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Abstract

In this paper we study Dynamic Factor Models when the factors Ft are I(1) and singular,
i.e. rank(Ft) < dim(Ft). By combining the classic Granger Representation Theorem with
recent results by Anderson and Deistler on singular stochastic vectors, we prove that,
for generic values of the parameters, Ft has an Error Correction representation with two
unusual features: (i) the autoregressive matrix polynomial is finite, (ii) the number of
error-terms is equal to the number of transitory shocks plus the difference between the
dimension and the rank of Ft. This result is the basis for the correct specification of an
autoregressive model for Ft. Estimation of impulse-response functions is also discussed.
Results of an empirical analysis on a US quarterly database support the use of our model.
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1 Introduction

In the last fifteen years factor models have become increasingly popular in the economic
literature and they are nowadays commonly used by policy institutions, such as Central Banks
and Ministries. Due to the strong comovement among macroeconomic time series, these models
offer a realistic (and parsimonious) representation of the data, and, moreover, they have proven
successful both in forecasting (Stock and Watson, 2002a,b; Forni et al., 2005; Giannone et al.,
2008; Luciani, 2014), and in structural analysis (Giannone et al., 2005; Stock and Watson,
2005; Forni et al., 2009; Forni and Gambetti, 2010; Barigozzi et al., 2013; Luciani, 2013).

Factor models are based on the idea that fluctuations in the economy are due to a few
structural shocks (ut) affecting all the variables, and to several idiosyncratic shocks (gener-
ally of much less interest) resulting perhaps from measurement error or sectorial or regional
dynamics, and influencing just one or a few variables. Therefore, each variable in the dataset
(xit) can be decomposed into the sum of a common (χit) and an idiosyncratic component (ξit):
xit = χit + ξit (Forni et al., 2000; Forni and Lippi, 2001). Typically the common component
is assumed to be characterized by a linear combination of a small number of common factors
(Ft), χit = λiFt, with dynamics driven by the common shocks Ft = C(L)ut (Forni et al.,
2009).

If the factors Ft and the idiosyncratic terms are stationary, and hence the data are sta-
tionary as well, the factors and the loadings are estimated using principal components. The
common shocks ut and the impulse-response functions C(L) are then obtained by estimating
a singular VAR on Ft, where “singular” refers to the fact that the number of factors (dimen-
sion of Ft) is allowed to be greater than the number of shocks (dimension of ut). Lastly, the
impulse-response functions of the observable variables xit result by applying the loadings λi.

If the factors, and hence the data, are I(1), the variables xit are replaced by the first
differences (1−L)xit, and the same procedure can be used. With a few exceptions (Bai, 2004;
Bai and Ng, 2004; Peña and Poncela, 2004), this is the common practice. However, in this
setting all common shocks have a permanent effect on the levels of the non-stationary variables
by construction. That is, in this setting all common shocks induce common trends, which, of
course, is not the case if the ut are the main sources of macroeconomic fluctuations. There is,
indeed, full agreement in the macroeconomic literature that some shocks (such as technology
shocks) have permanent effects, while some others (such as monetary policy shocks) have only
transitory effects.

In this paper we study the case in which (i) the model is non–stationary, i.e. variables and
common factors are I(1), while the idiosyncratic components may or may not be I(1), (ii) the
vector of common factors (1−L)Ft is singular and has rational spectral density, i.e. it has an
ARMA representation.

The main contribution of this paper is to derive the correct autoregressive representation
for the vector of common factors under these assumptions. If (1− L)Ft is non singular, then
it is well known that an autoregressive model requires also an error correction term (Engle
and Granger, 1987). However, there exists large empirical evidence that the vector of common
factors is singular (see, among others Giannone et al., 2005, Amengual and Watson, 2007, Bai
and Ng, 2007, Forni and Gambetti, 2010, and Luciani, 2013 for the US, and Barigozzi et al.,
2013 for the euro area), and this case is more complicated and studied here.

We prove that for generic values of the parameters there exists a finite Vector Error Cor-
rection representation for singular I(1) vectors. This result is obtained by combining the
Granger Representation Theorem (Engle and Granger, 1987) with the results by Anderson
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and Deistler (2008a,b) on stationary vectors with singular rational spectral density. Singu-
larity plays a crucial role since this is what (generically) guarantees the existence of a finite
autoregressive representation. Moreover, the number of error-terms is equal to the number of
transitory shocks plus the difference between dimension and rank of Ft, as though there were
additional transitory shocks with zero loadings.

There exists also an alternative admissible representation for Ft consisting in assuming a
VAR in levels (Engle and Granger, 1987; Sims et al., 1990). However, as argued in Phillips
(1998), when the variables are cointegrated, the long-run features of the impulse-response
functions are consistently estimated only if the unit roots are explicitly taken into account,
that is within an Error Correction Model (see also Paruolo, 1997b).

Out of its intrinsic interest, our theorem provides a solid basis for consistent estimation
of the impulse-response functions in non-stationary Dynamic Factor Models. Precisely, once
the dimension of Ft and ut, as well as the vector Ft and the number of transitory shocks, are
estimated, our result can be used to correctly specify an Error Correction Model for Ft and
hence to recover the impulse-response functions.

Finally, we estimate a Dynamic Factor Model on a database of non-stationary US quarterly
variables. Results illustrate the importance of a correct specification for the autoregressive
representation of (1−L)Ft since using the Error Correction representation produces impulse-
response functions that are consistent with standard macroeconomic theory.

The rest of the paper is organized as follows: in Section 2, we state formally the problem
that we are addressing, while in Section 3 we formulate the basic assumptions and we define
what a permanent and a transitory shocks are. Then, in Section 4 we present the Granger
Representation Theorem for reduced–rank I(1) vectors. In Section 5 we discuss estimation,
while in Section 6 we present an empirical application. Finally, in Section 7 we summarize
the results and we conclude.

2 Statement of the problem

Consider the Dynamic Factor Model

xt = χt + ξt, χt = ΛFt, (1)

where: (1) the observables xt, the common components χt, and the idiosyncratic components
ξt are n-dimensional vectors, (2) Ft is an r-dimensional vector of common factors, with r
independent of n, (3) Λ is an n × r matrix. Moreover, Ft is driven by a q–dimensional
zero–mean white noise vector process ut, the common shocks, with q ≤ r.

With some exceptions, the theory of model (1) has been developed under the assumption
that xt, χt, ξt and Ft are stationary, or, more precisely, that the observable variables have
been reduced to stationarity by suitable transformations, first differences in particular (Bai
and Ng, 2002; Stock and Watson, 2002a; Forni et al., 2009). Only a few papers have explicitly
considered the consequences of non-stationarity (Bai, 2004; Bai and Ng, 2004).

Under stationarity it is usually assumed that Ft has a reduced–rank VAR representation:

A(L)Ft = Rut, (2)

where A(L) is a finite-degree r×r matrix polynomial and R is r×q. Moreover, it is well known
that in this settings Λ and Ft can be estimated by principal components, while an estimate
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of A(L), R and ut can be obtained by standard techniques. Inversion of A(L) provides an
estimate of the reduced-form impulse-response functions of the observables to the common
shocks:

xt = ΛA(L)−1Rut + ξt.

Structural shocks and structural impulse-response functions can then be obtained, respectively,
as wt = Qut and ΛA(L)−1RQ−1, where the q × q matrix Q is determined in the same way
as in Structural VARs (Forni et al., 2009).

The VAR representation (2) has a standard motivation as an approximation to an infi-
nite autoregressive representation with exponentially declining coefficients. However, as stated
above, Ft has reduced rank. Under reduced rank and rational spectral density for Ft, Anderson
and Deistler (2008a,b) prove that generically Ft has a finite-degree autoregressive represen-
tation, so that no approximation argument is needed to motivate (2). A formal statement of
this result requires the following definitions.

