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Abstract 

This paper presents a decomposition-based approach to measure inequality in health that 
captures Roemer’s distinction between circumstances and effort. Our approach builds on a 
decomposition of the Gini index with heterogeneous responses and is extended to 
decompose an inequality of opportunity Gini index inspired by the “fairness gap” principle. 
An original feature of our empirical analysis is the use of objectively measured biomarker as 
health outcomes and as proxies for relevant effort variables. Using data from the Health 
Survey for England from 2003 to 2012, we find that circumstances are the leading 
determinant of inequality in cholesterol, glycated haemoglobin, fibrinogen and mean arterial 
pressure. Moreover, we find a strong interaction between circumstances and effort leading to 
a smaller effect of effort on health for individuals in worse circumstances. Among the effort 
factors, we find that healthy diet and physical activity play the largest role in shaping 
objective health. 
 

Keywords: biomarkers; decomposition analysis; health inequalities; inequality of 

opportunity. 

JEL codes: C1, C5, D63, I14.  

*Corresponding Author: Department of Economics and Statistics, Via Giovanni Paolo II, 84084 

Fisciano (SA), Italy. E-mail: vcarrieri@unisa.it      

 

mailto:vcarrieri@unisa.it


2 
 

1. Introduction 
 
Evidence suggests that, at least in contemporary western liberal societies, inequalities 
associated with individual effort are generally considered as fair, while inequalities due to 
inherited factors, such as bequests or family socio-economic background, are perceived as 
more objectionable (Alesina and Angeletos, 2005). This reported evidence on social attitudes 
toward inequalities has a correspondence with a literature  that has emerged in social choice 
theory and normative economics on equality of opportunity. Following Roemer’s framework 
(1998, 2002), this literature separates the determinants of any outcome into two components: 
‘circumstances’, which are not the responsibility of the individual, such as family background, 
gender, year of birth, and ‘efforts’, which to some extent are under the control of the 
individual. Equality of opportunity is achieved when circumstances do not play any role in 
the resulting outcome, which will then only depend on the exercise of individual 
responsibility. 
 
Based on this framework, a number of empirical applications have dealt with the assessment 
of inequality of opportunity in a variety of outcomes such as income (see Ferreira and 
Peragine (2015) for a review) and education (Ferreira and Gignoux, 2014). The equality of 
opportunity principle has been advocated for the evaluation of a wide range of policies: from 
educational policies and their impact on health (Jones, Rice and Rosa Dias, 2011; Jones, 
Roemer and Rosa Dias, 2014) to policies related to the allocation of the international aid to 
countries for the reduction of poverty (Cogneau and Naudet, 2007). 
 
Despite this growing interest in the concept of equality of opportunity, empirical applications 
remain scarce for a key determinant of human well-being: health status. This scarcity of 
evidence is at odds with the theoretical relevance of equality of opportunity in health 
advocated by many authors (i.e. Sen, 2002; Rosa Dias and Jones, 2007; Fleurbaey and 
Schokkaert, 2009, 2012) and with the relevance of the equality of opportunity target, which is 
placed at the top of the ‘inequality of what’ debate by many relevant institutions (e.g. World 
Bank, 2005).  
 
Recently a few papers have started to deal with the measurement of inequality of opportunity 
in health.  Rosa Dias (2009) finds considerable and persistent inequality of opportunity in 
health in the United Kingdom using data from the National Child Development Study. 
Moreover, in a follow-up study, Rosa Dias (2010) finds that inequality of opportunity in 
health persists accounting for the presence of unobserved heterogeneity, i.e. the partial 
observability of circumstances. Using data from the Survey on Health, Ageing and 
Retirement in Europe, Trannoy et al. (2010) find high inequality of opportunity in France 
according to social background and parents’ longevity. Similarly, Jusot, Tubeuf and Trannoy 
(2013) show a high degree of equality of opportunity in France, under different normative 
views on the correlation between circumstances and efforts.    
 
In this paper, we contribute to this emerging literature by proposing a decomposition-based 
approach to measure inequality in objective health that captures Roemer’s distinction 
between circumstances and effort. We fully condition on circumstances by splitting our 
sample according to type and then estimating separate regressions of health outcomes on 
effort for each sub-sample. This non-parametric approach allows the model to be fully 
saturated in the way that it handles the circumstance variables. Using linear regression at this 
step generates a heterogeneous set of regression coefficients that we use in a regression-
based decomposition of total inequality in the biomarkers. Note that this does not require 
additive separability of circumstances and effort and allows interactions between them 
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(through heterogeneous slopes) which is relevant for the assessment of the “fairness gap” in 
the spirit of Fleurbay and Schokkaert (2009, 2012).  
 
To retrieve the relative contribution of circumstances and effort to the total inequality, we 
exploit a decomposition of the Gini coefficient with heterogeneous responses proposed by 
Jones and Lopez-Nicolas (2006) and we develop an extension of this method to complement 
the standard Gini with an Inequality of Opportunity Gini that measures inequality relative to 
the most disadvantaged type, in the spirit of the “fairness gap” principle. 
 
Our decomposition method identifies five normatively-relevant decomposition terms: a 
direct and an indirect (through effort ) contribution of circumstances to the total inequality, 
the contributions of within and between-type variation in effort to the total inequality and 
the contribution of randomness and luck. The between-type term is new in the equality of 
opportunity literature and it takes into account the contribution of the systematic variation in 
efforts by types on the overall inequality in health. This might be relevant in order to 
distinguish a “pure individual” responsibility from a “group responsibility” arising, for 
instance,  by social contagion or social norms. 
 
An original element of our empirical analysis is the use of biomarkers as outcome variables 
and as proxies of relevant effort variables such as smoking, diet and physical activity. 
Biomarkers are characteristics that are ‘objectively measured and evaluated as indicators of 
normal biological processes, pathogenic processes, or pharmacologic responses to a 
therapeutic intervention’1 . They are measured on a continuous scale associated with an 
increasing or decreasing risk (depending on the biomarker) of a disease state and they are 
often highly correlated with mortality (Rosero-Bixby and Dow, 2012; Sattar et al., 2009; 
Gruenewald et al., 2006). A key advantage of using biomarker data is having a measure of 
health which is free of reporting bias. This is particularly relevant given the possible presence 
of systematic reporting behaviour across individuals sharing the same set of circumstances. 
Indeed, previous empirical investigations show the presence of a systematic variation in 
reporting behaviour across socio-economic groups (e.g., Sen, 2002) which may bias the 
estimates of the equality of opportunity in health in a significant way.  
 
As outcomes, we consider four biomarkers available in ten waves of the Health Survey for 
England (2003-2012) that are associated with some of the most prevalent diseases in all 
Western countries: cholesterol, glycated haemoglobin, fibrinogen and mean arterial pressure. 
Cholesterol measures “fat in the blood” and it is associated with a higher risk of heart 
disease; glycated haemoglobin is a biomarker for diabetes; fibrinogen is a haemostatic marker 
associated with many inflammatory diseases including cardiovascular and liver diseases and 
blood pressure is an important risk indicator for the development of cardiovascular diseases. 
Moreover, we use saliva cotinine, a major metabolite of nicotine, to objectively quantify 
individual smoking, and a measurement of body-mass index made by a professional nurse to 
properly assess the degree of individual effort related to healthy diet and physical activity. 
Detailed self-reported data on intensity and frequency of drinking behaviour along with 
information on the use of medications and equivalised income of the family complete the list 
of the effort variables available in our data-set. As circumstance variables, we use the cohort 
of birth, gender and educational level which, in combination, define eighteen Roemerian 
“types” that share the same circumstances. 

 

                                                           
1
 This definition is given by the National Institute of Health Biomarkers Definitions Working Group, see Atkinson et al. (2001). 
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We find that the target of equality of opportunity in health is still far from being reached in 
England. Although luck and randomness play a large role, we find that circumstances are 
very important in determining all of the health outcomes analysed. Moreover, we find that 
the strong interplay between circumstances and effort go in the direction of reducing the 
effect of healthy behaviours on health for individuals in worse circumstances. However, we 
find that individuals in worse circumstances are still empowered to reduce the risks of some 
specific diseases such as diabetes or inflammatory diseases. Among effort factors, we find 
that a healthy diet and physical activity play the largest role in determining health outcomes. 
 
The paper is organized as follows. The next section presents the model. Section 3 introduces 
the data and descriptive statistics. Section 4 presents the results of our empirical analysis. The 
final section summarizes and concludes. 
 
