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Abstract

We study a matching model in which agents have to be matched in pairs to un-

dertake a project. Each agent partitions the set of partners into friends and outsiders,

and the set of of possible projects, into good and bad ones (dichotomous preferences).

The overall preference ordering on partner, project pairs is separable. Friendship is

mutual and preferences over projects among friends exhibit value homophily in the

following sense: when comparing two friends, the set of good projects for one indi-

vidual is included in the set of good projects of her friend. We propose appropriate

notions of stability and non-manipulability in this model and propose an algorithm,

the minimum demand priority algorithm that generates stable allocations ,satisfies a

limited notion of Pareto efficiency called friendship efficiency and has good strategic

properties. Finally we show stable allocations may not exist if the value homophily

and dichotomous preferences assumptions are relaxed.

1 Introduction

In many situations individuals form teams to perform a task or develop a project. Agents

typically have preferences over the project they are asked to work on as well as the partners

they are assigned to work with on the project. The “successful” formation of teams clearly

depends on preferences over both these dimensions. We aim to study a matching problem

in which pairs of agents have to form a team in order to perform a task. We are interested

in understanding the conditions under which it is possible to reach stable allocations defined

appropriately (see below).

Such partnership problems are common occurences. An interesting example is pair pro-

gramming. Pair programming is a software development technique in which two program-

mers work together at one work station. One, the driver writes the code while, the other

∗University of Padua, Padua, Italy
†Indian Statistical Institute, New Delhi, India.
‡University of Padua, Padua, Italy.

1



observer, reviews each line of the code as it is typed in. The two programmers switch roles

frequently. A website for pair programming is a centralized mechanism that assigns pairs of

programmers to do distinct jobs or tasks. In general, there is a growing computer science

literature about the colloborative software business development model. Most of the open

source softwares have been developed in this manner, by a team of independent programmers

who join and work to develop a program. Examples of colloborative softwares are abundant,

but the size of the teams that work on different projects vary substantially.

Another instance can be found in the creation of task forces where a firm assigns workers

in teams to perform a task. Police precincts usually send out officers in pairs. In a course,

students are assigned in groups to write term papers from a set of possible topics. Different

groups of students in a class have different interests. Each group is cohesive and students in

a particular group find each other mutually acceptable and want to work on similar projects.

The roommate problem where the agents care about their roomate and the room they are

assigned to is another example.

In our model, each agent has a preference ordering over possible partner, project pairs.

We make several assumptions about this preference ordering. The first is that preferences

over each component are dichotomous i.e. alternatives in each component are partitioned

into acceptable and non acceptable sets. The set of partners possible is partitioned into

friends (acceptable partners) and outsiders. Similarly the set of projects is partitioned into

good and bad projects. Preferences are separable over partners and projects. According

to these preferences all partner, project pairs can be placed in one of the four indifference

classes : (i) both partner and project are acceptable, (ii) only the partner is acceptable, (iii)

only the project is acceptable and (iv) neither partner nor project is acceptable. Seperability

implies that (i) is the most preferred equivalence class while (iv) is the least preferred. There

are two possible preferences for an agent given her acceptable partner and project sets. The

first is the partner dominant preference where the agent ranks (ii) above (iii). In this case the

agent prefers an unacceptable partner,acceptable project pair over an unacceptable partner,

acceptable project pair. The second is the project dominant preference where the agent ranks

(iii) over (ii) i.e. the agent prefers an unacceptable partner, good project pair over a friend,

bad project pair.

We assume that partner acceptability (or friendship) is mutual and transitive. These as-

sumptions induce a partition on the set of agents where each element (friendship component)

in the partition is a set of agents who are all acceptable to each other. Agents in the same

friendship components are referred to as friends.

Finally we assume homophily in the preferences of friends, which is similarity in tastes of

friends. Sociological literature has provided ample evidence of the existence of homophily,

that is, the tendency of individuals to connect and form close ties with other individuals who

are similar to them. Lazarsfeld et al. (1954) distinguished two types of homophily: status

homophily, in which similarity is based on informal, formal, or ascribed status, and value
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homophily, which is based on values, attitudes, and beliefs. These two forms of homophily

depend on each other, because individuals tend to have ties with whom they share similar

experiences, like school, sports, hobbies, or with those who live in the same neighborhood or

with those who belong to the same age group. Hence, we not only tend to build closer ties

with individuals which are similar to us1, but we also become more similar to our friends

over time (Bauman and Ennett, 1996). All this amounts to an observed similarity between

tastes and friendships, with friends sharing the same preferences for music (Selfhout et al.,

2009), food and so on. More relevant for our paper, Ruef et al. (2003) have shown that

homophily and network constraints based on strong ties have the most pronounced effect

on the composition of entrepreneurial founding teams. Specifically, we assume a strong

alignment in the preference for projects among friends: there cannot be a pair of projects

a, b and a pair of friends i, j such that i likes a but not b, while j likes b but not a. However

i and j need not have the same set of preferred projects, one agent can be fussier than the

other and like only a subset of the projects liked by the other agents.