Definition 1 (Rational reduced-rank family) Assume that r > q > 0 and let G be a set
of ordered couples (S(L),C(L)), where:
(i) C(L) is an r × q polynomial matrix of degree s1 ≥ 0.
(ii) S(L) is an r × r polynomial matrix of degree s2 ≥ 0. S(0) = Ir.
(iii) Let θ be the vector containing the λ = rq(s1 + 1) + r2s2 coefficients of the entries of

C(L) and S(L). We assume that θ ∈ Π, where Π is an open subset of Rλ and that for
θ ∈ Π, if det(S(z)) = 0, then |z| > 1.

We say that the family of weakly stationary stochastic processes

Ft = S(L)−1C(L)ut, (3)

where ut is a q-dimensional white noise with non-singular variance-covariance matrix and
(S(L),C(L)) belongs to G, is a rational reduced-rank family.

Notice that (3) is the unique stationary solution of the ARMA equation

S(L)Zt = C(L)ut. (4)

Definition 2 (Genericity) Suppose that a statement Q(p) depends on p ∈ A, where A is
an open subset of Rµ. Then Q(p) holds generically in A if the subset N of A where it does
not hold is nowhere dense in A, i.e. the closure of N has no internal points.

Proposition 1 (Anderson and Deistler) (I) Suppose that V(L) is an r × q polynomial
matrix of degree s, with r > q. If V(L) is zeroless, i.e. has rank q for all complex numbers
z, then V(L) has a finite-degree polynomial stable left inverse, i.e. there exists a finite-degree
polynomial r×r matrix W(L), such that (i) det(W(z)) = 0 implies |z| > 1, (ii) W(L)V(L) =
V(0). (II) Let Ft = S(L)−1C(L)ut be a rational reduced-rank family with parameter set Π.
For generic values of the parameters in Π, C(L) is zeroless.

For statements (I) and (II) of Proposition 1, see Deistler et al. (2010), Theorems 3 and
2 respectively. The genericity statement (II) is obtained by Anderson and Deistler for the
parameters of the state-space representation. The same result is proved in the present paper
with the coefficients of the matrix polynomials of the ARMA representation (4) as parameters,
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see Proposition 2.1 Both statement (I) and our version of statement (II) are used in the proof
of Proposition 3.

Now suppose that Ft and xt are I(1) and that ξt is either I(1) or I(0). Taking first
differences in (1) we obtain

(1− L)xt = Λ(1− L)Ft + (1− L)ξt.

The matrix Λ, and (1−L)Ft can be estimated using standard factor techniques. However, if we
are interested in impulse-response functions and therefore in an autoregressive representation
for Ft, we must face a problem that is specific to the non-stationary case, i.e. the possibility
that Ft is cointegrated.

If r = q, cointegration of Ft has the consequence that an autoregressive model for Ft

must take the Error Correction form (Engle and Granger, 1987). The case r > q is more
complicated and still unexplored. Suppose that

(1− L)Ft = C(L)ut

is a rational reduced-rank family, where for simplicity we set S(L) = Ir.

(i) Let us firstly observe that a reduced-rank I(1) vector has at least r − q cointegration
vectors. In other words, denoting by c the cointegration rank of Ft, c ≥ r − q.

(ii) We might argue that generically C(z) has rank q for all z and therefore the cointegration
rank of Ft is generically r−q. However, the rank of C(z) at z = 1 has a special meaning,
as it depends on the number of equilibrium relationships between the processes Fft. Such
number usually has a theoretical or behavioral motivation, so that it cannot be modified
by any genericity argument. Thus we keep the result that C(z) is generically full rank
but only for z 6= 1.

(iii) If c = r−q, then rk(C(1)) = q and Anderson and Deistler’s result can be applied. In spite
of cointegration, generically (1− L)Ft has a finite-degree autoregressive representation

A(L)(1− L)Ft = C(0)ut. (5)

(iv) If c > r− q, then no autoregressive representation exists for (1−L)Ft, finite or infinite.
However, we prove that, irrespective of whether c is equal or greater than r−q, generically
Ft has a Vector Error Correction representation

A(L)Ft = A∗(L)(1− L)Ft + A(1)Ft−1 = h + C(0)ut, (6)

where the rank of A(1) is c, and A(L) and A∗(L) are finite-degree matrix polynomials.

(v) The finite-degree autoregressive representation of equation (6), unfortunately, is not
necessarily unique (as it is the case with full rank vectors). For example, when c = r−q,
(5) and (6) are two different autoregressive representations for Ft, the first with no error
terms, the second with r − q error terms. However, as we discuss in Section 5 and in
Appendix C, empirically this non-uniqueness does not represent a problem.

The existence of representation (6) for reduced-rank I(1) vectors, where A∗(L) is of finite
degree, is our main result. Its proof combines the Granger Representation Theorem by Engle
and Granger, with Anderson and Deistler’s results on singular stationary vectors with rational
spectral density.2

1See also Forni et al. (2009), Forni and Lippi (2010), Forni et al. (2014).
2Regarding the Granger Representation Theorem we closely follow Johansen (1995), Theorem 4.5, p. 55-57.
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3 Cointegration for reduced-rank vectors

3.1 Basic definitions and results

Assume that S(L) and C(L) are as in Definition 1 and that C(1) 6= 0. Setting U(L) =
S(L)−1C(L), consider the equation

(1− L)Ft = S(L)−1C(L)ut = U(L)ut. (7)

We can read (7) either as the definition of (1 − L)Ft or as a difference equation for Ft.
Assuming the second point of view, suppose that ujt ∈ L2(Ω,F , P ), for j = 1, . . . , q, where
(Ω,F , P ) is a probability space. Limiting the search to processes belonging to (Ω,F , P ), it
is easily seen that all the solutions of (7) are the processes FW

t = F̃t + W, where W is an
r-dimensional stochastic vector with Wf ∈ L2(Ω,F , P ), f = 1, . . . , r, and

F̃t =


U(L)(u1 + u2 + · · ·+ ut), for t > 0

0, for t = 0

−U(L)(u0 + u−1 + · · ·+ ut+1), for t < 0.

Because by assumption C(1) 6= 0 then a solution of (7) is I(1), see Johansen (1995, p. 35).
As no confusion can arise we will drop the reference to W and denote by Ft any solution of
(7).

Now, because S(1)−1 is a non-singular r × r matrix, the cointegration rank of Ft only
depends on C(1). Precisely, if c is the cointegration rank of Ft, then r > c ≥ r − q and the
matrix C(1) has rank r − c. As a consequence,

C(1) = ξη′, (8)

where ξ and η are r× (r− c) and q× (r− c), respectively, and are both of full rank r− c, see
Lancaster and Tismenetsky (1985, p. 97, Proposition 3), notice that q ≥ r − c. The matrix
C(L) has the (finite) Taylor expansion

C(L) = C(1)− (1− L)C′(1) +
1

2
(1− L)2C′′(1)− · · ·

Gathering all terms after the second and using (8),

C(L) = ξη′ − (1− L)C′(1) + (1− L)2C1(L), (9)

where C1(L) is a polynomial matrix.
Representation (9) can be used for a very convenient parameterization of C(L).

Definition 3 (Rational reduced-rank I(1) family with cointegration rank c) Assume
that r > q > 0, r > c ≥ r − q and let G be a set of couples (S(L),C(L)), where:
(i) The matrix C(L) has the representation

C(L) = ξη′ + (1− L)D + (1− L)2E(L), (10)

where ξ and η are r× (r− c) and q× (r− c) respectively, D is an r× q matrix and E(L)
is an r × q matrix polynomial of degree s1 ≥ 0.
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(ii) S(L) is an r × r polynomial matrix of degree s2. S(0) = Ir.
(iii) Let θ be the vector containing the λ = (r− c)(r+ q) + rq(1 +s1) + r2s2 coefficients of the

matrices in (10) and in S(L). We assume that θ ∈ Π, where Π is an open subset of Rλ
and that for θ ∈ Π, (a) ξ and η are of full rank r − c, (b) if det(S(z)) = 0 then |z| > 1,
(c) C(0) has rank q.

We say that the family of I(1) processes Ft, such that (1−L)Ft = S(L)−1C(L)ut, where ut is
a q-dimensional white noise with non-singular variance-covariance matrix and (S(L),C(L))
belongs to G, is a rational reduced-rank family with cointegration rank c.