 

2. The Model 
 
To model inequality of opportunity in health we adopt the framework of Roemer (2002). 
Roemer sorts all factors influencing individual attainment between a category of effort factors, 
for which individuals should be held partly responsible, and a category of circumstance factors, 
which, being beyond individual control, are a source of unfair differences in outcomes.  
 
Since the outcomes of interest are health outcomes, measured by biomarkers, a generalised 

health production function can be defined along the lines of Roemer (2002) as H(C, E(C)) 

where C denotes individual circumstances and E denotes effort, which is itself a function of 
circumstances. Roemer (2002) defines social types consisting of individuals who share 
exposure to the same set of circumstances. The set of observed individual circumstances 
allows the specification of these social types in the data. A fundamental feature of this 
approach is the fact that the distribution of effort within each type is itself a characteristic of 
that type and, since this is assumed to be beyond individual responsibility, it constitutes a 
circumstance in itself. 
 
The choice of circumstances and effort variables in our empirical application is largely based 
on the literature dealing with the measurement of inequality of opportunity in health (i.e., 
Rosa Dias, 2009, 2010; Jusot, Tubeuf and Trannoy, 2013). Thus, we treat as circumstances 
the cohort of birth, gender and educational level2. In the case of education, we assume that 
the type of secondary school in which pupils are enrolled at age 11 is beyond their individual 
responsibility and therefore constitutes a circumstance. This is an assumption shared by 
other papers (e.g. Rosa Dias, 2010). Following this strand of literature, the choice of effort 
variables is guided by the work on the relationship between health and lifestyles, such as 
Contoyannis and Jones (2004) and Balia and Jones (2008). Lifestyles are determined by the 
individual decisions to invest in health capital, and, therefore, they are, at least partly, within 
individual control. Thus, we treat as effort, cigarette smoking (saliva cotinine), alcohol 
frequency and intensity of consumption, dietary choices and physical activity (proxied by 
body mass index) and the use of medications that are, at least partly, within individual 
control. Moreover, we include equivalized household income as an effort variable to control 
for the individual’s current socioeconomic position and recognise that their labour supply 
and productivity are, to some extent, their own responsibility (see Section 3.1 for more 
details). 

                                                           
2
 In our dataset we have detailed information on the ethinicity of the respondents. However, the inclusion of this variable 

among the circumstances would lead to imprecise estimates of inequality as the share of non-white individuals in the older birth 
cohorts is very small.  
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We condition on circumstances by splitting our sample according to type, τ, and estimating 
separate regression of health outcomes on effort for each sub-sample. This gives: 
 

𝐻𝑖 = 𝐻(𝐶𝑖, 𝐸𝑖(𝐶𝑖)) = 𝐹𝜏(𝐸𝑖) for all 𝜏 = 1 … . 𝑇 

 
Assuming linearity, we have: 
 

𝐻𝑖 = 𝛼𝜏 + 𝛽𝜏𝐸𝑖 + 𝑒𝑖
𝜏                                                          (1) 

 
Equation (1) gives a set of heterogeneous regression coefficients reflecting the different level 

of biomarkers across types (𝛼𝜏) and the different association between biomarkers and effort 

variables across types (𝛽𝜏), while 𝑒𝑖
𝜏 is the error terms, capturing the effect of randomness or 

luck on biomarkers3. It is important to note that equation (1) does not require additive 
separability of circumstances and effort and allows interactions between them (through the 

heterogeneous slopes 𝛽𝜏).  
 
To retrieve the contribution of circumstances and efforts to total inequality we exploit the 
method proposed by Jones and Lopez-Nicolas (2006) who show how regression-based 
decomposition methods for the decomposition of health inequality, measured by the Gini 
index can be extended to incorporate heterogeneity in the responses of health to the 
explanatory variables (as in equation (1)). Moreover, we propose an extension of this method 
to complement the standard Gini with an Inequality of Opportunity Gini that measures 
inequality relative to the most disadvantaged type. 
 
The Gini index (G) for a measure of health is given by:  
 

𝐺 =
2

𝐻̅
  𝐶𝑜𝑣(𝐻𝑖, 𝑅𝑖) (2) 

 

where 𝐻̅ = 𝐸(𝐻𝑖), 𝐻𝑖 denotes the measure of health for the ith individual, i =1, ....N, and 𝑅𝑖 

denotes the cumulative proportion of the population ranked by 𝐻𝑖 up to the ith individual 
(their ‘relative rank’). 
 
Following  Jones and Lopez-Nicolas (2006), we can substitute (1) into (2). This leads to: 
 

𝐺 =
2

𝐻̅
  𝐶𝑜𝑣(𝐻𝑖, 𝑅𝑖) = 

𝐺 = (
2

𝑁𝐻̅
) ∑ (𝐻𝑖 − 𝐻̅) (𝑅𝑖 −

1

2
) =𝑖                                           (3) 

 𝐺 = (
2

𝑁𝐻̅
) ∑(𝛼𝜏 + 𝛽𝜏𝐸𝑖 − 𝐻̅) (𝑅𝑖 −

1

2
) +

2

𝐻̅
  𝐶𝑜𝑣(𝑒𝑖

𝜏, 𝑅𝑖) =

𝑖

 

 
 
Equation (3) incorporates heterogeneity across types into the decomposition of the Gini 
index.  

                                                           
3 In order to keep the notation simple, equation (1) is written in terms of a scalar effort variable. The extension to a vector of 

effort variables is straightforward and is used in our empirical application (see Jones and Lopez-Nicolas, 2006). 
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To provide a benchmark for our decomposition analysis, consider estimating a pooled OLS 

regression that treats the 𝛽𝜏s as constant and ignores the heterogeneity across types. In such 
a situation both individual and type responsibility are set equal to zero and types do not have 

any indirect effect (through 𝛽) in the determination of health. This implies: 
 

𝐻̅ = 𝛼 + 𝛽𝐸̅                                                              (4) 
 

Moreover, consider the OLS regressions for each type 1..... 𝑇. Using the conditional mean 
from these regressions provides us with another benchmark which allows for heterogeneity 
in efforts between types, i.e. ‘the group responsibility’, and in the association between health 
and types, but assumes that all individuals in the same type exerted the same level of effort, 
thus setting ‘individual responsibility’ to zero: 
   

𝐻𝜏
̅̅ ̅ = 𝛼𝜏 + 𝛽𝜏𝐸𝜏

̅̅ ̅                                                           (5) 
 
 
 
Now, consider that: 

(𝐻𝑖 − 𝐻̅) = (𝐻𝑖 − 𝐻𝜏
̅̅ ̅) + (𝐻𝜏

̅̅ ̅ − 𝐻̅) 
 
where: 
 

(𝐻𝑖 − 𝐻𝜏
̅̅ ̅)= 𝛽𝜏(𝐸𝑖 − 𝐸𝜏) + 𝑒𝑖

𝜏                                            (5a) 
 
and: 
 

(𝐻𝜏
̅̅ ̅ − 𝐻̅) = (𝛼𝜏 − 𝛼) + 𝛽𝜏𝐸𝜏

̅̅ ̅ + 𝛽𝐸̅ 
 

Collecting some terms, (𝐻𝜏
̅̅ ̅ − 𝐻̅) becomes: 

 

(𝐻𝜏
̅̅ ̅ − 𝐻̅) = (𝛼𝜏 − 𝛼) + (𝛽𝜏 − 𝛽)𝐸𝜏

̅̅ ̅ + 𝛽(𝐸𝜏
̅̅ ̅ − 𝐸̅)               (5b) 

 
 
By substituting (5a) and (5b) into equation (3) and changing the order of summations, the 
decomposition of the Gini index can be expressed as follows: 
 
 

𝐺 = (
2

𝑁𝐻̅
) ∑(𝛼𝜏 − 𝛼)(𝑅𝑖 − 1/2)

𝑖

+ 

+ (
2

𝑁𝐻̅
) ∑ 𝐸𝜏

̅̅ ̅(𝛽𝜏 − 𝛽)(𝑅𝑖 − 1/2)𝑖 + 

+ (
2

𝑁𝐻̅
) ∑  𝛽𝜏 (𝐸𝑖 − 𝐸𝜏

̅̅ ̅)(𝑅𝑖 − 1/2)𝑖 +                               (6) 

+ (
2

𝑁𝐻̅
) ∑ 𝛽  (𝐸𝜏

̅̅ ̅ − 𝐸̅)(𝑅𝑖 − 1/2)𝑖 + 
2

𝐻̅
  𝐶𝑜𝑣(𝑒𝑖

𝜏, 𝑅𝑖) 

 
The first term in equation (6) is the contribution to the overall inequality of the intercepts of 
the OLS regression across types (centred at the pooled OLS intercept coefficient). In 
normative terms, this measures the direct contribution of circumstances to the overall inequality. 
The second term is the covariance (weighted by the average effort level across types) 
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between slope parameters and the health rank. It measures the indirect contribution of 
circumstances to overall inequality, through differences in the association between efforts and 
outcomes across the types. The third term is the covariance between individual effort 
(centred at the average effort level across types and weighted by the slope parameters) and 
health rank. It measures the contribution of within type variation in effort on overall 
inequality. In normative terms, this represents the contribution of individual responsibility to the 
overall inequality. The fourth term is the covariance between the average effort by types 
(centred at average level of effort in the sample and weighted by the pooled OLS slope 
parameters) and health rank. It measures the contribution of between-type variation in effort 
to overall inequality and it represents the contribution of group (type) responsibility to the overall 
inequality. The final term in equation (6) is the covariance between the error term and 
individual rank and it measures the contribution of randomness or luck to overall inequality. 
 
