Example:

– We simulate one sample of size n = 20 from a N(10, 22).

– We obtain x̄ = 10.2322 and s = 1.7547.

– The basic bootstrap method gives the 95% confidence interval

for µ: µ ∈ [9.4834, 10.9626]. Note the length of CI is 1.4792.

– The double bootstrap estimated the coverage probabilities for

several nominal levels 1 − α. The result are in Table 6.2

– Figure 6.2 shows the relation between 1−α and π̂(α): this allows

to determine, by linear interpolation, α̂, such that π̂(α̂) ≈ 1−α0

for the desired nominal level α0.

– Here, with α0 = 0.05, the corrected level is 0.9650 so α̂ = 0.0350

and the corrected 95% confidence interval for µ turns out to be

µ ∈ [9.4170, 11.0094]. Note the length of CI is 1.5924.
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– Note that here the exact CI is available (Student): it is given

by x̄ ± t19,α/2s/
√

n. In our case here at 95 % level we obtain

µ ∈ [9.4110, 11.0534]. Note the length of this CI is 1.6424.

1 − α π̂(α) confidence intervals
0.8000 0.7650 [9.7577, 10.7239]
0.8500 0.8190 [9.6943, 10.7874]
0.9000 0.8770 [9.6163, 10.8631]
0.9100 0.8850 [9.5757, 10.8766]
0.9200 0.8990 [9.5552, 10.8915]
0.9300 0.9110 [9.5369, 10.9205]
0.9400 0.9260 [9.5076, 10.9369]
0.9500 0.9360 [9.4834, 10.9626]
0.9600 0.9430 [9.4421, 10.9878]
0.9700 0.9570 [9.4091, 11.0479]
0.9800 0.9660 [9.2715, 11.1204]
0.9900 0.9810 [9.2378, 11.1828]

Table 6.2: Nominal levels and estimated coverages. Here B1 = 1000 and B2 = 1000.

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0.9650 

0.95 

Figure 6.2: Horizontal scale: nominal levels 1−α and vertical scale estimated coverage π̂(α).
Here, for α0 = 0.05, the calibrated α is α̂ = 1 − 0.9650 = 0.0350.
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• Part of the Matlab code

% set the number of nominal levels wanted

alpha=[0.20 0.15 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 ]’;

[nci,q]=size(alpha);

%

mvec=m*ones(nci,1);count=zeros(nci,1);

Wb=[];

for b1=1:B1

xb=boot(x);mb=mean(xb);

Wb=[Wb;(mean(xb)-m)];

% second level bootstrap for estimating the coverage

Wbb=[];

for b2=1:B2

xbb=boot(xb);

Wbb=[Wbb;(mean(xbb)-mb)];

end

mbvec=mb*ones(nci,1);

temp=[mbvec-prctile(Wbb,100*(1-alpha/2)) mbvec-prctile(Wbb,100*alpha/2)];

success=(mvec >= temp(:,1) & mvec <= temp(:,2));count=count+success;

end

% estimation of the coverage

pi=count/B1;

disp(’nominal alpha and pi(alpha) frequencies’)

disp([(1-alpha) pi])

plot(1-alpha,pi,’-.’,1-alpha,1-alpha,’-’)

axis([0.8 1 0.8 1])

hatalpha=input(’Give the value of hatalpha’);% here we input hatalpha=0.0350

CI=[m-prctile(Wb,100*(0.975)) m-prctile(Wb,100*0.025)];% original CI

CIcorr=[m-prctile(Wb,100*(1-hatalpha/2)) m-prctile(Wb,100*hatalpha/2)]; % calibrated CI



Chapter 7

The Jacknife

• The jacknife∗ is a resampling method that predates the bootstrap

(Quenouille, 1949 and Tukey, 1958). Two major purposes:

– Reduction of the bias of an estimator

– Estimation of the variance of an estimator

7.1 The Jacknife method

• Let X = (X1, . . . , Xn) be a random sample from X where X ∼ F

and let θ(F ) be the quantity of interest.

– Let Tn = Tn(X ) be an estimator of θ(F ) (here we suppose Tn is

a plug-in version of θ: Tn = θ(Fn)).

- Define the leave-one-out estimator of θ(F )

T
(i)
n−1 = Tn−1(X(i))

where X(i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn).
∗A preliminary handout from Ingrid Van Keilegom for this section is acknowledged.

153
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- Define the “pseudo-values” Tn,i

Tn,i = n Tn − (n − 1) T
(i)
n−1

Note that, in the particular case Tn(X ) = X̄, we have

Tn,i = Xi

X̄ =
1

n

n∑

i=1

Tn,i.