Denoting by ξ⊥ an r × c matrix whose columns are linearly independent and orthogonal
to all columns of ξ, the columns of ξ⊥ are a full set of independent cointegrating vectors of
S(L)Ft, while the columns of ϑ = S(1)′ξ⊥ are a full set of independent cointegrating vectors
of Ft.

3.2 Permanent and transitory shocks

Let Ft be a rational reduced-rank I(1) family with cointegration rank c, S(L) and C(L) given
as in Definition 3, and (1− L)Ft = S(L)−1C(L)ut.

Denote by d the number of cointegration vectors exceeding the minimum r − q, so that
c = r− q+ d, or q− d = r− c. Of course q > d ≥ 0. Let η⊥ be a q× d matrix whose columns
are independent and orthogonal to the columns of η. The q × q matrix (η⊥ η) is invertible.
We have

C(L) (η⊥ η) =
(
ξη′ + (1− L)D + (1− L)2E(L)

)
(η⊥ η) =

[
0r×d ξη′η

]
+ (1− L)G(L),

where G(L) = (D + (1− L)E(L)) (η⊥ η) . Now let vt = [η⊥ η]−1 ut. Let us partition vt and
G(L) as

vt =

(
v1t

v2t

)
, G(L) =

(
G1(L) G2(L)

)
,

where v1t and v2t are d-dimensional and (q − d)-dimensional white noise respectively, G1(L)
and G2(L) are r × d and r × (q − d) respectively. We have

C(L)ut = (1− L)G1(L)v1t +
(
ξ̃ + (1− L)G2(L)

)
v2t, (11)

where ξ̃ = ξη′η is a full-rank r × (q − d), i.e. r × (r − c), matrix.
All the solutions of the difference equation (1− L)Ft = S(L)−1C(L)ut can be written as

Ft = S(L)−1 (G1(L)v1t + G2(L)v2t + Tt + Z) ,

where Z ∈ L2(Ω,F , P ), and

Tt =


ξ̃(v21 + v22 + · · ·+ v2t), for t > 0

0, for t = 0

−ξ̃(v20 + v2,−1 + · · ·+ v2,t+1), for t < 0.

As ξ̃ is full rank, we see that Ft is driven by the q− d = r− c permanent shocks v2t, and the
d temporary shocks v1t. Note that the number of permanent shocks is obtained as r minus
the cointegration rank, as usual. However, the number of transitory shocks is obtained as the
complement of the number of permanent shocks to q, not to r, as though r − q transitory
shocks had a zero coefficient.
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4 ECM representations for reduced rank I(1) vectors

Let Ft be a rational reduced-rank I(1) family with cointegration rank c with parameters in
the open set Π ∈ Rλ, S(L) and C(L) given as in Definition 3, (1− L)Ft = S(L)−1C(L)ut =
U(L)ut..

The matrix ζ =

(
ξ′⊥
ξ′

)
is r × r and invertible. We have

(1− L)ζS(L)Ft =

{(
0c×q
ξ′ξη′

)
+ (1− L)

(
ξ′⊥D
ξ′D

)
+ (1− L)2

(
ξ′⊥E(L)
ξ′E(L)

)}
ut

=

(
(1− L)Ic 0

0 Ir−c

){(
ξ′⊥D
ξ′ξη′

)
+ (1− L)

(
ξ′⊥E(L)
ξ′D

)
+ (1− L)2

(
0c×q
ξ′E(L)

)}
ut.

(12)
Taking the first c rows,

(1− L)ξ′⊥S(L)Ft = (1− L)
(
ξ′⊥D + (1− L)ξ′⊥E(L)

)
ut.

We assume that the solution for ξ′⊥S(L)Ft is weakly stationary with rational spectral density:

ξ′⊥S(L)Ft = k +
(
ξ′⊥D + (1− L)ξ′⊥E(L)

)
ut,

where k is a c-dimensional constant, see Appendix B. Notice that since

ξ′⊥S(L)Ft = ξ′⊥S(1)Ft + ξ′⊥S∗(L)(1− L)Ft,

and (1 − L)Ft is weakly stationary with rational spectral density, then ξ′⊥S(L)Ft is weakly
stationary with rational spectral density if and only if ξ′⊥S(1)Ft = ϑ′Ft is weakly stationary
with rational spectral density. Therefore,(

Ic 0
0 (1− L)Ir−c

)
ζS(L)Ft =(

k
0(r−c)×1

)
+

{(
ξ′⊥D
ξ′ξη′

)
+ (1− L)

(
ξ′⊥E(L)
ξ′D

)
+ (1− L)2

(
0c×q
ξ′E(L)

)}
ut.

Denote by M(L) the matrix between curly brackets. The following statement is proved in
Appendix A.

Proposition 2 Assume that the family of I(1) processes Ft, such that (1−L)Ft = S(L)−1C(L)ut,
is a rational reduced-rank I(1) family with cointegration rank c and parameter set Π. Then,
for generic values of the parameters in Π, the r × q matrix M(z) is zeroless. In particular,
generically, the rank of

M(1) =

(
ξ′⊥D
ξ′ξη′

)
is q.3

3For r = q, the statement that rank(M(1)) = q is equivalent to the condition that ξ⊥C
∗η⊥ has full rank

in Johansen (1995), Theorem 5.4, p. 55.
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A consequence of Proposition 2 and Proposition 1(I) is that generically there exists a
finite-degree r × r polynomial matrix

N(L) = Ir + N1L+ · · ·+ NpL
p,

for some p, such that: (i) N(L)M(L) = M(0), i.e. N(L) is a left inverse of M(L); (ii) all the
roots of det(N(L)) lie outside the unit circle, so that N(1) has full rank.

In conclusion, for generic values of the parameters in Π,

A(L)Ft = h + C(0)ut,

where

A(L) = Ir + A1L+ · · ·+ APL
P = ζ−1N(L)

(
Ic 0
0 (1− L)Ir−c

)
ζS(L)

= ζ−1N(L)

(
ξ′⊥

(1− L)ξ′

)
S(L),

with P = p+ 1 + s2, and

h = A(1)

(
k

0(r−c)×1

)
.

Defining

α = ζ−1N(1)

(
Ic

0(r−c)×c

)
,

and setting β = ϑ = S(1)′ξ⊥, both α and β have rank c (regarding α, remember that N(1)
has full rank) and A(1) = αβ′. Lastly, define A∗(L) = (1 − L)−1(A(L) −A(1)L). We have
proved the following statement.

Proposition 3 (Granger Representation Theorem for reduced-rank I(1) vectors)
Assume that (i) Ft is a rational reduced-rank I(1) family with cointegration rank c, parame-
terized in the open set Π ⊂ Rλ, (ii) β′Ft = ξ′⊥S(1)Ft is weakly stationary with rational spectral
density and mean k. Then for generic values of the parameters, Ft has the Error Correction
representation

A(L)Ft = A∗(L)(1− L)Ft +αβ′Ft−1 = h + C(0)ut, (13)

where (1) the r× r finite-degree polynomial matrices A(L) and A∗(L), (2) the full-rank r× c
matrices α and β, (3) the r-dimensional constant vector h, have been defined above.

Lastly, as shown in Appendix C, representation (13) is not unique since: (i) different Error
Correction Representations can be obtained in which the number of error terms varies between
d and r − q + d, the latter being the number chosen in Proposition 3; (ii) the left inverse of
the matrix M(L) may be not unique.

However, non-uniqueness only affects the autoregressive representations, not the impulse-
response functions. Suppose that Ft fulfills both (1− L)Ft = S(L)−1C(L)ut = U(L)ut and

B(L)Ft = h + C(0)ut (14)

where B(0) = Ir. Multiplying both sides of (14) by (1− L), we have

B(L)U(L)ut = (1− L)C(0)ut.
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Since ut is a non-singular q-dimensional white noise, this implies

B(L)U(L)=(1− L)C(0).

Now let K(L) = Ir + K1L+ · · · be such that K(L)B(L) = Ir, which is obtained by setting

K1 = −B1, K2 = −K1B1 −B2, . . .