The Gini index in equation (2) and its decomposition can  be extended in the spirit of the 
‘fairness gap’ principle proposed by Fleurbaey and Schokkaert (2009, 2012). Indeed, the 
decomposition presented in equation (6) refers to a hypothetical situation in which both 
individual and type responsibility are set equal to zero and circumstances do not play any 
indirect effect in the determination of health. Another interesting benchmark scenario is 
represented by the health situation of the worst-off type, i.e. the group of individuals sharing 
exposure to the worst circumstances available in a given society. The resulting inequality 
index – an Inequality of Opportunity Gini - is thus expressed in terms of inequality relative 
the most disadvantaged type,  in the spirit of the ‘fairness gap’ principle: 
 
 

𝐺𝐼𝑂𝑝 =
2

𝐻𝑤̅̅ ̅̅ ̅   𝐶𝑜𝑣(𝐻𝑖, 𝑅𝑖)                                                 (7) 

 

The decomposition of 𝐺𝐼𝑂𝑝 follows the same logic described above (i.e. in equations 3-6). 
The benchmark situation that ignores the type heterogeneity as in equation (4) is now 
replaced by the following equation for the average health of the worst-off type: 
 

𝐻𝑤̅̅ ̅̅ = 𝛼𝑤 + 𝛽𝑤𝐸𝑤̅̅ ̅̅                                                        (8) 
 
 

While the benchmark situation which allows for type heterogeneity is the same as equation 

(5). Considering that (𝐻𝑖 − 𝐻𝑤̅̅ ̅̅ ) = (𝐻𝑖 − 𝐻𝜏
̅̅ ̅) + (𝐻𝜏

̅̅ ̅ − 𝐻𝑤̅̅ ̅̅ ) and after manipulations similar 

to the ones shown in equations (5a) and (5b), the decomposition of 𝐺𝐼𝑂𝑝  can be expressed 
as follows : 
 
 

𝐺𝐼𝑂𝑝 = (
2

𝑁𝐻𝑤̅̅ ̅̅
) ∑(𝛼𝜏 − 𝛼𝑤)(𝑅𝑖 − 1/2)

𝑖

+ 

+ (
2

𝑁𝐻𝑤̅̅ ̅̅ ̅) ∑ 𝐸𝜏
̅̅ ̅(𝛽𝜏 − 𝛽𝑤)(𝑅𝑖 − 1/2)𝑖 + 

+ (
2

𝑁𝐻𝑤̅̅ ̅̅ ̅) ∑  𝛽𝜏 (𝐸𝑖 − 𝐸𝜏
̅̅ ̅)(𝑅𝑖 − 1/2)𝑖 +                               (9) 

+ (
2

𝑁𝐻𝑤̅̅ ̅̅ ̅) ∑ 𝛽𝑤  (𝐸𝜏
̅̅ ̅ − 𝐸𝑤̅̅ ̅̅ )(𝑅𝑖 − 1/2)𝑖 + 

2

𝐻𝑤̅̅ ̅̅ ̅   𝐶𝑜𝑣(𝑒𝑖
𝜏, 𝑅𝑖) 

 
The terms in equation (9) follow the same logic of those in equation (6) but they are 
expressed with reference to the situation of the worst-off type. Thus, the first term gives the 
direct contribution of circumstances to the overall Inequality of Opportunity-Gini, the second term 
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gives the indirect contribution of circumstances through effort, the third term gives the contribution of 
individual responsibility, the fourth term gives the contribution of the group (type) responsibility, while 
the final term measures the contribution of luck or randomness. Note that the third term is 
virtually the same of equation (6) as it measures within type variation in efforts which do not 
depend on the benchmark situation chosen to perform the decomposition.  
 
 
 

3. The Data  
 
Our data come from the Health Survey for England (HSE). HSE is a repeated cross-
sectional health interview survey of around 15,000 to 20,000 respondents conducted in 
England by the National Centre for Social Research (separate surveys are available for 
Scotland and Wales). The survey started in 1991 and has been carried out annually since 
then. HSE includes adults aged 16 and over, and since 1995 has also included children aged 
2-15. From 2001 onwards, the survey covers all ages, but certain age groups are asked 
questions on selected topics only. An interview with each eligible person in the household is 
followed by a nurse visit for those who agree to take part. The interview includes a set of 
core questions, asked each year, on general health and psycho-social indicators, smoking, 
alcohol, demographic and socio-economic indicators, questions about use of health services 
and prescribed medicines. Biomarkers and health assessments are collected during nurse 
visits and include blood samples, anthropometric measurements, blood pressure 
measurements, and saliva samples. During the nurse visits, the nurse asks the respondent for 
permission to carry out various types of measurements. Respondents are informed about the 
purpose of each test and the value of each test for the monitoring of various diseases. For 
instance, for the cholesterol test, the nurse informs participants that “high levels are 
associated with blood clots, heart attack and stroke”. The delivery of information is useful in 
order to increase compliance and establish a good working relationship.  
 
The most popular blood-based biomarkers, which are analysed in this paper, have been 
collected  since 2002 in the HSE. More precisely, cholesterol and glycated haemoglobin were 
collected from 2003 to 2012 every year; mean arterial pressure was collected from 2002 to 
2012 every year, while fibrinogen was collected from 2003 to 2006 and in 2009. Other 
potentially relevant biomarkers (ie. tryglicerides, C-reactive protein) are collected sporadically 
and they are not included in this analysis. We do not make any statistical transformation of 
the blood-based biomarkers sample and use the valid (i.e. blood sample properly collected 
and successfully processed) biomarker measurements in each wave. Thus, we can use 8,979  
non-missing observations for the analysis of cholesterol over the period 2003-2012, 10,065 
for the analysis of glycated haemoglobin over the period 2003-2012, 10,910 for the analysis 
of mean arterial pressure from 2002 to 2012. The sample size for fibrinogen is much smaller: 
2,336 observations from 2003 to 2006 and in 2009.  For almost all the waves, blood samples 
are collected from individuals aged 16 and over. In a few waves a different age restriction is 
employed. In 2002 only individuals aged 24 or less are included; in 2004 individuals aged 11 
and over are included, while in 2005 only individuals aged 65 and over are analysed. Given 
that we stratify by types (including birth cohorts), different age restrictions across waves are 
taken into account in our estimates. 
 
3.1 Variables and descriptive statistics 
 
In what follows, we provide a description of the variables used in our analysis. Firstly, we 
describe the circumstance variables that are used to define types and we discuss the 
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distribution of types. Then, we present the effort variables used in our analysis and the health 
outcomes, giving some detail on their units of measurement, the clinical cutpoints (when 
available) and the use of biomarker values for diagnosis of a disease state.  
 
Circumstance variables 
 
We use three variables to define circumstances: cohort of birth, gender and individual 
education. Cohort of birth is split in three categories: born before 1959; born from 1960 and 
1979; born after 1979. Educational level refers to the highest academic qualification awarded 
and it is split in three categories: qualification below nvq3/gce a level; nvq 3/ gce a level or 
higher education; nvq4/nvq5/degree or equivalent. These factors reflect conditions and 
behaviours that are largely beyond individual control. In the case of education, we assume 
that the type of secondary school in which pupils are enrolled at age 11 is beyond their 
individual responsibility and therefore constitutes a circumstance.  
 