– The Jacknife estimators:

- Jacknife estimator of the mean of Tn:

Êjack(Tn) = T̂n =
1

n

n∑

i=1

Tn,i

= nTn −
n − 1

n

n∑

i=1

T
(i)
n−1

This is the average of the n pseudo-values Tn,i

- Jacknife estimator of the bias of Tn:

B̂iasjack(Tn) = Tn − Êjack(Tn)

= (n − 1)

[
1

n

n∑

i=1

T
(i)
n−1 − Tn

]
.

- Jacknife estimator of the variance of Tn:

V̂ arjack(Tn) =
1

n
Ŝ2

n

=
1

n

{
1

n − 1

n∑

i=1

(Tn,i − T̂n)2

}

Ŝ2
n is the sample variance of the n pseudo-values Tn,i
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• Motivation

– Suppose that Tn is asymptotically unbiased with

E(Tn) = θ +
a(θ)

n
+

b(θ)

n2
+ . . .

– Now, since T̂n = nTn − n−1
n

∑n
i=1 T

(i)
n−1, we have:

E(T̂n) = n E(Tn) − (n − 1) E(T
(i)
n−1)

= n (θ +
a(θ)

n
+

b(θ)

n2
+ . . .)

−(n − 1) (θ +
a(θ)

n − 1
+

b(θ)

(n − 1)2
+ . . .)

= θ +
b(θ)

n
− b(θ)

n − 1
+ . . .

= θ − b(θ)

n(n − 1)
+ . . .

– T̂n should be a more accurate estimator of θ

7.1.1 Some examples

• The mean

– Let θ(F ) = E(X) and Tn = X̄n.

- We have:

Tn,i = nX̄n − (n − 1)X̄
(i)
n−1 = Xi

- So that

T̂n = X̄n = Tn

Ŝ2
n =

1

n − 1

n∑

i=1

(Xi − X̄n)
2 = S2

n
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We obtain

B̂iasjack(X̄n) = 0

V̂ arjack(X̄n) =
S2

n

n

• The variance

– Here θ(F ) = V ar(X) and Tn = θ(Fn) = 1
n

∑n
i=1(Xi − X̄n)

2.

- Some calculations show that

Tn,i =
n

n − 1
(Xi − X̄n)

2

- So that:

T̂n =
1

n − 1

n∑

i=1

(Xi − X̄n)
2 = S2

n

- Note that E(Tn) = n−1
n θ and E(T̂n) = θ.

• Failure of the jacknife

The statistics to be analyzed have to be “smooth” in the data.

– The Median:

- Let θ(F ) = F−1(1/2) and Tn = (X(m) + X(m+1))/2 (we

consider the case n = 2m).

- Here we have:

T
(i)
(n−1) =

{
X(m+1) if i = (1), . . . , (m)

X(m) if i = (m + 1), . . . , (n).
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- So the pseudo-values are:

Tn,i =

{
nTn − (n − 1)X(m+1) if i = (1), . . . , (m)

nTn − (n − 1)X(m) if i = (m + 1), . . . , (n).

- The estimation of the mean of Tn is:

T̂n = nTn −
m(n − 1)

n
X(m+1) −

m(n − 1)

n
X(m)

= nTn − (n − 1)Tn = Tn

– Jacknife estimation of the bias:

B̂iasjack(Tn) = Tn − T̂n = 0

– But the jacknife estimation of the variance does not work!

- It can be shown that

V̂ arjack(Tn) =
1

n
Ŝ2

n

=
n − 1

4
(X(m+1) − X(m))

2

- Whereas (for symetric densities):

AV ar(Tn) =
1

4 n f 2
X(θ)

- The two quantities are different even when n → ∞:

1

n
Ŝ2

n −
1

4 n f 2
X(θ)

6→ 0 as n → ∞
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– The boundary of a support:

- Here θ = inf{x|F (x) = 1} and Tn = X(n).

- One can show that

T̂n = X(n) +
n − 1

n
(X(n) − X(n−1))

- One can prove that:

E(Tn) = θ + O(n−1)

E(T̂n) = θ + O(n−2)

– But here again, the jacknife estimation of the variance does not

work!

7.2 The Jacknife and the Bootstrap

• Bias and variance

– Both methods resample from the original sample X , but in dif-

ferent ways.

– We compare the formulas for estimating the bias and the variance

of a statistics Tn by both methods.