We have
U(L) = (1− L)K(L)C(0),

that is
K1C(0) = U1 + C(0), K2C(0) = U2 + K1C(0), . . .

Therefore, as U(0) = C(0), the sequence

C(0), K1C(0), K2C(0), . . .

only depends on U(L). Note also that, because ut is non-singular, U(L) is uniquely determined
by (1− L)Ft and ut.

On the other hand, let

u∗t =

{
u∗ for t = 0

0q for t 6= 0

and define F∗t as the solution of (14) such that ut = u∗t and F∗t = 0r for t < 0. It is easily
seen that, for t ≥ 0,

F∗t = K(L)C(0)u∗t = KtC(0)u∗. (15)

We refer to the sequence Ψt = KtC(0), t = 0, 1, . . ., as the impulse-response function of Ft

with respect to ut. We have seen the impulse-response function of Ft with respect to ut is
independent of the particular autoregressive representation of Ft. Replacing ut with any other
white noise vector wt = Qut, as we do when the shocks are identified according to economic
considerations, produces different impulse-response functions.

Expressions K(L) = A(L)−1 and Ψ(L) = A(L)−1C(0) are convenient and do make sense,
provided we do not forget that A(L)−1 is not a square-summable filter, and A(L)−1C(0)ut
only makes sense when ut has special specifications, u∗t in particular.

Non-uniqueness of the autoregeressive representations of Ft and its consequences for esti-
mation are discussed in detail in Appendix C.

5 Estimation

Let xt be an n–dimensional I(1) vector, with no deterministic component, described by the
following Dynamic Factor Model:

xt = ΛFt + ξt, (16)
(1− L)Ft = S(L)−1C(L)ut = U(L)ut, (17)

where Λ is n× r, Ft is r × 1, ut is q × 1, S(L) and C(L) are as in Definition 3, and U(L) is
r × q, with n > r > q.

10



We have shown in Proposition 3 that when C(1) has rank q− d, then the common factors
Ft have the VECM representation (13) with impulse-response functions Ψ(L) = A(L)−1C(0).
Denoting by Φ(L) the impulse-response functions of the observables xt with respect to ut, we
have:

Φ(L) = ΛΨ(L) = ΛA(L)−1C(0). (18)

In this Section we discuss estimation of Φ(L). In order to do so, we first state some stan-
dard assumptions regarding the factor model, then we discuss how to determine the number
of common trends, and how to estimate the levels of the common factors.

Let us denote with Σ∆χ(θ), for θ ∈ [−π, π], the spectral density matrix of (1−L)χt = Λ(1−
L)Ft, and with λ∆χ

j (θ) its j–th largest dynamic eigenvalue. Similarly, we denote the covariance
matrix of (1 − L)χt as Γ∆χ and as µ∆χ

j its j–largest eigenvalue. Analogous definitions hold
for other processes. Let τ = q − d the number of common trends. We then summarize the
main assumptions.

(i) For any j = 1, . . . , q, and almost everywhere in [−π, π], limn→∞ λ
∆χ
j (θ) =∞.

(ii) For any j = 1, . . . , r, limn→∞ µ
∆χ
j =∞.

(iii) There exists a constant M such that λ∆ξ
1 (θ) ≤M for any n ∈ N and θ a.e.in [π, π]. This

implies also that µ∆ξ
1 ≤M for any n ∈ N.

(iv) The loadings matrix is full–rank, i.e. rk(Λ) = r.

Assumptions (i), (ii), and (iii) are taken from Forni et al. (2000), Hallin and Liška (2007),
and Forni et al. (2009). In particular, assumption (iii) allows both for some degree of cross–
correlation among idiosyncratic components, and for serial correlation in (1−L)ξt, as well as
for unit roots in ξt. Moreover, under assumptions (i) and (iii) Forni et al. (2000) prove that
the spectral density matrix of (1− L)xt has just the q largest dynamic eigenvalues diverging
as n→∞ almost everywhere in [−π, π], the other n− q being uniformly bounded.

Assumption (iv) ensures that the cointegration between common components is entirely
due to the cointegration in the common factors, thus allowing for identification of the number
of common trends as discussed below.

Lastly, in addition to assumption (i)-(iv) we also require that all spectral densities and
covariance matrices are well defined. For details on the required assumptions we refer the
reader to Forni et al. (2000) and Hallin and Liška (2007) for the former, and to Bai and Ng
(2002) and Bai (2004) for the latter.

5.1 Determining the number of common factors, shocks, and trends

From (17), and assuming for simplicity orthonormal shocks, i.e. E[utu
′
t] = Iq, we can write

the spectral density matrix of (1− L)χt as:

Σ∆χ(θ) = ΛU(e−iθ)U′(eiθ)Λ′, (19)

which, since rk(C(1)) = τ , rk(S(1)) = r, and rk(Λ) = r by assumption (iv), implies
rk(U(1)) = τ and rk(Σ∆χ(0)) = τ .

As a consequence of (19) and given assumption (i), Σ∆χ(θ) has at most τ ≤ q diverging
eigenvalues at θ = 0. Thus it can be proved that, as n→∞, the spectral density of (1−L)xt
has just its τ largest dynamic eigenvalues diverging at θ = 0.
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The criterion we propose to determine the number of common trends is a modified version
of the criterion by Hallin and Liška (2007), who determine the total number of common shocks,
q, on the basis of the asymptotic behavior of the dynamic eigenvalues at all frequencies. Our
criterion, instead, determines the number of common trends by studying the behavior of the
eigenvalues just at frequency zero. In particular, given a consistent estimator of the spectral
density matrix of the data and of its eigenvalues λ̂∆x

j (θ), the estimated number of common
trends is such that

τ̂ = arg min
τ∈[0,τmax]

log

 n∑
j=τ+1

λ̂∆x
j (0)

+ kp(n, T )

 , (20)

where τmax is the maximum number of common trends we allow for, k ∈ [0, kmax] is a constant
which helps in tuning the penalization as explained in Hallin and Liška (2007), T is the sample
size, and p(n, T ) is an appropriate penalty function. In Barigozzi et al. (2013a) we study in
detail the asymptotic and numerical properties of the estimator given in (20), and we prove
that as n, T →∞ the number of common trends is consistently selected.

Finally, the criterion by Hallin and Liška (2007) can be applied to (1−L)xt for determining
q̂, while the number of common factors, r̂, can be determined by using the information criterion
by Bai and Ng (2002) or Alessi et al. (2010) based on principal components of (1 − L)xt.
Consistency of selection of the number of common shocks q̂ and common factors r̂, as n, T →
∞, is proved in the cited papers.4

An alternative way to determine the number of common trends consists in using the test
of Bai and Ng (2004). Note, however, that this test is not developed for the singular case,
and hence its properties in this setting are unknown. On the other hand, testing for the
number of common trends or the number of cointegration relations in F̂t (e.g. Johansen, 1988,
1991; Stock and Watson, 1988; Phillips and Ouliaris, 1988) is not possible since, in addition
of being developed for the non-singular case, they do not take into account that F̂t is an
estimated quantity. Moreover, in our setting testing for cointegration is even more complex
since the cointegration rank is not unique (see Appendix C for details). We by-pass all these
problems since we work directly on the observables xt, and since the number of common
trends is unique, thus providing, once it is determined, the correct VECM representation for
the common factors. Lastly, there exists also a criterion developed by Bai (2004) for the
number of non-stationary factors. However, as discussed below, this criterion is based on
assumptions that are too restrictive for our setting.

5.2 Estimating the common factors

In order to estimate the VECM representation (13), we need an estimate of the levels of the
common factors.