A summary of these variables in our sample is presented in Table 1. Table 1 shows that 
around 45% of the sample were born before 1959, around 40% were born between 1960 and 
1979 and around 15% were born in 1980 or later. Elderly individuals are slightly over-
represented in our sample and this is due to the fact that we use only individuals with 
positive earnings in our analysis. The figures are nonetheless indicative of the ageing 
population common to many European countries. Table 1 also shows that around 45% of 
our sample are individuals with an education below the nvq3 level, while around the 51% of 
the sample are male.  
 
On the basis of the combination of the circumstances discussed above, we can define 18 
types. Type 1 is the type for which we might expect the highest penalization in terms of 
health outcomes: born before 1959, with a qualification below nvq3/gce a level and female. 
The distribution of types for each biomarker is presented in Table 2. As Table 2 shows, we 
have a good average sample size within each type for cholesterol, glycated haemoglobin and 
mean arterial pressure and, importantly, we have a relatively large sample size for the most 
disadvantaged type (type 1). Both aspects are relevant for our empirical analysis which is 
based on splitting the sample according to type and estimating separate regression of health 
outcomes on effort for each sub-sample. Moreover, in the case of the most disadvantaged 
type, a good sample size is necessary to provide an accurate benchmark for the 
decomposition of the Inequality of Opportunity Gini, as illustrated in Section 2.  For 
fibrinogen, we have a much smaller average sample size (2,336 observations) and some sub-
samples have few observations (i.e. types 3, 15 and 18) while the sample size of the most 
disadvantaged type is acceptable. For these reasons, the results related to fibrinogen should 
be interpreted with more caution. 
 
Effort variables 
 
As effort variables, we consider primarily health-related lifestyles: smoking, diet, physical 
activity and drinking. As a proxy of smoking, we use saliva cotinine. Cotinine is the 
predominant metabolite of nicotine and it is a quantitative indicator of active smoking. The 
key advantage of using this marker is that of having a measurement of smoking behaviour 
which is objective, and much less prone to the measurement errors often seen with self-
reported smoking behaviour. Cotinine levels greater than or equal to 12ng/ml usually 
identify active smoking with high sensitivity (96.7%; Jarvis et al. 2008). As a second effort 
factor, we use the body mass index (BMI). BMI is a value derived from the mass (weight) 
and height of an individual and it is defined as the body mass divided by the square of the 
body height universally expressed in units of kg/m2. Commonly accepted BMI ranges are 

https://en.wikipedia.org/wiki/Mass
https://en.wikipedia.org/wiki/Mass_versus_weight
https://en.wikipedia.org/wiki/Units_of_measurement
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underweight: under 18.5, normal weight: 18.5 to 25, overweight: 25 to 30, obese: over 30. In 
the Health Survey for England, BMI is accurately measured by a professional during a nurse 
visit. Thus, measurement error issues are likely to be very small in our sample. Moreover, it 
represents an important risk factor for the development of cardiovascular diseases and 
diabetes. A high BMI might be also due to genetic factors or diseases which might be partly 
beyond the individual responsibility. However, both healthy diet and physical activity 
contribute to maintain BMI within the normal ranges. For this reason, in this paper, we use 
BMI as a continuous and objective proxy of both a healthy diet and of physical activity. As a 
proxy of drinking behaviour, we use self-reported information around the frequency of 
drinking during a normal week and the units of alcohol consumption on the heaviest day of 
the week. We take the product of these variables to take into account both the frequency and 
intensity of drinking of the peak of alcohol consumption. 
 
We also include whether the individuals take medications prescribed by the doctor among 
the effort factors. This variable actually serves both to control for the fact that medications 
might be actually prescribed by the doctor in response to adverse biomarker scores and to 
take into account compliance with medication which is within the individual control and a 
matter of individual responsibility. Lastly, we consider household equivalised income which, 
in part, reflects an individual’s effort through their labour supply and productivity and their 
management of household finances. This includes total income of a household from all 
sources, after tax and other deductions, divided by the number of household members 
converted into equivalised adults. In order to take into account the fact that income changes 
are often multiplicative in the real world (i.e. a 5% raise in wages), we use the logarithm of 
equivalised income in all regressions.  
 
In Table 3, we report the mean of our effort variables by type. Average cotinine values are 
very heterogeneous across types. Not surprisingly, smoking behaviour is more concentrated 
among the most disadvantaged types. For instance, average cotinine levels are 46.53 in type 
1, 120 in type 5 and just over 25 in type 18. BMI follows a less sharp pattern across types. 
However, the most disadvantaged types present slightly higher levels: 27.7 in type 1 vs 26.17 
in type 18. Drinking behaviour is similar across types, while the use of medication seem to be 
much more pronounced among the most disadvantaged types. This is not surprising as these 
types are composed primarily by elderly individuals. Lastly, we find that more disadvantaged 
types tend to have lower levels of income. This is likely to be partly due to the link between 
education and earnings, the drop in income during retirement for the elderly and to the 
gender pay gap for women (the elderly, less educated and women are more represented in 
worst-off types).    
 
Health outcomes 
 
We use four blood-based biomarkers: total Cholesterol, glycated haemoglobin, fibrinogen 
and mean arterial pressure. As discussed in the introduction, these markers are highly 
predictive of some of the most prevalent non-communicable diseases. Total cholesterol (TC) 
is measured in units of millimoles per litre of blood, (mmol/L). The English government 
recommends that total cholesterol should be equal or less than 4 mmol/L among individuals 
at high risk of cardiovascular disease (CVD) (i.e. obese, with an history of CVD, etc. ) and 
equal or less than 5 mmol/L or less for healthy individuals. Values above these thresholds 
indicate a higher risk of CVD.  
 
Glycated haemoglobin (HbA1c) is a measure of the level of sugar in the blood over the 
previous 8 to 12 weeks before measurement. It is the proportion of haemoglobin proteins 
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that have been bound by glucose.  HbA1c can be expressed as a percentage or as a value in 
mmol/mol. HbA1c is measured in percentages in all waves of the HSE. HbA1c values of 
6.5% or more indicate diagnosis of diabetes, while values between 5.7% and 6.4% indicate 
pre-diabetes risk (American Diabetes Association, 2010; World Health Organisation, 2011).  
 
Fibrinogen is a marker of inflammation and it aids the body to stop bleeding by helping 
blood clots to form. It is measured in grams per litre (g/L). The measure is continuous and 
there are no established clinical cutpoints but normal levels generally range between 1.5-3 
g/L. Higher levels of fibrinogen are implicated in the development of CVD and many 
inflammatory diseases, such as liver diseases.  

Mean arterial pressure measures the average blood pressure in an individual during a single 
cardiac cycle. It normally ranges between 65 and 110 mmHG. Values above this range 
indicate hypertension, while values below the range indicate hypotension. Mean arterial 
pressure is a comprehensive index of blood pressure, as it takes into account both systolic 
and diastolic blood pressure. Indeed, it can be easily approximated by: diastolic pressure + 
1/3 (systolic pressure-diastolic pressure). 

Table 4 shows the descriptive statistics of the biomarkers in our sample. We find that 
average biomarker values in our sample fall mostly within normal ranges, but with some 
exceptions. In particular, average cholesterol values are a little higher than the cutpoint of 5 
while fibrinogen average scores are a little lower than the normal cutpoint of 3. Moreover, 
Table 1 shows higher dispersion around the average mean arterial pressure and cholesterol 
scores, while other biomarkers values are less dispersed around the mean.  

 
 
4. Empirical Analysis 
 
In this section, we present the results of our empirical analysis. In Section 4.1, we present the 
results of regressions of biomarkers on efforts. In Section 4.2, we present the results of the 
overall decomposition analysis while in Section 4.3 we discuss the results of the detailed 
decomposition by each effort variable. 
 
4.1 Biomarker-effort regressions 
 
In Table 5, the results of the pooled OLS regression and the OLS regression for the most 
disadvantaged type are reported for each biomarker. As highlighted in Section 2, these 
regressions are used as benchmarks on which we base the decomposition analysis of the Gini 
index and of the Inequality of Opportunity Gini, respectively. The complete set of 
regressions for all 18 types and for all biomarkers analysed is reported in Tables A.1.-A.4 in 
the Appendix.  
 