- Bias:

B̂iasjack(Tn) = (n − 1)

[
1

n

n∑

i=1

T
(i)
n−1 − Tn

]

B̂iasboot(Tn) =

[
1

B

B∑

b=1

T ∗(b)
n − Tn

]
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- Variance:

V̂ arjack(Tn) =
1

n(n − 1)

n∑

i=1

(Tn,i − T̂n)2

=
1

n(n − 1)

n∑

i=1

(
[nTn − (n − 1)T

(i)
n−1]

−[nTn −
n − 1

n

n∑

j=1

T
(j)
n−1]




2

= (n − 1)


1

n

n∑

i=1

(T
(i)
n−1 −

1

n

n∑

j=1

T
(j)
n−1)

2




V̂ arboot(Tn) =
1

B

B∑

b=1

(T ∗(b)
n − 1

B

B∑

b=1

T ∗(b)
n )2

– Both jacknife formulas have an inflation factor: n − 1

- this is needed because the jacknife deviations are smaller

than the bootstrap deviations

- the jacknife resamples resemble much more to X than X ∗

do.

• Comparison of practical performances

– Since the jacknife uses only n specific resamples from X , whereas

the bootstrap makes use of much more information on the data,

we expect better performance of the bootstrap.

– But the jacknife is easier to compute (for, say, n ≤ 200).
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– In fact, the jacknife can be viewed as an approximation of the

bootstrap. It depends on the statistics.

- An estimator Tn of θ is linear if

Tn =
1

n

n∑

i=1

α(Xi),

for some function α (example: sample mean).

- An estimator Tn of θ is quadratic if

Tn =
1

n

n∑

i=1

α(Xi) +
1

n2

∑

i<j

β(Xi, Xj),

for some functions α and β (example: sample variance).

• Estimation of the variance

– If Tn is linear:

- One can show:

V̂ arjack(Tn) =
n

n − 1
V̂ arboot(Tn)

where V̂ arboot(Tn) is the true bootstrap variance (com-

puted with the ideal B = ∞)

- Example: sample mean, Tn = X̄n, we have

V̂ arjack(Tn) =
1

n(n − 1)

n∑

i=1

(Xi − X̄n)
2

V̂ arboot(Tn) =
1

n2

n∑

i=1

(Xi − X̄n)
2
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– If Tn is not linear:

- Let Tlin,n = (1/n)
∑n

i=1 α(Xi) be a linear approximation

of Tn, that equals Tn for the n jacknife resamples X(i)

(system of n equations in n unknowns αi = α(Xi)).

- Then

V̂ arjack(Tn) =
n

n − 1
V̂ arboot(Tlin,n)

- The quality of the jacknife estimator depends on the qual-

ity of the linear approximation (if Tn highly nonlinear, the

jacknife could be inefficient).

• Estimation of the bias

– If Tn is quadratic:

- It can be shown that

B̂iasjack(Tn) =
n

n − 1
B̂iasboot(Tn)

- Example: plug-in variance Tn = (1/n)
∑n

i=1(Xi − X̄n)
2

B̂iasjack(Tn) = Tn − T̂n

= (
1

n
− 1

n − 1
)

n∑

i=1

(Xi − X̄n)
2

= − 1

n(n − 1)

n∑

i=1

(Xi − X̄n)
2

B̂iasboot(Tn) = − 1

n2

n∑

i=1

(Xi − X̄n)
2
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– If Tn is not quadratic:

B̂iasjack(Tn) =
n

n − 1
B̂iasboot(Tquad,n),

where Tquad,n is a quadratic approximation of Tn that equals

Tn for the jacknife samples.

• Example: Monte-Carlo comparison of jacknife and bootstrap for

estimating the standard deviation of a statistics.

– We simulate 1000 samples of size n = 10 from a bivariate normal

distribution with µ1 = µ2 = 1, σ1 = σ2 = 1 and ρ = 0.7.

– We analyze and compare the jacknife and the bootstrap esti-

mates (B = 1000) of standard error of 3 statistics:

T1 = X̄1

T2 = r12 =
S12

S1 S2

T3 =
(
X̄1

)2

– T1 is linear, but T2 and T3 are not.

– Figure 7.1 displays the boxplots of the estimates for the 3 statis-

tics, over the 1000 simulations.

– The results of both methods are quite similar but with a slightly

greater dispersion for the jacknife estimates for the nonlinear

statistics T2 and T3.

– Note that the true value for Std(T1) = σ√
n

= 0.3162.
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Figure 7.1: Bootstrap (left) and Jacknife (right) estimates of the standard deviations of 3
statistics, samples of size n = 10 from a bivarite normal. Left panel T1 = X̄1, middle panel

T2 = r12 and right panel is T3 =
(
X̄1

)2
.