Given a consistent estimator Γ̂∆x of the covariance matrix, we can estimate the loadings,
Λ̂, using the eigenvectors corresponding to the r–largest eigenvalues of Γ̂∆x. An estimate of
the first differences of the common factors is then obtained by taking principal components,
i.e. by projecting (1 − L)xt onto the space spanned by Λ̂. Denote such projection as f̂t.
Bai and Ng (2004) prove that, independently of whether ξt is stationary or not, the common

4Other criteria or tests for r are Onatski (2010), Kapetanios (2010), and Ahn and Horenstein (2013), and
for q are Bai and Ng (2007), Amengual and Watson (2007), and Onatski (2009).
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factors can then be consistently estimated,for n, T →∞, as:

F̂t =

T∑
t=1

(Λ̂′Λ̂)−1Λ̂′(1− L)xt, . (21)

An alternative strategy, that we study in a companion paper (Barigozzi et al., 2013b),
consists in projecting the data xt onto the space spanned by the estimated loadings, i.e.

F̂t = (Λ̂′Λ̂)−1Λ̂′xt. (22)

Although (21) and (22) are asymptotically equivalent, we show in Barigozzi et al. (2013b) that
our estimator has better finite sample properties when allowing for both stationary and non–
stationary idiosyncratic components. Empirically, this is especially useful for macroeconomic
datasets. Finally, notice that, in order to identify the scale of the loadings we have to impose
a normalization on Λ̂. For example, we can define Λ̂ to be given by

√
n times the normalized

eigenvectors of the covariance matrix.
Another possible estimator is given by Bai (2004) who suggests to estimate Ft based on

principal components applied to a consistent estimator of the covariance matrix of xt, i.e. of the
data in levels. Such procedure is consistent only under the assumption that the idiosyncratic
component is stationary (see also Peña and Poncela, 2004). However, this assumption might
be plausible in some settings but it is unrealistic in macroeconomic databases as it implies
cointegration among all the variables in the panel. This can be easily seen with an example.
Suppose we have a model with just one factor: xt = ΛFt + ξt, where Ft ∼ I(1) and ξt ∼ I(0).
Let us take a linear combination of the i-th and the j-th variable, say zt = xit − βxjt. Then
we can also write zt = (λi−βλj)Ft + (ξit−βξjt). If we take β = λi/λj , we get zt = ξit−βξjt,
which is stationary since ξit, ξjt ∼ I(0). Hence xit, and xjt are cointegrated. This example
can be generalized to prove that if ξt ∼ I(0), then any group of r+ 1 variables is cointegrated.

5.3 Estimating the impulse-response functions

Once we select the number of common factors, shocks, and trends, and given estimates of
the factors, we can estimate the VECM representation (13). The procedure presented here
is analogous to the one proposed by Forni et al. (2009), with the exception of the Error
Correction term.

First, we estimate the VECM in (13) on F̂t with r̂− τ̂ cointegration relations, by using one
of the available methods (Engle and Granger, 1987; Johansen, 1988, 1991; Stock and Watson,
1993; Phillips, 1995). We thus obtain Â∗(L), α̂, β̂, ĥ, and an r×1 vector of residuals v̂t. Then,
we estimate Ĉ(0) as the matrix of eigenvectors corresponding to the q largest eigenvalues of
the sample covariance matrix of the residuals, Γ̂v = T−1v̂′tv̂t.

The estimated impulse-response functions are then given by (18), i.e. Φ̂(L) = Λ̂(Â(L))−1

Ĉ(0), where Â(L) = (1− L)Â∗(L) + Â(1) with Â(1) = α̂β̂′.

6 Empirical Application

The empirical analysis is carried out on a panel of 103 quarterly series from 1960Q3 to 2012Q4
describing the US economy. The variables cover 12 different categories: Industrial Production,
Consumer Price Indexes, Producer Price Indexes, Monetary Aggregates, Banking, GDP and
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its Components, Housing Sector, Productivity and Costs, Interest Rates, Employment and
Population, Survey, and Financial Markets.5 All the variables in the dataset are detrended
in order to remove the deterministic components, therefore the impulse responses estimated
here need to be interpreted as reactions of detrended variables.

The model is estimated as explained in the previous Section with the common factors
estimated using (22). In particular, we set r̂ = 7, q̂ = 3, and τ̂ = 1. Moreover, it is well
known that in (18) impulse–response functions and common shocks are identified only up
to multiplication by a q × q invertible matrix. Hence, in order to achieve identification, it
is necessary to impose economically meaningful restrictions analogous to those imposed in
Structural VAR analysis. In particular, the Structural VECM was first introduced in King
et al. (1991) and then developed in Paruolo (1997a), Gonzalo and Ng (2001), Vlaar (2004),
Omtzigt and Paruolo (2005), and Pagan and Pesaran (2008) among others. In this Section
we provide results using two different identification schemes.

First, we identify a monetary policy shock using sign restrictions on the first three lags, i.e.
by assuming that a shock increases the Federal Funds Rate, while it decreases GDP and the
Consumer Prices Index. In Figure 1 we present the impulse–response functions for selected
variables of interests together with 68% bootstrap confidence bands. For a description of the
sign restrictions and of the bootstrap algorithm we refer the reader to Barigozzi et al. (2013)
and Luciani (2013). The left column of Figure 1 shows impulse–response functions obtained
by estimating a VECM on the common factors as in (13), while the right column shows the
impulse–responses obtained by estimating (13) without the Error Correction term, i.e. es-
timating a VAR in first differences. Results show that when considering also the presence
of temporary shocks (left column), the reaction of the Federal Funds Rate does not change,
whereas the responses of GDP and the Consumer Price Index change substantially. In par-
ticular, GDP decreases as far as -0.65% but then reverts to zero, while the Consumer Price
Index does not revert to zero but it stabilizes around -2%, meaning that inflation reverts to
zero, as predicted by macroeconomic theory.

Second, we identify a technology shock by long–run restrictions as in Blanchard and Quah
(1989), that is by assuming that the other two (transitory) shocks have no long–run effects
on real variables. In Figure 2 we present the impulse–response functions for GDP, Hours
Worked, Unemployment Rate together with 68% bootstrap confidence bands. Results for
the VECM specification (left column) show that all variables have a hump shaped response,
with a maximum between six and seven quarters after the shock and then reverting without,
however, reaching the steady state. The response of GDP is positive and a similar response has
also been found by Dedola and Neri (2007) and Smets and Wouters (2007). With respect to
hours worked, there is a large debate in the macroeconomic literature on whether hours should
increase –as predicted by a Real Business Cycle model– or should decrease –as predicted by
a New Keynesian model– after a positive technology shock. The empirical evidence is mixed
with some authors suggesting that it decreases (Galì, 1999; Francis and Ramey, 2005) and
some others pointing towards the opposite direction (Christiano et al., 2003; Dedola and Neri,
2007). Our results are consistent with predictions of a Real Business Cycle model.

To sum up, in this Section we have shown the importance of a correct specification for the
autoregressive representation of (1−L)Ft. Our exercise shows that using the Error Correction
representation derived in Proposition 3 produces impulse-response functions that are consis-
tent with standard macroeconomic theory, whereas estimating a VAR for the factors in first

5The complete list of variables and transformations is reported in Appendix D.
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Figure 1: Impulse Response Functions to a Monetary Policy Shock
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In each plot, solid and dotted lines represent, respectively, the estimated impulse–response and the 68% bootstrap confidence bands.
The monetary policy shock is normalized so that at impact it raises the Federal Funds rate by 50 basis points. The confidence band
are computed in the standard way as in (Efron and Tibshirani, 1993).

differences, which is the usual practice with Dynamic Factor Models, not necessarily does. In
particular, due to cumulation of impulse-responses, when adopting a VAR specification the
estimated responses are unrealistically high and persistent.