Table 5 shows that effort variables generally have a significant effect on biomarkers but 
display a degree of heterogeneity across biomarkers and across types. With respect to the 
first aspect, Table 5 shows for instance that higher cotinine values are positively and 
significantly associated with higher glycated haemoglobin and fibrinogen levels, but they are 
not significantly associated with cholesterol levels. The association between cotinine and 
mean arterial pressure is found to be generally negative, but this depends on a different 
association between cotinine and diastolic and systolic blood pressure. Indeed, we find that 
cotinine increases diastolic blood pressure levels (i.e. “minimum” blood pressure) but it is 

https://en.wikipedia.org/wiki/Blood_pressure
https://en.wikipedia.org/wiki/Cardiac_cycle
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poorly and – in some type regressions also negatively- associated with systolic blood pressure 
(i.e. “maximum” blood pressure)4.  Instead, BMI is positively associated with all biomarkers 
analysed. Unsurprisingly, BMI-biomarker association is steeper for mean arterial pressure 
and cholesterol. In the case of mean arterial pressure, a unit increase in BMI is associated 
with an increase of 0.67 points in the mean arterial pressure. With respect to drinking 
consumption, we find that it is positively associated only with higher cholesterol levels and 
poorly associated with the other biomarkers. Medication is generally positively associated 
with the biomarkers analysed. As anticipated in Section 3.1, this might be due to the fact that 
some individuals were already diagnosed with some diseases and in treatment for such 
diseases with the use of medications. Lastly, we find a large degree of heterogeneity in the 
income-biomarker association across different biomarkers. We find a negative income 
gradient for glycated haemoglobin and fibrinogen levels but a positive association between 
income and both cholesterol and mean arterial pressure. Similar results have been found also 
by Carrieri and Jones (2015) analysing the income-biomarker association on Health Survey 
for England data.  
 
With respect to the heterogeneity across types, Table 5 shows that the worst-off type exhibits 
generally lower slope coefficients on efforts than the average. This is particularly evident in 
the case of BMI. For instance, the slope of cholesterol levels with respect to BMI is 0.047 
points on average, and only 0.003 for the worst-off type. Similarly, BMI actually increases 
mean arterial pressure by 0.647 point on average and by 0.185 for the worst-off type. A 
similar pattern is found for cotinine, medication and income, while drinking-biomarker 
association seems to be more homogenous across types.  The comparison of the constant 
terms of the pooled OLS and the OLS on the worst-off type in Table 5 reveals also a large 
degree of heterogeneity in the average biomarker levels across types. Heterogeneity is 
particularly marked in the case of cholesterol, fibrinogen and mean arterial pressure. For 
instance, the worst-off type presents an average cholesterol level of 5.836 which is much 
higher than the clinical cutpoint of 4 indicated for individuals with a higher risk of 
cardiovascular diseases and also higher than the normal threshold of 5. Similarly, the worst-
off type presents pathologic fibrinogen levels (3.178, while the norm is 3) and a high mean 
arterial pressure (70.97). On the other hand, average biomarkers levels are within the normal 
ranges for all biomarkers, as shown by the Pooled OLS regressions. This result anticipates 
that circumstances play a large direct effect in influencing health outcomes. 
 
One potential concern of the results shown above might be represented by the relatively 
small sub-samples by type for some biomarkers, especially fibrinogen. This might artificially 
increase the heterogeneity of health-efforts association across types and just capturing 
sampling variation in the slope coefficients across these relatively small sub-samples. In order 
to rule out this possibility,  we experimented with the definitions of types by splitting  the 
education in two categories (below/above NVQ3). This leads to 12 types (instead of the 18 
types actually employed) and to an average sub-sample size of around 200 individuals for 
fibrinogen, 750 for cholesterol, 840 for glycated haemoglobin and 900 for mean arterial 
pressure. Our regression results are substantially unchanged. More importantly, we find that 
both the sign and the magnitude of the decomposition results shown in the next paragraphs 
are substantially confirmed under this alternative definition of types5. 
 
 
 

                                                           
4
 Results not shown but available upon request. 

5
 Results not shown but available upon request. 
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4.2 Overall decomposition results 
 
The results of our decomposition analysis are reported in Tables 6-9 for cholesterol, glycated 
haemoglobin, fibrinogen and mean arterial pressure, respectively. In each table, we report the 
decomposition of the Gini index (in the top panel) and of the Inequality of Opportunity 
Gini (in the bottom panel) into the five contributions: individual responsibility, direct 
circumstances, indirect circumstances, group responsibility and a residual term. All terms are 
expressed in units and as percentage of the total inequality indexes. Tables 6-9 also contain 
the detailed decomposition of all terms into the contribution of each effort variable and 
these results are discussed in Section 4.3.  
 
Tables 6-9 show that the largest contribution to the predicted inequality is represented by 
circumstances for all biomarkers. This is mostly due to the direct component.  Indeed, the 
direct contribution of circumstances ranges from 5.7% of inequality for mean arterial 
pressure to 44% of inequality in cholesterol. The indirect contribution of circumstances is 
the second leading component of inequality in all biomarkers. Its contribution is negative in 
all analyses. As shown in Section 4.1, this implies that the types who have lower rankings in 
the distribution of biomarkers (i.e. worse health) have lower slope coefficients on effort. The 
indirect contribution of  circumstances ranges from around -2% for mean arterial pressure to 
around -27% for cholesterol.  
 
The third contribution to inequality is attributed to individual responsibility, i.e. within-type 
variation in effort. Its contribution ranges from 3.87% for cholesterol to 13% for fibrinogen. 
The contribution of ‘group responsibility’, i.e. between-type variation in effort, is the least 
important component of inequality for all biomarkers. Its contribution ranges from 1.3% for 
mean arterial pressure to 5.28% for glycated haemoglobin.  
 
With respect to the residual term, we observe a very large contribution in the case of mean 
arterial pressure, amounting to around the 90% of the overall inequality.  For the other 
biomarkers, the contribution is less important ranging from 72% to 77%. Nonetheless, this 
large contribution of the residual terms suggests that chance is the most important 
determinant of health outcomes, confirming the random and unpredictable nature of health.  
 
The patterns described above are essentially common to all biomarkers. For mean arterial 
pressure only, individual responsibility seems to be slightly more important than indirect 
circumstances becoming the second - instead of the third - cause of inequality. Despite this 
minor exception, this indicates that there is a general pattern of the causes of inequality 
which is common to all of the health outcomes. On the other hand, the magnitude of the 
contributions exhibits a larger degree of heterogeneity across biomarkers. Cholesterol seems 
to be the biomarker mostly determined by circumstances followed by fibrinogen and 
glycated haemoglobin, while the role of circumstances and effort is more balanced for mean 
arterial pressure.   
 
Lastly, we find that overall inequality levels are heterogeneous across biomarkers. Overall 
inequality is generally low for glycated haemoglobin (0.05), it is higher for fibrinogen (0.11) 
and cholesterol (0.12) and very large for mean arterial pressure (0.21). In contrast, the 
comparison of the Gini index and of the Inequality of Opportunity Gini in Tables 6-9 shows 
that both perspectives give a similar picture of the inequality. Estimated overall inequality is 
only a little smaller when measured with reference to the most disadvantaged type, in the 
spirit of the fairness gap principle. The discrepancy between estimated Gini and Inequality of 
Opportunity Gini ranges from around 4% for glycated haemoglobin to around 10% for 
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cholesterol, while both the magnitude of the contributions and the ranking of the causes of 
inequality is very similar under both indexes and for all biomarkers analysed.  
 
 
4.3 Detailed decomposition results 
 
Tables 6-9 show the detailed contribution of each effort variable to the overall inequality. We 
find that, in terms of individual responsibility, physical activity and healthy diet, proxied by BMI, 
play the largest role to the overall inequality across the majority of biomarkers analysed. The 
contribution of BMI constitutes almost 50% of the total contribution of individual 
responsibility to the overall inequality for all biomarkers, and, in the case of cholesterol, this 
actually reaches 75% of the total contribution. The contribution of the other effort variables 
is more heterogeneous across biomarkers. Smoking is the most important effort variable for 
mean arterial pressure and the second contributing factor for fibrinogen, while the use of 
medication is relevant for glycated haemoglobin and cholesterol. A residual role for all 
biomarkers is due to drinking behaviour and income.  
 
The contribution of effort variables through the group responsibility terms is actually more 
homogenous across biomarkers. In all cases, we find that BMI and the use of medication are 
the most relevant contributing factors. Their joint contribution explains almost entirely the 
total contribution of the group responsibility terms to overall inequality.  
 