7.3 The Jacknife and the Delta method

• The jacknife can be used to approximate the empirical influence

function evaluated at the observed xi.

– Let Tn = T (X ) = θ(Fn) be a plug-in estimator of θ(F ). The

influence function of θ is:

Lθ(x; F ) =
∂θ ((1 − ε)F + εHx)

∂ε

∣∣∣∣
ε=0

.

– The nonparametric delta method provides:

θ(Fn) − θ(F ) ∼ AN(0, varL(F )).
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– In practice, the variance is approximated by plugging Fn in place

of F :

varL(Fn) =
1

n2

n∑

i=1

L2
θ(xi; Fn)

– A numerical approximation to the derivative Lθ(xi; Fn) is ob-

tained through

Lθ(xi; Fn) =
θ ((1 − ε)Fn + εHxi

) − θ(Fn)

ε

where ε → 0 when n → ∞.

– It can be shown that when chosing ε = −(n − 1)−1, we obtain

the jacknife approximation of Lθ(xi; Fn):

Lθ(xi; Fn) ≈ (n − 1)
(
Tn − T

(i)
n−1

)
,

so we have

varL(Fn) ≈
n − 1

n2

n∑

i=1

(
Tn − T

(i)
n−1

)2

.



Chapter 8

The Smoothed Bootstrap

• For the nonparametic bootstrap, we used mostly Fn as an estimator

of F . But Fn is discrete.

- The discreteness of Fn could create additional noise when the

true F is continuous

- Smoothing would be suitable for statistics like a median, a quan-

tile or a boundary of X , where discreteness draws too many

undesirable values in the bootstrap sample (like X(n) when esti-

mating the upper boundary of the support of X .

- It can be shown, for example, that for the median, the smoothed

bootstrap, with h ∝ n−1/5, can achieve O(n−4/5) accuracy, in

place of the usual O(n−1/2) for the ordinary bootstrap.

8.1 Smooth Estimates of F

• A standard smooth estimate of a continuous pdf is the kernel

density estimation (see Silverman, 1986).
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– we start with a series of n univariate observed values of x:

x1, . . . , xn

– the discrete density estimator put a mass 1/n at each

observed data point. We can write the discrete density as

f̂(x) =
1

n

n∑

i=1

I (x − xi) ,

where I(·) is a dirac-type function puting a mass 1 at zero,

I(z) = 1, if and only if z = 0 and I(z) = 0 elsewhere.

– the idea of Kernel smoothing is to replace this discontinu-

ous dirac-type function by a continuous density K(·)
centered at zero, as I(·), with a dispersion controled by a tuning

parameter h, called the bandwidth.

• The kernel density estimator is thus given by:

f̂h(x) =
1

nh

n∑

i=1

K

(
x − xi

h

)
,

– K(·) is a given function called the Kernel and h is the a given

smoothing parameter called the bandwidth.

- Gaussian Kernel: K(u) = 1√
2π

exp(−1
2
u2), for u ∈ IR;

- Quartic Kernel: K(u) = 15
16(1 − u2)2, for − 1 ≤ u ≤ 1

– f̂h(x) is the average of n densities (standard gaussian if we use a

gaussian kernel) centered at the observed points xi. The band-

width h is a tuning parameter which control the dispersion of

these gaussian densities.
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- if h is small only “local” observations (near the point x) will

influence f̂h(x)

- if h is very large, all the observations will play a role in the

computation of f̂h(x).

- if h → 0, the density will degenerate into the empirical den-

sity which is the discrete density giving a mass 1/n at each

observed point (no smoothing at all)

- if h → ∞, the density will degenerate in a flat horizontal

line (too smoothed).

• Example: A sample of size n = 20 was simulated from a nor-

mal variate: X ∼ N(10, 2). Figure 8.1 displays the kernel density

estimate (the bandwidth h = 1.0822, rule of thumb) and the true

normal density.
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Figure 8.1: Kernel density estimator: the true density is the dash-dotted line, the kernel
estimate is the solid line. The small gaussian densities on the bottom are the kernel functions
centered on the n data points and scaled by n: they are added to produce the estimator.
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• Choice of the bandwidth h

– The quality of the density estimator is not very sensitive to the

choice of the kernel function K. However, as pointed above the

choice of the smoothing parameter, the bandwidth h, is crucial.

– Theoretical results exist and practical rules based on the data

are available:

- Theoretical result: under regularity conditions on the true f

and on K, and for a good choice of h = O(n−1/5), f̂h(x) →
f(x) as n → ∞.