7 Summary and conclusions

In this paper we studied non-stationary Dynamic Factor Models. To this end, we linked
the literature on stationary Dynamic Factor Models (Stock and Watson, 2005; Forni et al.,
2009) with the literature on cointegration (Engle and Granger, 1987; Johansen, 1988, 1991),
on common trends (Stock and Watson, 1988; Vahid and Engle, 1993; Lippi and Reichlin,
1994), and on singular stochastic processes (Anderson and Deistler, 2008a,b). In particular,
we analyze the autoregressive representation of the I(1) singular vector Ft, the relationship
between cointegration rank and the number transitory shocks, and estimation of the impulse-
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Figure 2: Impulse Response Functions to a Technology Shock
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In each plot, solid and dotted lines represent, respectively, the estimated impulse–response and the 68% bootstrap confidence bands.
The permanent shock is normalized so that at impact it raises GDP of 1%. The confidence band are computed as in Hall (1992).
This procedure is recommended by Brüggemann (2006) since, when imposing long-run restrictions, the standard percentile bootstrap
interval is less informative about the sign of the impulse-response function.

response functions.
Under the assumption that the common factors have rational spectral density, we prove

that for generic values of the parameters there exists a finite Error Correction representation
for (1 − L)Ft, where the number of error terms is equal to the number of transitory shocks,
plus the difference between the dimension of Ft and the dimension of ut, i.e. the vector of
common shocks. Although presented in the Factor Model context, our results hold for any
singular vector with rational spectral density.

We use this result to construct impulse-response functions. As shown in Stock and Watson
(2005) and Forni et al. (2009), identifying restrictions used in Structural VAR analysis can be
applied to the identification of structural shocks and impulse-response functions in stationary
Dynamic Factor Models (see Giannone et al., 2005; Stock and Watson, 2005; Forni et al., 2009;
Forni and Gambetti, 2010; Barigozzi et al., 2013; Luciani, 2013, for applications). Here we
study the case in which the common factors are I(1) and cointegrated. Once the autoregres-
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sive representation is correctly specified, the identifying restrictions of the Structural VECM
analysis can be applied to I(1) Dynamic Factor Models.

Results of an empirical analysis on a US quarterly database illustrate the importance of
a correct specification for the autoregressive representation of (1− L)Ft. Our exercise shows
that our approach produces impulse-response functions that are consistent with standard
macroeconomic theory, whereas the usual practice of estimating a VAR on (1 − L)Ft not
necessarily does.
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Appendix A Proof of Proposition 2

Remark 1 Suppose that the statement S(p), depending on a vector p ∈ Π, is equivalent to a
set of polynomial equations for the parameters, for example the statement that rk(M(1)) < q.
Statement S(p) is true either for a nowhere dense subset of Π or for the whole Π. Thus, if the
statement is false for one point in Π, it is true for a nowhere dense subset of Π. Moreover,
S(p) can be obviously extended to any p ∈ Rλ and, as Π is an open subset of Rλ, if the
statement S is false for one point in Rλ, then it is true for a nowhere dense subset of Rλ and
therefore of Π.

Remark 2 Consider the polynomials

A(z) = a0z
n + a1z

n−1 + · · ·+ an, B(z) = b0z
m + b1z

m−1 + · · ·+ am

and let αi, i = 1, . . . , n and βj, j = 1, . . . ,m, be the roots of A and B respectively. Suppose
that a0 6= 0 and b0 6= 0. Then

am0 b
n
0

∏
i,j

(αi − βj) = R(a0, a1, . . . , an; b0, b1, . . . , bm),

where R is a polynomial function. The function R is called the resultant of A and B. The
resultant vanishes if and only if A and B have a common root, see van der Waerden (1953,
pp. 83-4). Now suppose that the coefficients ai and bj are polynomial functions of p ∈ Π.
Then, by Remark 1, if there exists a point p̃ ∈ Π (or p̃ ∈ Rλ) such that a0(p̃) 6= 0, b0(p̃) 6= 0,
and R(p̃) 6= 0, then generically A and B have no common roots.

Remark 3 Recall that a zero of M(z) is a complex number z∗ such that rk(M(z∗) < q (see
Proposition 1). If M(z) has two q×q submatrices whose determinants have no common roots,
then M(z) is zeroless.

Starting with
C(z) = ξη′ + (1− z)D + (1− z)2E(z),

we obtain, see Section 4,

ζC(z) =

(
(1− z)Ic 0

0 Ir−c

){(
ξ′⊥D
ξ′ξη′

)
+ (1− z)

(
ξ′⊥E(z)
ξ′D

)
+ (1− z)2

(
0c×q
ξ′E(z)

)}
=

(
(1− z)Ic 0

0 Ir−c

)
M(z).

With no loss of generality we can assume that r = q+ 1. We denote by M1(z) and M2(z)
the q × q matrices obtained by dropping the first and the last row of M(z) respectively. The
degrees of the polynomials det(M1(z)) and det(M2(z)) are d1 = (q − d)(s1 + 2) + d(s1 + 1)
and d2 = (q − d− 1)(s1 + 2) + (d+ 1)(s1 + 1) respectively.

Let us now define a subfamily of M(z), denoted by M(z), obtained by specifying ηηη, ξξξ, ξξξ′⊥,
D and E(L) in the following way:

η′ =
(
0(q−d)×dIq−d

)
, ξ =

(
Iq−d

0c×(q−d)

)
, ξ′⊥ =

(
K
H

)
, D =

(
H′ 0(q+1)×(q−d)

)
, E(z) =

E1(z)
E2(z)
E3(z)

 ,
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where
K =

(
01×(q−d) 1 01×d

)
, H =

(
0d×(q+1−d) Id

)
,

E1(z) =


k1(z) h1(z) · · · 0

0(q−d)×d
. . . . . .

. . . hq−d−1(z)
0 · · · kq−d(z)


E2(z) =

(
e(z) 01×(q−1)

)

E3(z) =

f1(z) g1(z) · · · 0
. . . . . . 0d×(q−d−1)

0 · · · fd(z) gd(z)

 ,

the polynomial entries e, ki, hi, fi and gi being of degree s1. We have:

M(z) =

 01×d 01×(q−d)

Id 0d×(q−d)

0(q−d)×d Iq−d

+ (1− z)

 E2(z)
E3(z)

0(q−d)×q

+ (1− z)2

 01×q
0d×q
E1(z)

 .

Notice that M(z) has zero entries except for the diagonal joining the positions (1, 1) and (q, q),
and the diagonal joining (2, 1) and (q + 1, q). The matrices M1(z) and M2(z), obtained by
dropping the first and the last row of M(z), respectively, are upper- and lower-triangular,
respectively. Moreover,

det(M1(z)) = [1 + (1− z)f1(z)] · · · [(1 + (1− z)fd(z)]
× [1 + (1− z)2k1(z)] · · · [1 + (1− z)2kq−d(z)]

det(M2(z)) = (1− z)2q−d−1e(z)[g1(z) · · · gd(z)][h1(z) · · ·hq−d−1(z)]

Now:
(i) The leading coefficient of det(M1(z)), call it Q

1
, corresponding to zd1 , is the product

of the leading coefficients of the polynomials kj(z), j = 1, . . . , (q − d) and fi(z), i =
1, . . . , d. Trivially, there exist values for the parameters of the polynomials kj and fi,
such that Q

1
6= 0. Let ωωω1 be the vector of such parameters and Mω1

1 (z) the matrix
M1(z) corresponding to the parameters in ωωω1.

(ii) Now observe, firstly, that the polynomials det(M1(z)) and det(M2(z)) have no param-
eters in common, and, secondly, that the parameters of det(M2(z)) vary in an open set
(they are a subvector of the parameters vector of M(z), which varies in the open set
Π). As a consequence, there exist parameters for the polynomials e, gj and hi, call ωωω2

the vector of such parameters, such that (1) the leading coefficient of det(Mω2
2 (z)) does

not vanish, (2) det(Mω1
1 (z)) and det(Mω2

2 (z)) have no roots in common. This implies
that, as the leading coefficient of det(Mω1

1 (z)) does not vanish as well, the resultant of
det(Mω1

1 (z)) and det(Mω2
2 (z)) does not vanish, see Remark 2.

(iii) Combining the parameters in ωωω1 and ωωω2, we determine a point p ∈ Π such that the
leading coefficient of det(M

p

1(z)) and det(M
p

2(z)) and their resultant do not vanish. As
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the leading coefficients and the resultant of det(M1(z)) and det(M2(z)) are polynomial
functions of the parameters in p, then by Remarks 2 and 3, M(z) is generically zeroless.