The detailed decomposition of the indirect circumstances terms suggests that BMI and income 
play the largest role. This was also evident from the regression analysis discussed in Section 
4.1 where substantial heterogeneity of the BMI and income coefficients was found across the 
regressions by type. Interestingly, we find some differences in the sign of this contribution 
across biomarkers. In the case of mean arterial pressure, cholesterol and fibrinogen, we find 
a negative contribution for BMI. This implies that BMI is relatively less important for health 
status for individuals in the lower rankings of the health distribution (i.e. the worst-off types). 
Conversely, in the case of glycated haemoglobin we find a positive contribution of BMI 
which implies a steeper slope for disadvantaged types. The contribution of income is 
negative for all biomarkers with the exception of mean arterial pressure. This indicates that 
income-biomarker association is generally lower for the worst-off types and higher for more 
advantaged types. This result is in line with  Carrieri and Jones (2015) who found a steeper 
income gradient at the highest quantiles of the biomarker distribution. In normative terms, 
this result suggests that the hypothesis of the separability of circumstances and effort does 
not find support in these data and that it is relevant to allow for a heterogeneous relationship 
between circumstances and effort across types. 
 

 

5. Conclusions 
 
In this paper, we propose a new and relatively easy to-implement decomposition method to 
assess inequality of opportunity in health. The method is grounded on the theoretical 
framework proposed by Roemer (2002) which sorts all factors influencing individual 
attainment between a category of effort factors , for which individuals should be held partly 
responsible, and a category of circumstance factors, which are a source of unfair differences in 
outcomes. Our method builds on the decomposition of the Gini index with heterogeneous 
responses proposed by Jones and Lopez-Nicolas (2006) and it is extended to complement 
the standard Gini with an Inequality of Opportunity Gini index that measures inequality 
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relative to the most disadvantaged type, in the spirit of the “fairness gap” principle of 
Fleurbaey and Schokkaert (2009, 2012).  
 
Our approach identifies the contribution of five normatively-relevant decomposition terms: 
direct and indirect (through effort ) contributions of circumstances to the total inequality, the 
contributions of within and between-type variation in effort to the total inequality and the 
contribution of randomness and luck. Notably, this allows us to distinguish the contribution 
of “pure individual responsibility” (within-type variation in efforts) from the contribution of 
“type responsibility”(between-type variation in efforts) arising, for instance, by social 
contagion or social norms. Importantly, our approach does not require additive separability 
of circumstances and effort and allows interactions between them, through heterogeneous 
slopes. Moreover, it also allows a detailed decomposition of the overall terms into the 
contribution of each of the effort variables to the overall inequality. 
 
We estimate inequality of opportunity in four biomarkers available in ten waves of the 
Health Survey for England (2003-2012) associated with some of the most prevalent non-
communicable diseases : cholesterol, glycated haemoglobin, fibrinogen and mean arterial 
pressure. Moreover, we use Saliva cotinine, a major metabolite of nicotine, to objectively 
quantify individual smoking, and a measurement of body-mass index made by a professional 
nurse to properly assess the degree of individual effort related to healthy diet and physical 
activity. As effort variables, we also use detailed self-reported data on the intensity and 
frequency of drinking behaviour along with information on the use of medications and 
equivalized income of the family. As circumstances variables we use the cohort of birth, 
gender and educational level to build eighteen Roemerian “types”. 
 
A key advantage of using biomarkers in our analysis is having measures of health and health 
behaviours which are free of subjective reporting bias. This is relevant given the possible 
presence of systematic reporting behaviour by individuals sharing the same set of 
circumstances which may substantially affect the measurement of equality of opportunity in 
health. 
 
Our analysis leads to a number of contributions to the existing literature. Notably, we shed 
light on the extent and the causes of the inequality of opportunity in a key determinant of 
human well-being, which is scarcely investigated by the inequality of opportunity literature. 
As a first result, we find that there is a general pattern in the causes of inequality which is 
common to all health outcomes. The largest contribution to inequality is represented by a 
direct effect of circumstances for all biomarkers. The indirect circumstances effects is 
generally the second leading causes of inequality. Its contribution is negative in all analyses 
which implies that the types who have lower rankings in the distribution of biomarkers (i.e. 
worse health) have lower slope coefficients on effort. The third cause of inequality is 
generally represented by the individual responsibility, i.e. within-type variation in effort, while 
group responsibility is found to be the least important cause of inequality for all biomarkers. 
 
We also find that the magnitude of these contributions is heterogenous across biomarkers. 
The direct effect of circumstances ranges from the 5.7% of inequality of mean arterial 
pressure to the 44% of inequality in cholesterol. The indirect contribution of the 
circumstances ranges from around -2% for mean arterial pressure to around -27% for 
cholesterol. The contribution of individual responsibility ranges from the 3.87% for 
cholesterol to the 13% of fibrinogen, while the contribution of group responsibility ranges 
from 1.3% for mean arterial pressure to 5.28% for glycated haemoglobin. For all biomarkers 
we find a large contribution of luck and randomness ranging from 72% of inequality in 
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glycated haemoglobin to 90% of total inequality in mean arterial pressure. This confirms that 
luck and randomness remains the most important determinant of health outcomes.  
 
As a third result, we find, through detailed decomposition analysis, that physical activity and 
healthy diet, proxied by BMI, play the largest role to the overall inequality across the majority 
of biomarkers analysed. The contribution of BMI constitutes almost 50% of the total 
contribution of individual responsibility to the overall inequality for all biomarkers, and, in 
the case of cholesterol, this actually reaches 75% of the total contribution. At the same time, 
we find a strong interplay between circumstances and effort especially in the case of BMI 
and income. Interestingly,  we find some differences in the sign of this contribution across 
biomarkers. In the case of mean arterial pressure, cholesterol and fibrinogen, we find a 
negative contribution for BMI. This implies that BMI is relatively less important for health 
status for individuals in worse circumstances. Conversely, in the case of glycated 
haemoglobin, we find a positive contribution of the BMI which implies a higher effect on 
health across more disadvantaged types. 
 
Finally, we find that both the extent and the causes of inequality are very analogous under 
the perspective of measuring inequality relative to the average (Gini index) or to the most 
disadvantaged type (Inequality of opportunity Gini). The discrepancy between overall 
indexes only ranges from around 4% for glycated haemoglobin to around 10% for 
cholesterol.  
 
All these results suggest that the target of equality of opportunity in health, advocated by 
many international institutions (e.g., World Bank, 2005) is still far from being reached in 
England. Although randomness plays a large role, our results suggest that circumstances are 
still a key source of health inequalities. Moreover, our results suggest a strong interaction 
between circumstances and efforts in the direction of reducing the effect of healthy 
behaviours on health across individuals in worse circumstances. This reduces the possibility 
of decreasing inequalities through higher individual efforts. At the same time,  we find that 
individuals in worse circumstances are still empowered to reduce the risks for some specific 
diseases. In particular, the adoption of a healthy diet and physical activity seem to be highly 
important to reduce the risk of diabetes. Moreover, factors partly within individual control, 
i.e. unhealthy diet, lack of physical activity and smoking, play a prominent role in 
determining the risk of many inflammatory diseases leading to high fibrinogen levels. 
 
Further research might be concentrated on two aspects. On one side, it would be interesting 
to apply our decomposition method to the analysis of inequality of opportunity in other 
important dimensions of well-being such as income or education. Our method should be fit 
for these kinds of analysis based on continuous outcomes. Secondly, it would be interesting 
to analyse equality of opportunity in health using a broader set of circumstances. In this 
paper, we selected the circumstances judged as most important for health and compatible 
with our sample size. Further research on a larger data set containing information on 
parental characteristics might allow us to look at the role of socioeconomic background on 
the intergenerational transmission of health. 
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Tables 
 

 

Table 1. Descriptive Statistics – Circumstances 

 

Variables Percent 

Birth Cohorts  
<1959 44.73 
1960-1979 39.76 
1980+ 15.51 
Educational level  
below nvq3/gce a 45.09 
Nvq 3/gce a level/higher educ. 28.91 
nvq4/nvq5/degree or equivalent 26.00 
Gender  
Females 48.52 
Males 51.48 

 

Table 2 . Distribution of types 

 

Types Biomarkers 

 
Cholesterol 

Glycated 
Haemoglobin Fibrinogen 

Mean 
Arterial Pressure 

1 1,080 1,365 289 1,380 
2 794 791 231 834 
3 197 196 47 314 
4 890 1,300 267 1,322 
5 678 709 204 742 
6 172 172 38 327 
7 403 454 105 462 
8 622 618 154 656 
9 194 190 43 298 
10 523 671 125 684 
11 612 632 163 674 
12 263 258 58 380 
13 374 405 90 411 
14 706 701 175 749 
15 177 177 30 190 
16 493 614 109 621 
17 630 650 179 683 
18 171 162 29 183 