- Normal reference rule (Rule of thumb): if the true density is

not too far from normality, the optimal value for h is:

For Gaussian Kernel: hG = 1.06 σ̂ n−1/5, where σ̂ is the

sample standard deviation.

For Quartic Kernel: hQ = 2.62 hG.

- Robust rule of thumb: a more robust optimal value for h is:

For Gaussian Kernel: hR = 1.06 min
(
σ̂, R̂/1.349

)
n−1/5,

where R̂ is the interquartile range (R̂ = q0.75 − q0.25).

- Other data driven method for choosing h are available. An

easy rule is based on cross-validation (see Silverman, 1986):

minimization of an estimator of the integrated mean squarred

error (estimation obtain by a leave-on-out technique).
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8.2 The bootstrap algorithm

• The idea: resampling from F̂h in place of Fn where F̂h is the

continuous cdf corresponding to the pdf f̂h.

– Consider the random sample X ∗
s = {X∗

1,s, . . . , X
∗
n,s}

X∗
i,s = X∗

i + h εi,

where X∗
i ∼ Fn is an usual random drawn from X , and εi ∼

K(·) is a random drawn from the kernel density K.

– It is easy to prove that X ∗
s is a random sample of size n from

F̂h: X∗
i,s ∼ F̂h.

– This is particularly easy to perform if we use a Gaussian kernel.

– Variance correction:

- We see that V ar(X∗
s ) = V ar(X∗) + h2 6= V ar(X∗), the

plug-in estimate of the variance of the data.

- We introduce the following correction:

X∗
i,s,corr = X̄∗ + (1 + h2/V ar(X∗))−1/2 (X∗

i − X̄∗ + hεi)

- X∗
i,s,corr has an expectation E(X̄∗) and a variance approxi-

mately equal to V ar(X∗)

– For each bootstrap sample X ∗
s,corr, we compute the value of the

statistics of interest T (X ∗
s,corr) and we can use the bootstrap

algorithm as usual.
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• Example:

• Estimating the 0.95 quantile of an exponential from a random

sample Xi ∼ Expo(µ = 10) with n = 100.

– The true value q0.95 = 29.9573 and the estimate is q̂0.95 =

36.6057.

– Chosen bandwidth for estimating the density of X is h =

3.8761 (robust rule of thumb).
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Figure 8.2: Monte-Carlo distribution of q̂∗0.95 with naive bootstrap. Here B = 5000.
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Figure 8.3: Monte-Carlo distribution of q̂∗0.95 with smoothed bootstrap with h = 3.8761. Here
B = 5000.



c©2008, L. Simar, Institut de Statistique, UCL, Belgium 171

8.3 Testing Unimodality

• The smoothed bootstrap can be used to test the unimodality of a

density.

– The idea: if h decreases, the number of modes of f̂h(x) increases.

– We test unimodality by seeing if unusually large values of h is

needed to make f̂h(x) unimodal.

- Test statistics:

T = min
h>0

{h | f̂h(x) is unimodal}

- We reject if T is too large. Let t = Tobserved.

- The p-value is

p − value = Prob(T ≥ t |H0)

where H0 is the unimodality of f(x).

– The algorithm:

-[1 ] we generate B samples X ∗,b
s,corr, b = 1, . . . , B under the

null, i.e. drawn from f̂t(x).

-[2 ] For each sample, we compute T ∗,b

-[3 ] The estimated p-value is:

p̂ =
#{T ∗,b ≥ t}

B
– The steps [2]-[3] are more easely computed by computing

f̂∗
t (x) for the bootstrap sample: the event T ∗,b ≥ t happens

if and only if f̂∗
t (x) shows more than one mode.



Chapter 9

The Bootstrap for Time Series: an
introduction

• The observations are time dependent: we cannot resample from

the empirical cdf Fn which does not reflect the time dependency.

– Two main approaches:

- Using a parametric model for resampling

- Using the blocking of the data to simulate the time series.

9.1 Model based resampling

• We use standard time series models (ARMA) for defining the data

generating process.

– Let {Xt} be a second order stationary time series, with zero

mean and autocovariance function γk: for all t, k we have

E(Xt) = 0

Cov(Xt, Xt+k) = γk.

– The autocorrelation function is ρk = γk/γ0 for all k = 0,±1,±2, . . ..
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– Some basic models

- MA(1):

∗ The model

Xt = εt + βεt−1, t = . . . ,−1, 0, 1, . . .