Agents can block an assignment in the following three ways. Note that for any assign-

ment, there is a set of projects which is left unassigned (possibly empty). Any project which

is unassigned is available and can be taken up a pair of agents. Thus a pair of agents can

leave their current partners in the assignment and come togeher with an available unassigned

project which makes them strictly better off than before. A pair of agents can also block an

assignment via a position swap i.e. the agents in the blocking pair swap places with each

other to strictly improve. Blocking via an uassigned project or via a position swap leads to a

change in both partner and project for the agents in the blocking pair. The third possibility

is that two pairs of agents swap projects and all four agents strictly improve. There is a

change of project for each agent (belonging to the two pairs), while the partner for each agent

remains unchanged. An assignment is stable at a preference profile if it is immune to block-

ing via uassigned projects, position swaps and project swaps. Stability obviously depends

on the preference profile. Note that for any given set of acceptable partners and projects for

an agent, there exists two preference orderings consistent with these acceptable sets i.e. a

partner dominant ordering and a project dominant one. Thus for a given configuration of

partner and project acceptable sets for all agents, there is a spectrum of preference profiles

consistent with this configuration. A preference profile is consistent with the acceptable set

configuration if for any agent i, the preference for an agent i is either partner or project

dominant with respect to the acceptable partner, project sets for agent i. A particularly

attractive property for an assignment is robust stability where the assignment is stable at

every preference profile consistent with respect to a given acceptable set configuration. It is

not clear a priori whether such assignments exist.2 We propose an algorithm, the minimum

demand priority algorithm (MDPA) that generates robustly stable allocations, satisfies a

1See Cohen (1977), Kandel (1978), Verbrugge (1983), McPherson et al. (2001), Golub and Jackson (2012).
2Note that a stable assignment may not be robustly stable. We provide examples to illustrate this.
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limited notion of Pareto efficiency called friendship efficiency and has good strategic prop-

erties. There are some difficulties in formulating strategy proofness as homophily imposes a

restriction on the preference profile of agents who belong to the same friendship component.

However we construct a model which deals with these issues and we show that the MDPA

is strategy proof in this sense.

Finally we demonstrate that our assumptions regarding homophily and dichotomous pref-

erences are crucial for the existence of stable assignments. For instance, in the absence of

homophily, stable assignments fail to exist in the subdomian where each agent has partner

(or project) dominat preferences. This indicates that value homophily is a fundamental as-

sumption for the existence of stable allocations in this class of problems. We show that stable

assignments fail to exist in any domain which contains the following preference profile: the

preference for any agent satisfies single peakedness with respect to each dimension (partner

and project) and the project dimension is lexicographically dominant.

We now briefly discuss our preference domain assumptions. The assumptions on prefer-

ence dichotomy are indeed restrictive. Each individual has at most four indifference classes

depending on whether the partner is a friend or an outsider and whether the project is good

or bad. Nonetheless, it is important to point out that no further assumptions are imposed:

while the best assignments for each agent are those in which she is assigned to a good project

with a friend, and the worst ones those in which she has to work on a bad project with an

outsider, no restrictions are imposed on how agents rank assignments in which they share

a good project with a bad partner, versus assignments in which they are matched with an

outsider on a good project.

The homophily assumption is also critical for our result. If we give up the assumption on

preference correlation, the existence of stable allocations is not guaranteed in dichotomous

domains, even when we restrict attention to the preference sub-domain where all agents care

more about partners than projects, or in the sub-domain where all agents care more about

projects than partners. Finally, if we depart from the dichotomous domain, impossibility

results obtain even when strong restrictions such as single peakedness on imposed on each

dimension.

1.1 Relationship to Existing Literature

The paper is linked to several strands in the matching literature.

The first strand is the literature on the existence of stable outcomes in the roommate

problem. The essentials of the roommate problem introduced in Gale and Shapley (1962) is

a set of agents, allowed to pair up in couples or stay-single, together with individual-specific

preferences over partners.3 Every agent has a preference over possible partners. Our model

3See Tan (1991), Chung (2000), Alcalde (1994) and Gudmundsson (2014) for conditions that grant the
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analyses the question of stability when every agent also has a preference over the rooms,

in addition to preferences over potential partners. We investigate the existence of stable

assignments in situations where individuals not only care about their roommate, but also

have a preference over the room that they will receive in the assignment.

The second related strand is the literature on the existence of stable matchings in a two

sided matching market with couples (of students) on one side and hospitals on the other

side.4 The couples are fixed, and every agent has an individual preference on the hospitals

and a joint preference on the possible hospital duples. An agent in a couple is only concerned

about the two hospitals that are assigned to her and her partner. A couple can be viewed as a

friendship component consisting of an individual and her partner. So in an assignment either

the couple is matched to the same hospital, or it is possible that they are matched alone

which means that the two individuals are allocated to different hospitals. This model is a two

sided matching model, where the hospital also has preferences over the agents assigned to

the hopsital. We consider a model where each agent has a preference over potential partners

and an agent is willing to be paired with any other agent. In this sense, there are no fixed

couples in our model. Thus a stable allocation in this context has to be robust to changes

in both partner and projects.