Total 8,979 10,065 2,336 10,910 
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Table 3. Means of effort variables by type 

 

Type Cotinine BMI Drinking Medication Log Income 

1 46.53 27.76 13.11 0.71 9.90 

2 105.81 26.96 17.29 0.45 9.92 

3 106.26 24.30 17.45 0.48 9.62 

4 74.60 28.08 25.23 0.68 9.87 

5 120.47 27.92 35.23 0.27 10.00 

6 99.79 24.37 31.00 0.14 9.86 

7 43.95 27.42 14.03 0.61 10.34 

8 55.66 26.76 16.70 0.44 10.20 

9 60.37 24.24 19.27 0.53 9.88 

10 44.60 28.40 25.61 0.61 10.24 

11 69.48 27.50 29.51 0.26 10.38 

12 52.99 24.60 35.19 0.18 9.91 

13 21.37 26.88 17.13 0.58 10.59 

14 22.90 25.28 15.79 0.42 10.67 

15 15.48 24.11 15.04 0.59 10.52 

16 22.19 27.25 24.74 0.57 10.63 

17 32.75 26.84 26.20 0.21 10.75 

18 25.82 26.17 30.95 0.17 10.46 

 

 

Table 4. Descriptive Statistics – Biomarkers 

 

Variables Mean Std Dev. Wavesa Observations 

Cholesterol 5.52 1.09 2,3,4,5,6,7,8,9,10,11 8,979 
Glycated haemoglobin 5.55 0.62 2,3,4,5,6,7,8,9,10,11 10,065 
Fibrinogen 2.94 0.65 2,3,4,5,8 2,336 
Mean Arterial Pressure 77.48 34.69 1,2,3,4,5,6,7,8,9,10,11 10,910 
a 2002=wave 1; 2012=wave11 
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Table 5. Regression Results - Pooled OLS and OLS on “the worst-off type”  

 

 
Cholesterol 

Glycated 
Haemoglobin Fibrinogen Mean Arterial Pressure 

Variable OLS Type 1 OLS Type 1 OLS Type 1 OLS Type 1 

Cotinine 0.000 0.000 0.002*** 0.000 0.001*** 0.000 -0.050*** -0.046*** 

 
0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.007 

BMI 0.047** 0.003 0.026*** 0.022*** 0.035*** 0.023** 0.647*** 0.185 

 
0.002 0.006 0.001 0.003 0.003 0.009 0.069 0.171 

Drinking 0.001** 0.002 -0.001*** -0.003*** -0.001 -0.006** -0.005 0.07 

 
0.000 0.002 0.000 0.001 0.000 0.003 0.011 0.051 

Medic. 0.067*** -0.129** 0.220*** 0.141*** 0.234*** 0.031 2.332*** -0.344 

 
0.023 0.063 0.012 0.037 0.026 0.082 0.657 1.903 

Log Inc. 0.042*** 0.027 -0.048*** -0.037* -0.048*** -0.057 1.110*** 0.783 

 
0.014 0.04 0.008 0.022 0.015 0.046 0.411 1.139 

Constant 3.774*** 5.836*** 5.225*** 5.400*** 2.372*** 3.178*** 50.714*** 70.977*** 

 
0.167 0.446 0.088 0.242 0.179 0.549 4.684 12.52 

         Obs. 8979 1080 10065            1365 2336 289 10910 1380 
Standard Errors in Italics; ***, **, * indicate significance at 1%, 5% and 10%, respectively 
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Table 6. Decomposition Results - Cholesterol 
 

   Gini Decomposition 

Variables 
Individual 

responsibility % of G 
Direct  

circumstances % of G 
Indirect 

circumstances % of G 
Group 

responsibility % of G Total % of G 

Log Inc. 0.000104 0.09 - - -0.0096064 -8.62 0.00 0.00 
  Cotinine 0.000187 0.17 - - 0.0000701 0.06 -0.0000344 -0.03 
  Drinking 0.000302 0.27 - - 0.0003461 0.31 -0.0000313 -0.02 
  BMI 0.003277 2.94 - - -0.0183493 -16.47 0.0016825 1.51 
  Medication 0.000444 0.39 - - -0.0024236 -2.17 0.0002162 0.19 
  Total contribution  

of variables 0.004313 3.87 0.0493546 44.30 -0.0299631 -26.90 0.0018409 1.65 0.025 22.93 
Residuals 

        
0.085 77.06 

Gini 
        

0.111 
 Gini-IOP Decomposition 

Log Inc. 9.35E-05 0.09 - - -0.0086467 -8.62 4.51E-06 0.00 
  Cotinine 0.000168 0.16 - - 0.0000759 0.07 -0.0000438 -0.04 
  Drinking 0.000271 0.27 - - 0.000356 0.36 -0.0000725 -0.07 
  BMI 0.00295 2.94 - - -0.0150968 -15.05 0.0000906 0.09 
  Medication 0.0004 0.40 - - -0.0016117 -1.61 -0.0003757 -0.37 
  Total contribution  

of variables 0.003883 3.87 0.0444373 44.31 -0.0249233 -24.85 -0.00039689 -0.39 0.023 22.93 
Residuals         0.077 77.06 
Gini IOP         0.100  
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Table 7. Decomposition Results - Glycated Haemoglobin 
 

Gini Decomposition 

Variables 
Individual 

responsibility % of G 
Direct  

circumstances % of G 
Indirect 

circumstances % of G 
Group 

responsibility % of G Total % of G 

Log Inc. 0.0002591 0.52 - - -0.015095 -30.15 0.0000000 0.40 
  Cotinine 0.0004511 0.90 - - -0.000142 -0.28 -0.0000442 -0.09 
  Drinking 0.0003398 0.68 - - -0.000826 -1.65 0.0000160 0.03 
  BMI 0.001753 3.50 - - 0.0081025 16.19 0.0010819 2.16 
  Medication 0.0009651 1.93 - - 0.0009446 1.89 0.0013899 2.78 
  Total contribution  

of variables 0.0037681 7.53 0.0142 28.48 -0.007016 -14.02 0.0026429 5.28 0.013 27.27 
Residuals 

        
0.036 72.73 

Gini         0.050  

Gini-IOP Decomposition 

Log Inc. 0.000251 0.52 - - -0.01458 -30.06 0.0000000 0.30 
  Cotinine 0.000437 0.90 - - -0.00015 -0.31 -0.0000303 -0.06 
  Drinking 0.0003292 0.68 - - -0.00084 -1.74 0.0000595 0.12 
  BMI 0.0016981 3.50 - - 0.007995 16.49 0.0009014 1.86 
  Medication 0.0009349 1.93 - - 0.001403 2.89 0.0008586 1.77 
  Total contribution  

of variables 0.0036502 7.53 0.0138109 28.48 -0.00617 -12.73 0.0019367 3.99 0.013 27.27 
Residuals 

        
0.035 72.73 

Gini IOP 
        

0.048 
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Table 8. Decomposition Results - Fibrinogen 

Gini Decomposition 

Variables 
Individual 

responsibility 
% of G 

Direct  
circumstances 

% of G 
Indirect 

Circumstances 
% of G 

Group 
responsibility 

% of G Total % of G 

     Log Inc. 0.0008127 0.66 - - -0.0144275 -11.74 0.00 0.35   
Cotinine 0.0039524 3.22 - - -0.0005659 -0.46 0.0000577 0.05   
Drinking 0.0011498 0.94 - - -0.0016866 -1.37 0.0000944 0.08   

BMI 0.0084775 6.90 - - -0.0086303 -7.02 0.0013298 1.08   
Medication 0.0021356 1.74 - - -0.0012674 -1.03 0.0018965 1.54   

Total contribution  
of variables 

0.016528 13.45 0.0367661 29.92 -0.0265777 -21.63 0.0038071 3.10 0.030 24.84 

Residuals         0.092 75.16 
Gini         0.122  

Gini-IOP Decomposition 

Log Inc. 0.0007468 0.66 - - -0.0133315 -11.81 0.00 0.41   
Cotinine 0.0036318 3.22 - - -0.0005022 -0.44 0.0000352 0.03   
Drinking 0.0010565 0.94 - - -0.002492 -2.21 0.0010289 0.91   

BMI 0.00779 6.90 - - -0.0075136 -6.65 0.0008052 0.71   
Medication 0.0019624 1.74 - - 0.0003451 0.31 0.000233 0.21   