∗ here {εt} is a white noise process of innovations:

εt ∼ (0, σ2), independent

∗ the autocorrelation function is ρ1 = β/(1+β2) and ρk = 0

for |k| > 1.

- AR(1):

∗ The model

Xt = αXt−1 + εt, t = . . . ,−1, 0, 1, . . .

∗ here |α| < 1, and {εt} is a white noise

∗ the autocorrelation function is ρk = α|k|.

- ARMA(p,q):

∗ The model

Xt =

p∑

k=1

αkXt−k + εt +

q∑

k=1

βkεt−k,

{εt} is a white noise.

∗ Conditions on the coefficients to obtain a stationary pro-

cess.
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• The bootstrap

– Same idea as in the regression models

- Fit the model to the data

- Constructed the residuals from the fitted model

- Recenter the residuals (mean zero as εt)

- Generate new series by incorporating random samples from

the fitted residuals in the fitted model

– Example: AR(1) model.

- We have a sample x1, . . . , xn, we compute α̂: we must have

|α̂| < 1.

- Estimated innovations (residuals):

et = xt − α̂xt−1, for t = 2, . . . , n

- e1 is unavailable because x0 unknown.

- recenter the residuals ẽt = et − ē

- draw with replacement from the set ẽt, t = 2, . . . , n to obtain

the n + 1 bootstrap innovations ε∗0, . . . , ε
∗
n

- Then we define the bootstrap sample X∗
0 , . . . , X

∗
n:

X∗
0 = ε∗0

X∗
t = α̂X∗

t−1 + ε∗t , t = 1, . . . , n

- Then compute α̂∗ from the observation X∗
1 , . . . , X

∗
n, and pro-

ceed as usual.
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– In fact the series {X∗
t } is not stationary. For improving this:

- Start the series of X∗
t at t = −k (in place of t = 0) and then

discard the observations X∗
−k, . . . , X

∗
0 .

- If k is large enough, the resulting bootstrap sample will be

approximatively stationary.

– Can be used for testing hypothesis, confidence intervals (bootstrap-

t, percentile,. . . ), prediction (see Thombs and Schucany, 1990),. . .

9.2 Block resampling

• The idea here is not to draw from innovations defined with respect

to a particular model but on blocks of consecutive observations.

– We don’t need a model here...The algorithm is as follows:

- Divide the data into b non-overlapping blocks of lenght ℓ. So

we suppose n = bℓ.

- Define the blocks yj:

y1 = (x1, . . . , xℓ)

y2 = (xℓ+1, . . . , x2ℓ)

. . .

yb = (x(b−1)ℓ+1, . . . , xbℓ)

- Take a bootstrap sample of b blocks drawn independently

with replacement from the set (y1, . . . , yb).
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- This produce a boostrap sample (y∗1, . . . , y
∗
b ) which gives a

bootstrap series of lenght n.

– The idea is that if ℓ is large enough, the original dependence in

the series is preserved

- So we hope that the bootstrap statistics T (X ∗) will have

approximatively the same distribution as the statistics T (X )

in the real world, with the real series...

- On the other hand we must have enough blocks b to estimate

with accuracy the bootstrap distribution of T (X ∗)

– A good balance: ℓ should be of the order O(nγ) where γ ∈ (0, 1),

so b = n/ℓ → ∞ when n → ∞.

– There are several variants of the method (overlapping blocks,

blocks of blocks, blocks of random length, pre-withening,. . . ).

• Theoretical works still in progress (optimal choice of ℓ, etc. . . ):

• See Lahiri (1999), Politis and Romano (1994), Politis and White

(2003), Politis, Romano and Wolf (2001),. . .



Chapter 10

Other Simulation Based Estimation
Methods

• There exist other estimations techniques using simulation which

are not related to the bootstrap ideas presented here.

– Maximum Simulated Likelihood (MSL)

– Method of Simulated Moments (MSM)

– Method of Simulated Scores (MSS)

• All these methods are adapted to problems (essentially parametric

models) where MLE (Maximum Likelihood Estimation) and GMM

(Generalized Method of Moments) are useful.

– The likelihood function and/or the moment (or score) function,

are often difficult to evaluate numerically

- high dimensional integrals

- mixed discrete and continuous densities

- evaluation of multidimensional probabilities
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– Often these quantities can be expressed as expectation of random

variables which, for a given value of the parameters, can be easely

simulated.

– The idea: use Monte-Carlo simulations to evaluate these expec-

tations, by taking the appropriate empirical mean of the simu-

lated values.