Appendix B Stationary solutions of (1− L)yt = (1− L)zt

Assume that zt is a g-dimensional, weakly stationary process with the moving-average rep-
resentation zt = M(L)vt, where (i) vt is an s-dimensional white noise and s ≤ g, (ii) vjt
belongs to L2(Ω,F , P ), for j = 1, 2, . . . , k, (iii) M(L) is a g × s square-summable matrix.
Moreover, assume that zkt and vjt, for t ∈ Z, k = 1, 2, . . . , g, j = 1, 2, . . . , s, span the same
subspace of L2(Ω,F , P ). Assumption (iii) holds, for example, if zt = M(L)vt is a fundamental
representation of zt. Moreover, suppose that yt fulfills

(1− L)yt = (1− L)zt (B1)

and yjt ∈ L2(Ω,F , P ) for j = 1, 2, . . . , g. Because zt trivially fulfills (B1),

yt = K + zt

where K is a g-dimensional stochastic variable belonging to L2(Ω,F , P ). Let

K = N(L)v0 + H = V + H.

be the orthogonal projection of K on the space spanned by vk, k ∈ Z. In general the filter
N(L) is two-sided. We have

E(yty
′
t) = E(VV′) + E(HH′) + E(ztz

′
t) + E(Vz′t) + E(ztV

′).

The last two terms tend to zero when t tends to infinity (by the same argument used to prove
that the covariances of a moving average tend to zero as the lag tends to infinity). Therefore,
if yt is weakly stationary they must be zero for all t ∈ Z. This implies that V is orthogonal to
zt for t ∈ Z and therefore to vt for t ∈ Z. As V is an average of vt, V = 0. In conclusion, all
the stationary solutions of (B1) are yt = K + zt with K orthogonal to zt for all t ∈ Z. Lastly,
yt has a spectral density if and only if K is a constant, and in that case the spectral densities
of yt and zt coincide. This proves the statement in the last paragraph of Section 3.2.

Appendix C Non uniqueness

In Proposition 3 we prove that a singular I(1) vector has a finite Error Correction representa-
tion with r − q + d error corrections. Unfortunately, this representation is not unique. There
are two type of non uniqueness here: the first is related with the number of error correction
terms, while the second is related with the degree of the autoregressive polynomial.

Alternative representations with different numbers of error terms

Let, for simplicity, S(L) = Ir and consider the following example, with r = 3, q = 2, c = 2, so
that d = 1:
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ξ′ =
(
1 1 1

)
η′ =

(
1 2

)
ξ′⊥ =

(
1 −1 0
0 1 −1

)
We have,

(1− L)

(
ξ′⊥
ξ′

)
Ft =

1− L 0 0
0 1− L 0
0 0 1


d11 − d21 d12 − d22

d21 − d31 d22 − d32

3 6

+ (1− L)G(L)

ut,

where (1 − L)G(L) gathers the second and third terms within curly brackets in the second
line of (12). If the first matrix within the curly brackets has full rank, we can proceed as in
Proposition 3 and obtain an Error Correction representation with errors

ξ′⊥Ft =

(
F1t − F2t

F2t − F3t

)
.

However, we also have

(1− L)

(
ξ′⊥
ξ′

)
Ft =

1− L 0 0
0 1 0
0 0 1


 d11 − d21 d12 − d22

(1− L)(d21 − d31) (1− L)(d22 − d32)
3 6


+(1− L)G̃(L)

}
ut =

1− L 0 0
0 1 0
0 0 1

 M̃(L)ut.

Assuming that the matrix (
d11 − d21 d12 − d22

3 6

)
is non-singular, the matrix M̃(L) is zeroless and has therefore a finite-degree left inverse.
Proceeding as in Proposition 3, we obtain an alternative Error Correction representation with
just one error, namely F1t − F2t.

The example above can be generalized to show that generically Ft admits Error Correction
representations with a minimum d and a maximum r − q + d of error terms. In particular,
if d = 0, in addition to an Error Correction representation, Ft generically has a finite-degree
autoregressive representation with no error terms, consistently with the fact that in this case
C(L) is generically zeroless.

However, as we have seen at the end of Section 4, different autoregressive representations
produce the same impulse-response functions. Therefore our choice of the maximum number
of error terms has no consequence for our purposes.

The left inverse of M(L) is not unique

In this Section we show that the autoregressive polynomial is not unique. This is a standard
problem when dealing with non singular vectors, which is also discussed in Forni and Lippi
(2010), Forni et al. (2014).
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Consider

(1− L)Ft =

(
1 + aL
1 + bL

)
ut, (C2)

with r = 2, q = 1, d = 0, c = 1, with a 6= b. In this case A(L) is zeroless. An autoregressive
representation can be obtained by elementary manipulations. Rewrite (C2) as

(1− L)F1t = ut + aut−1

(1− L)F2t = ut + but−1
(C3)

Taking (b − a)C(L)ut, we get

ut =
b(1− L)F1t − a(1− L)F2t

b− a
.

This can be used to get rid of ut−1 in (C3) and obtainI2 −

 ab
b− a

a2

b− a
b2

b− a
−ab
b− a

L

 (1− L)Ft =

(
1
1

)
ut, (C4)

which is an autoregressive representation in first differences.
Model (C3), slightly modified, can be used to illustrate non-uniqueness in the left inversion

of M(L). Consider
(1− L)F1t = ut + aut−1

(1− L)F2t = ut + but−1

(1− L)F3t = ut + cut−1.

(C5)

Taking any vector h = (h1 h2 h3), orthogonal to (a b c), we get rid of ut−1 in (C5) and obtain
an autoregressive representation in the differences. However, unlike in (C3), here the vectors
h span a 2-dimensional space, thus producing an infinite set of autoregressive representations.

In the example just above non-uniqueness can also be seen as the consequence of the fact
that the three stochastic variables Fj,t−1, j = 1, 2, 3, are linearly dependent. Therefore, trying
to project each of the Fjt onto the space spanned by Fj,t−1, j = 1, 2, 3 one would find a non-
invertible covariance matrix. We do not address this problem systematically in the present
paper. However, in the empirical analysis of Section 6 we find that a “prudent” choice of the
lag length keeps our estimates away from singular covariance matrices.