Total contribution  
of variables 

0.0151875 13.45 0.0337844 29.92 -0.0234942 -20.81 0.0025703 2.28 0.028 24.84 

Residuals         0.084 75.16 
Gini IOP         0.112  
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Table 9. Decomposition Results - Mean Arterial Pressure 

Gini Decomposition 

Variables 
Individual 

responsibility 
% of G 

Direct  
circumstances 

% of G 
Indirect 

circumstances 
% of G 

Group 
responsibility 

% of G Total % of G 

     Log Inc. 0.0003346 0.16 - - 0.0026497 1.25 0.000098 0.05   
Cotinine 0.0068108 3.21 - - 0.0001509 0.07 0.000788 0.37   
Drinking 0.0002791 0.13 - - 0.000072 0.03 -0.0000090 0.00   

BMI 0.0032326 1.52 - - -0.0051554 -2.43 0.0014766 0.70   
Medication 0.0006557 0.31 - - -0.0018088 -0.85 0.000413 0.19   

Total contribution  
of variables 0.0113128 5.33 0.0120879 5.70 -0.0040916 -1.93 0.0027666 1.30 0.022 10.40 
Residuals         0.190 89.60 

Gini         0.212  

Gini-IOP Decomposition 

Log Inc. 0.0003145 0.16 - - 0.0025041 1.25 0.0000644 0.03   
Cotinine 0.0064221 3.22 - - 0.0001928 0.10 0.0006931 0.35   
Drinking 0.0002516 0.13 - - -0.0000656 -0.03 0.0001239 0.06   

BMI 0.0030554 1.53 - - -0.003885 -1.95 0.0003978 0.20   
Medication 0.0006242 0.31 - - -0.0012472 -0.62 -0.0000577 -0.03   

Total contribution  
of variables 0.0106678 5.35 0.0114198 5.72 -0.0025009 -1.25 0.0012215 0.61 0.021 10.43 
Residuals         0.179 89.57 
Gini IOP         0.200  
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APPENDIX 

Table A.1 Regressions by type - Cholesterol 

 Type 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Cotinine 0.000 0.000** -0.000 0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 -0.000 0.001* 0.001 0.000 0.001* 0.000 
BMI 0.003 0.032*** 0.039*** 0.027*** 0.048*** 0.093*** 0.012 0.027*** 0.037** 0.016 0.065*** 0.097*** 0.006 0.034*** 0.028 0.025** 0.065*** 0.076*** 
Drinking 0.002 -0.000 -0.001 0.002** 0.001 0.001 0.002 0.004** -0.001 0.001 0.002* 0.000 -0.001 0.003 0.001 0.005** -0.000 0.001 
medication -0.129** 0.031 0.388*** -0.224*** -0.065 0.390* -0.101 -0.035 0.164 -0.141 0.053 -0.077 -0.188* 0.086 -0.031 -0.265*** -0.038 -0.102 
Log Inc. 0.027 0.037 0.096 0.018 -0.016 0.040 -0.050 0.042 0.007 0.010 -0.005 0.075 0.001 0.038 -0.036 -0.077 0.081 0.125 
Constant 5.836*** 3.905*** 2.518*** 4.872*** 4.451*** 1.786* 6.367*** 3.957*** 3.732*** 5.316*** 3.779*** 1.546*** 6.062*** 3.759*** 4.425*** 5.926*** 2.846*** 1.435 

Obs. 1080 794 197 890 678 172 403 622 194 523 612 263 374 706 177 493 630 171 

Standard Errors not reported. ***, **, * indicate significance at 1%, 5% and 10%, respectively 

 

Table A.2 Regressions by type - Glycated Haemoglobin 

 Type 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Cotinine 0.000 0.000*** 0.000* 0.000 0.000*** 0.000 0.000** 0.000 0.000 0.000 0.000** 0.001*** 0.000 0.000 0.000 0.001*** 0.001*** 0.002*** 
BMI 0.022*** 0.017*** 0.003 0.032*** 0.040*** -0.003 0.026*** 0.021*** 0.011** 0.034*** 0.023*** 0.014*** 0.014** 0.013*** 0.003 0.021*** 0.008 0.005 
Drinking -0.003*** -0.000 -0.001 -0.002*** 0.000 -0.001 -0.003* -0.001* -0.001 -0.002** -0.000 -0.000 -0.003* -0.001 -0.002 -0.003*** -0.001 0.003** 
medication 0.141*** 0.091*** 0.004 0.239*** 0.222*** -0.028 0.127** -0.016 -0.012 0.244*** 0.079* 0.092 0.115** 0.069** 0.012 0.200*** 0.202*** 0.032 
Log Inc. -0.037* 0.021 0.005 -0.140*** 0.025 -0.033 -0.059 -0.027 0.005 -0.062 0.000 -0.021 -0.120*** 0.019 -0.015 0.018 -0.008 -0.122* 
Constant 5.400*** 4.626*** 5.084*** 6.236*** 4.014*** 5.724*** 5.518*** 5.075*** 4.938*** 5.368*** 4.776*** 5.061*** 6.516*** 4.784*** 5.311*** 4.857*** 5.203*** 6.297*** 

Obs. 1365 791 196 1300 709 172 454 618 190 671 632 258 405 701 177 614 650 162 

Standard Errors not reported. ***, **, * indicate significance at 1%, 5% and 10%, respectively 
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Table A.3 Regressions by type - Fibrinogen 

 Type 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Cotinine 0.000 0.001** 0.000 0.001*** 0.001*** 0.001* 0.000 0.000 -0.000 0.001*** 0.001*** 0.000 0.001* 0.002*** -0.006 0.001 0.001*** -0.000 
BMI 0.023*** 0.061*** 0.045*** 0.001 0.024*** 0.028 0.018 0.044*** 0.050* 0.031** 0.034*** 0.015 0.046*** 0.044*** 0.059* 0.026 0.007 0.045* 
Drinking -0.006** 0.000 -0.008 -0.000 0.001 -0.001 -0.012*** 0.000 0.006 0.001 0.001 -0.001 -0.004 0.000 0.002 -0.000 0.002 -0.006* 
medication 0.031 0.176** 0.154 0.257*** 0.176* 0.464** 0.091 0.153* 0.178 0.109 0.143 -0.038 0.164 0.091 0.127 -0.012 0.343*** 0.687 
Log Inc. -0.057 0.021 -0.089 -0.075 0.018 0.044 -0.012 0.031 -0.236** -0.026 -0.022 0.051 0.013 -0.030 -0.333** -0.105 -0.008 0.025 
Constant 3.178*** 0.957* 2.544** 3.729*** 1.794*** 1.147 2.942*** 1.284* 3.896*** 2.311*** 1.903*** 1.713** 1.702 1.864*** 5.020** 3.371*** 2.426*** 1.323 

Obs. 289 231 47 267 204 38 105 154 43 125 163 58 90 175 30 109 179 29 

Standard Errors not reported. ***, **, * indicate significance at 1%, 5% and 10%, respectively 

 

Table A.4 Regressions by type - Mean Arterial Pressure 

 Type 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Cotinine -0.046*** -0.067*** -0.035** -0.052*** -0.038*** -0.067*** -0.042*** -0.039*** -0.075*** -0.054*** -0.075*** -0.031* -0.069*** -0.028** -0.089** -0.041*** 0.004 -0.013 
BMI 0.185 0.288 0.949** 0.390 0.494 1.066** -0.138 0.265 1.387*** 0.820** 0.161 0.902** 0.838** 0.406* 0.357 0.783** 0.719** 1.029* 
Drinking 0.070 0.026 -0.046 -0.046 -0.054* -0.074* -0.060 0.023 0.022 0.012 0.071* -0.002 -0.036 0.027 0.021 0.009 0.026 0.055 
medication -0.344 2.540 -2.069 -2.746 0.542 2.614 3.060 2.768 11.769*** -0.922 6.340** -4.452 4.179 1.169 1.791 -3.342 -1.977 5.130 
Log Inc. 0.783 0.510 3.522 0.765 2.954 0.330 -0.175 0.009 1.315 -0.306 1.887 -0.091 -1.978 -2.486 -1.312 2.274 -2.199 2.578 
Constant 70.977*** 63.957*** 10.377 70.071*** 36.027* 45.822* 88.614*** 67.086*** 20.980 65.601*** 56.542*** 54.324** 80.783*** 90.924*** 78.895** 40.740* 83.874*** 16.137 

Obs. 1380 834 314 1322 742 327 462 656 298 684 674 380 411 749 190 621 683 183 

Standard Errors not reported. ***, **, * indicate significance at 1%, 5% and 10%, respectively 
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