– For example:
∫ 1

0 f(x) dx = E(f(X)) where X ∼ U(0, 1),

so ∫ 1

0

f(x) dx ≈ 1

M

M∑

i=1

f(Xi)

where Xi are random drawn from U(0, 1).

– Maximization and/or moment (or score) condition are then nu-

merically handled by using these Monte-Carlo approximations.

• All these methods are very specific to the particular problem ana-

lyzed.

– Censoring and truncating

– Probit and Tobit models

– More generally: limited dependent variables models.
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• Example Probit models.

– The standard binomial probit model is easy:

- we observe a dichotomous variable Y which is a censored

random variable of a latent unobserved Y ∗ variable, explained

by regressors X .

Yi =

{
0 if Y ∗

i < 0

1 if Y ∗
i ≥ 0

where Y ∗
i |Xi = xi ∼ N(x′

iβ, 1)

- Equivalently

P (Yi = 1|Xi = xi) = Φ(x′
iβ, 1)

f(yi|xi) = (Φ(x′
iβ, 1))

yi (1 − Φ(x′
iβ, 1))

1−yi I{0,1}(yi)

- The Likelihood is easy to compute if independence:

L(β; y1, . . . , yn) =
n∏

i=1

[
(Φ(x′

iβ, 1))
yi (1 − Φ(x′

iβ, 1))
1−yi

]

– The multinomial probit is more complicated: we have p possible

outcomes.

- The latent variable Y ∗ is Np(η, Ω) where the elements of η

are ηk = x′βk, k = 1, . . . , p for some explanatory variables

x and some vector βk of appropriate dimension.

- The observed Y is the censored variable defined as the indi-

cator for the maximal element of Y ∗:

Y = I{maxi Y ∗
i }(Y

∗)
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- The sample space S , for Y is the set of rows Sj of the identity

matrix Ip: Sj = (0, . . . , 0, 1, 0, . . . , 0) with the 1 in the jth

column.

- The probability function for Y is now written as a p − 1

dimensional integral:

P (Y = Sj) = P (Yj = 1, Yk = 0, k 6= j)

= P (Y ∗
j − Y ∗

k ≥ 0, k = 1, . . . , p, k 6= j)

∗ defining Zj = {Y ∗
j − Y ∗

k , k = 1, . . . , p, k 6= j} = DjY
∗,

where Dj is the appropriate (p − 1) × p first difference

operator.

∗ So, Zj ∼ Np−1(µj, Ωj) where µj = Djη and Ωj =

DjΩD′
j.

- we obtain

f(y; θ) =

{ ∏p
j=1 Φp−1(−µj, Ωj)

yj for y ∈ S
0 otherwise.

where for notation, the general expression Φp(µ, Ω) is the

p-dimensional integral:

Φp(µ, Ω) =

∫ 0

−∞
. . .

∫ 0

−∞
φp(x + µ, Ω) dx

- This is numerically untractable when p large (say, p ≥ 4).

– But this is easy to simulate:

- For any value of θ = (η, Ω) we can simulate Y ∗(b) ∼ Np(η, Ω)

a large number of time, b = 1, . . . , B.
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- We approximate f(y; θ) for any value y ∈ S , by the empirical

Monte-Carlo proportions

- For instance, for yi = Sj we have:

P̂ (Y = Sj) = f̂ (yi; η, Ω)

= P̂ (Y
∗(b)
j − Y

∗(b)
k ≥ 0, k = 1, . . . , p, k 6= j)

=
#{Y ∗(b)

j − Y
∗(b)
k ≥ 0, k = 1, . . . , p, k 6= j}

B
.

- Then we can compute the likelihood function for any values

of η, Ω

ln L(η, Ω; y1, . . . , yn) =
n∑

i=1

ln f̂(yi; η, Ω)

– Note that P (Y ∗
j − Y ∗

k ≥ 0, k = 1, . . . , p) can be written as an

expectation of an appropriate indicator function in terms of Y ∗.

– Similar expressions (expectations of functions of the variables

Y ∗) can be determined for the score function itself or for any

other general moment functions.

• The approach is quite different that the bootstrap ideas...and the

computations are really dependent on the specific particular problem

analyzed.

• Some references: Halivassiliou and Ruud (1994), Gouriéroux and

Monfort (1995), McFadden (1989).
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• In the bootstrap, we do not look for defining an estimator, but

rather to analyze the sampling properties of a given estimator.

– The Monte-Carlo technique is used to approximate these sam-

pling distribution.

- to compute bias and variance of the estimator

- to build confidence intervals

- to compute p-values, . . .