25



Appendix D Data Description and Data Treatment
No. Series ID Definition Unit F. Source SA T
1 INDPRO Industrial Production Index 2007=100 M FED 1 2
2 IPBUSEQ IP: Business Equipment 2007=100 M FED 1 2
3 IPDCONGD IP: Durable Consumer Goods 2007=100 M FED 1 2
4 IPDMAT IP: Durable Materials 2007=100 M FED 1 2
5 IPNCONGD IP: Nondurable Consumer Goods 2007=100 M FED 1 2
6 IPNMAT IP: nondurable Materials 2007=100 M FED 1 2
7 CPIAUCSL CPI: All Items 1982-84=100 M BLS 1 3
8 CPIENGSL CPI: Energy 1982-84=100 M BLS 1 3
9 CPILEGSL CPI: All Items Less Energy 1982-84=100 M BLS 1 3
10 CPILFESL CPI: All Items Less Food & Energy 1982-84=100 M BLS 1 3
11 CPIUFDSL CPI: Food 1982-84=100 M BLS 1 3
12 CPIULFSL CPI: All Items Less Food 1982-84=100 M BLS 1 3
13 PPICRM PPI: Crude Materials for Further Processing 1982=100 M BLS 1 3
14 PPIENG PPI: Fuels & Related Products & Power 1982=100 M BLS 0 3
15 PPIFGS PPI: Finished Goods 1982=100 M BLS 1 3
16 PPIIDC PPI: Industrial Commodities 1982=100 M BLS 0 3
17 PPICPE PPI: Finished Goods: Capital Equipment 1982=100 M BLS 1 3
18 PPIACO PPI: All Commodities 1982=100 M BLS 0 3
19 PPIITM PPI: Intermediate Materials 1982=100 M BLS 1 3
20 AMBSL St. Louis Adjusted Monetary Base Bil. of $ M StL 1 3
21 ADJRESSL St. Louis Adjusted Reserves Bil. of $ M StL 1 3
22 CURRSL Currency Component of M1 Bil. of $ M FED 1 3
23 M1SL M1 Money Stock Bil. of $ M FED 1 3
24 M2SL M2 Money Stock Bil. of $ M FED 1 3
25 BUSLOANS Commercial and Industrial Loans Bil. of $ M FED 1 2
26 CONSUMER Consumer Loans Bil. of $ M FED 1 2
27 LOANINV Bank Credit Bil. of $ M FED 1 2
28 LOANS Loans and Leases in Bank Credit Bil. of $ M FED 1 2
29 REALLN Real Estate Loans Bil. of $ M FED 1 2
30 TOTALSL Tot. Cons. Credit Owned and Securitized Bil. of $ M FED 1 2
31 GDPC1 Gross Domestic Product Bil. of Ch. 2005$ Q BEA 1 2
32 FINSLC1 Final Sales of Domestic Product Bil. of Ch. 2005$ Q BEA 1 2
33 GPDIC1 Gross Private Domestic Investment Bil. of Ch. 2005$ Q BEA 1 2
34 SLCEC1 State & Local CE & GI Bil. of Ch. 2005$ Q BEA 1 2
35 PRFIC1 Private Residential Fixed Investment Bil. of Ch. 2005$ Q BEA 1 2
36 PNFIC1 Private Nonresidential Fixed Investment Bil. of Ch. 2005$ Q BEA 1 2
37 IMPGSC1 Imports of Goods & Services Bil. of Ch. 2005$ Q BEA 1 2
38 GCEC1 Government CE & GI Bil. of Ch. 2005$ Q BEA 1 2
39 EXPGSC1 Exports of Goods & Services Bil. of Ch. 2005$ Q BEA 1 2
40 CBIC1 Change in Private Inventories Bil. of Ch. 2005$ Q BEA 1 1
41 PCNDGC96 PCE: Nondurable Goods Bil. of Ch. 2005$ Q BEA 1 2
42 PCESVC96 PCE: Services Bil. of Ch. 2005$ Q BEA 1 2
43 PCDGCC96 PCE: Durable Goods Bil. of Ch. 2005$ Q BEA 1 2
44 PCECC96 Personal Consumption Expenditures Bil. of Ch. 2005$ Q BEA 1 2
45 DGIC96 National Defense Gross Investment Bil. of Ch. 2005$ Q BEA 1 2
46 NDGIC96 Federal Nondefense Gross Investment Bil. of Ch. 2005$ Q BEA 1 2
47 DPIC96 Disposable Personal Income Bil. of Ch. 2005$ Q BEA 1 2
48 PCECTPI PPCE: Chain-type Price Index 2005=100 Q BEA 1 3
49 GPDICTPI GPDI: Chain-type Price Index 2005=100 Q BEA 1 3
50 GDPCTPI GDP: Chain-type Price Index 2005=100 Q BEA 1 3
51 HOUSTMW Housing Starts in Midwest Thous. of Units M Census 1 2
52 HOUSTNE Housing Starts in Northeast Thous. of Units M Census 1 2
53 HOUSTS Housing Starts in South Thous. of Units M Census 1 2
54 HOUSTW Housing Starts in West Thous. of Units M Census 1 2
55 PERMIT Building Permits Thous. of Units M Census 1 2
56 ULCMFG Manuf. S.: Unit Labor Cost 2005=100 Q BLS 1 2
57 COMPRMS Manuf. S.: Real Compensation Per Hour 2005=100 Q BLS 1 2
58 COMPMS Manuf. S.: Compensation Per Hour 2005=100 Q BLS 1 2
59 HOAMS Manuf. S.: Hours of All Persons 2005=100 Q BLS 1 2
60 OPHMFG Manuf. S.: Output Per Hour of All Persons 2005=100 Q BLS 1 2
61 ULCBS Business S.: Unit Labor Cost 2005=100 Q BLS 1 2
62 RCPHBS Business S.: Real Compensation Per Hour 2005=100 Q BLS 1 2
63 HCOMPBS Business S.: Compensation Per Hour 2005=100 Q BLS 1 2
64 HOABS Business S.: Hours of All Persons 2005=100 Q BLS 1 2
65 OPHPBS Business S.: Output Per Hour of All Persons 2005=100 Q BLS 1 2
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No. Series ID Definition Unit F. Source SA T
66 MPRIME Bank Prime Loan Rate % M FED 0 1
67 FEDFUNDS Effective Federal Funds Rate % M FED 0 1
68 TB3MS 3-Month T.Bill: Secondary Market Rate % M FED 0 1
69 GS1 1-Year Treasury Constant Maturity Rate % M FED 0 1
70 GS3 3-Year Treasury Constant Maturity Rate % M FED 0 1
71 GS10 10-Year Treasury Constant Maturity Rate % M FED 0 1
72 EMRATIO Civilian Employment-Population Ratio % M BLS 1 1
73 CE16OV Civilian Employment Thous. of Persons M BLS 1 2
74 UNRATE Civilian Unemployment Rate % M BLS 1 1
75 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks Thous. of Persons M BLS 1 2
76 UEMP5TO14 Civilians Unemployed for 5-14 Weeks Thous. of Persons M BLS 1 2
77 UEMP15T26 Civilians Unemployed for 15-26 Weeks Thous. of Persons M BLS 1 2
78 UEMP27OV Civilians Unemployed for 27 Weeks and Over Thous. of Persons M BLS 1 2
79 UEMPMEAN Average (Mean) Duration of Unemployment Weeks M BLS 1 2
80 UNEMPLOY Unemployed Thous. of Persons M BLS 1 2
81 DMANEMP All Employees: Durable goods Thous. of Persons M BLS 1 2
82 NDMANEMP All Employees: Nondurable goods Thous. of Persons M BLS 1 2
83 SRVPRD All Employees: Service-Providing Industries Thous. of Persons M BLS 1 2
84 USCONS All Employees: Construction Thous. of Persons M BLS 1 2
85 USEHS All Employees: Education & Health Services Thous. of Persons M BLS 1 2
86 USFIRE All Employees: Financial Activities Thous. of Persons M BLS 1 2
87 USGOOD All Employees: Goods-Producing Industries Thous. of Persons M BLS 1 2
88 USGOVT All Employees: Government Thous. of Persons M BLS 1 2
89 USINFO All Employees: Information Services Thous. of Persons M BLS 1 2
90 USLAH All Employees: Leisure & Hospitality Thous. of Persons M BLS 1 2
91 USMINE All Employees: Mining and logging Thous. of Persons M BLS 1 2
92 USPBS All Employees: Prof. & Business Services Thous. of Persons M BLS 1 2
93 USPRIV All Employees: Total Private Industries Thous. of Persons M BLS 1 2
94 USSERV All Employees: Other Services Thous. of Persons M BLS 1 2
95 USTPU All Employees: Trade, Trans. & Ut. Thous. of Persons M BLS 1 2
96 USWTRADE All Employees: Wholesale Trade Thous. of Persons M BLS 1 2
97 OILPRICE Spot Oil Price: West Texas Intermediate $ per Barrel M DJ 0 3
98 NAPMNOI ISM Manuf.: New Orders Index Index M ISM 1 1
99 NAPMPI ISM Manuf.: Production Index Index M ISM 1 1
100 NAPMEI ISM Manuf.: Employment Index Index M ISM 1 1
101 NAPMSDI ISM Manuf.: Supplier Deliveries Index Index M ISM 1 1
102 NAPMII ISM Manuf.: Inventories Index Index M ISM 1 1
103 SP500 S&P 500 Stock Price Index Index D S&P 0 2

Abbreviations
Source Freq. Trans. SA
BLS=U.S. Department of Labor: Bureau of Labor Statistics Q = Quarterly 1 = None 0 = no
BEA=U.S. Department of Commerce: Bureau of Economic Analysis M = Monthly 2 = log 1 = yes
ISM = Institute for Supply Management D = Daily 3 = ∆ log
Census=U.S. Department of Commerce: Census Bureau
FED=Board of Governors of the Federal Reserve System
StL=Federal Reserve Bank of St. Louis
Note: All monthly and daily series are transformed into quarterly observation by simple averages
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