• Recently some works propose to use the bootstrap as a tool for

improving the quality of estimators in nonlinear problems (like most

GMM estimators)

– to improve the statistical accuracy of an estimator (“bagging” =

bootstrapping and averaging), (Breiman, 1996)

– to stabilize numerically some estimator obtained through highly

nonlinear optimization procedure (Climov, Delecroix and Simar,

2001)



Chapter 11

Is the Bootstrap a Panacea?

11.1 Some Conclusions

• Good points

– Bootstrap often works and it is easy to implement

– Might offer better approximations than usual first order asymp-

totics

– Often, it is the only way to construct CI, to correct for the bias

of an estimator or to estimate standard errors of estimates.

– It is very flexible

• Bad points

– May be computer intensive

– May not work (not being consistent)

• Many other applications

– Nonlinear regression models
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– The Bootstrap in Nonparametric regression models

– Nonparametric statistics

– Advanced time series

– Subsampling

– Bootstrap for extremes

– Censored data

– . . . (see the literature)

11.2 Personal and Quick Insights in the Literature

• Textbooks with broad spectrum

Davison and Hinkley (1997), Efron and Tibshirani (1993), Politis,

Romano and Wolf (1999)

• Introductory surveys

Hall (1994), Horowitz (1997, 2001, 2003), Politis(1995), Davison,

Hinkley and Young (2003)

• Historical references

Quenouille (1949), Efron (1982)

• Theoretical references

Hall(1992), Beran and Ducharme (1991), Bickel and Freedman (1981),

Hall (1988), Mammen (1992), Shao and Tu (1995)

• Various Applications
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– Linear models: Flachaire (1998), Freedman (1981), Mammen

(1993), Stine (1985)

– Time series: Hall, Horowitz and Jing (1995), Härdle, Horowitz

and Kreiss (2003), Politis and White (2004)

– Nonparametric regression: Härdle and Bowman (1988), Härdle

and Marron (1991)

– Panel data: Hall, Härdle and Simar (1995)

– Frontier models: Hall and Simar (2002), Simar and Wilson (1998,

1999, 2000a, 2000b), Cazals, Florens and Simar (2002), Kneip,

Simar and Wilson (2007), Daraio and Simar (2007)

– Smoothed bootstrap: Silverman and Young (1987)

– Bagging: Breiman (1996), Climov, Delecroix and Simar (2001).

Simar and Wilson (2007)

– Subsampling: Bertail, Politis and Romano (1999), Bertail, Hae-

fke, Politis and White (2004), Politis, Romano and Wolf (1999,

2001), Bickel and Sakov (2005)

– See the list below, . . .
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vain, Louvain-la-Neuve, Belgium.

[20] Hajivassiliou, V.A. and P.A. Ruud (1994). Classical Estimation Methods

for LDV Models Using Simulation, in Handbook of Econometrics, Vol IV,

2383–2441. R.F. Engle and D.L. McFadden, eds., Elsevier Sciences B.V.



c©2008, L. Simar, Institut de Statistique, UCL, Belgium 188

[21] Hall, P. (1988). Theoretical comparison of bootstrap confidence intervals,

The Annals of Statistics, Vol 16, 3, 927-953.

[22] Hall, P. (1992). The Bootstrap and Edgeworth Expansion, Springer-

Verlag, New York.

[23] Hall, P. (1994). Methodology and Theory for the Bootstrap, in Handbook

of Econometrics, Vol IV, 2341–2381. R.F. Engle and D.L. McFadden, eds.,

Elsevier Sciences B.V.
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Appendix A: Gamma and related
distributions

• Some reminders and notations

– Gamma distribution: X ∼ Γ(α, β)

E(X) = αβ

V (X) = αβ2

f(x) =
xα−1 exp(−x/β)

βαΓ(α)

– Exponential distribution: X ∼ Expo(θ) ≡ Γ(1, θ)

E(X) = θ

V (X) = θ2

f(x) =
exp(−x/θ)

θ

– Chi-square distribution: X ∼ χ2
ν ≡ Γ(ν/2, 2).

E(X) = ν

V (X) = 2ν
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• Normal sampling

– Xi ∼ IN(µ, σ2), i = 1, . . . , n. We have:

(n − 1)S2

σ2
∼ χ2

n−1

S2 ∼ σ2

n − 1
χ2

n−1 ≡ Γ(
n − 1

2
, 2

σ2

n − 1
)

• Exponential sampling

– Xi ∼ Expo(µ), i = 1, . . . , n. We have:

X̄ ∼ Γ(n,
µ

n
)

X̄

µ
∼ Γ(n,

1

n
).