The remainder of the paper is organized as follows. We introduce the model in the next

section. Section 3 describes the MDPA algorithm to compute a robustly stable assignment

and presents the main result. Section 4 discusses the efficiency properties of the MDPA

algorithm and shows that the assignment generated by the algorithm satisfies a weaker notion

of Pareto efficiency imposed on a group of friends. Section 5 examines the strategic aspects

of the MDPA mechanism. The dichotomous domain without homophily is investigated in

Section 6. Section 7 presents an analysis about the non existence of stable assignments in

non dichotomous domains and Section 8 concludes. The Appendix provides the provides the

proofs.

2 The Model

There is a finite set of agents N = {1, 2, . . . , i, j, . . . , n} and a finite set of alternatives

(projects), A = {a, b, c, d . . .}. We assume that |n| = 2m for some integer m ≥ 2 and that

|A| ≥ m.

An assignment σ is a collection of triples (i, j, a) with the interpretation that agent pair

(i, j) is assigned project a. In order to ensure feasibility, we require that each agent is paired

with one other agent and with one project. In addition, every project is assigned to exactly

one pair or left unassigned. We require all agents to be assigned a partner and a project. We

existence of stable allocations in the roommate problem.
4See Klaus and Klijn (2005), Klaus and Klijn (2007), Klaus et al. (2007), Khare and Roy (2016) for re-

quirements for the existence of stable allocations in the two sided matchings with couples.
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shall say that the triple (i, j, a) is an element of σ, if the pair (i, j) is assigned to the project

a. Abusing notation, we shall also let σ(i) = (j, a) if (i, j, a) is an element of σ. Feasibility

imposes some obvious restrictions on σ which we do not elaborate for convenience. Finally

let uσ be the set of unassigned projects in the assignment σ i.e. it is the set of projects a

such that there does not exist an agent i such that σ(i) = (j, a) for some j.

2.1 Preferences

Each agent i has a preference ordering5 ≻i over partner, project pairs (j, a) where j ̸= i.

There are several restictions on ≻i which we outline below (the consequences of relaxing

some of these restrictions will be discussed in Section (Without Homophily)).

Every agent i has a set of acceptable partners (friends) P i ⊆ N \ {i} and acceptable

projects Gi ⊆ A. We allow for the possibility of P i, Gi = ∅. We denote the complement

sets of Gi and P i by A \Gi and N \ P i respectively. The ordering ≻i satisfies the following

properties.

(i) If j, k belong to the same element of the partition {P i, N \ P i} and a, b belong to the

same element of the partition {Gi, A \Gi}, then (j, a) ∼i (k, b).

(ii) If a ∈ Gi, b /∈ Gi, then (k, a) ≻i (k, b) for all k ̸= i.

(iii) If k ∈ P i, l /∈ P i, then (k, a) ≻i (l, a) for all a ∈ A.

Preferences are separable over partners and projects. In addition, preferences over each

component (partners and projects) are dichotomous i.e. alternatives in each component are

partitioned into acceptable and non acceptable sets.

According to these preferences all partner, project pairs can be placed in one of four

indifference classes: (I) both partner and project are acceptable, (II) only the partner is

acceptable (III) only the project is acceptable and (IV) neither partner nor project is ac-

ceptable.

Separability implies (I) is the most preferred equivalence class and (IV) is the least

preferred. Classes (II) and (III) can be ranked either way. We refer to the case where (II) is

ranked above (III) as a partner dominant preference. In this case agent i prefers an acceptable

partner, unacceptable project pair over an unacceptable partner, acceptable project pair.

Similarly, a project dominant preference is one where (III) is ranked above (II) i.e. agent

i prefers an unacceptable partner, acceptable project pair over an acceptable partner, unac-

ceptable project pair.

5An ordering is a binary relation which is complete, reflexive and transitive.
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We assume that partner acceptability is mutual and transitive i.e. if j ∈ P i then i ∈ P j.

In addition, if i ∈ P j and j ∈ P k, then i ∈ P k.6 These assumptions induce a partition on the

set of agents N where each element in the partition is a set of agents who are all acceptable

to each other. We shall refer to each element of this partition as a friendship component

and agents’ in the same friendship component as friends. These components are labelled

{F1, F2, . . . , Fq}. Note that the number of components which have an odd number of agents

must be even.

Finally we assume homophily in the preferences for agents in the same friendship com-

ponent. Specifically if i, j are friends, then either Gi ⊆ Gj or Gj ⊆ Gi holds. Homophily

induces a strong alignment in the preference for objects among friends. In other words, there

cannot be a pair of projects a, b and a pair of friends i, j such that i likes a but not b, while

j likes b but not a. However i and j need not have the same set of prefered projects, one

agent can be fussier than the other and like only a subset of the projects liked by the other

agent.

We assume that the preference of agent i, ≻i satisfies all the conditions above. Thus

≻i is associated with a set of acceptable partners and projects which we denote by P i(≻i)

and Gi(≻i) respectively. Let Σpart denote the set of all partner dominant preferences , i.e.

if ≻i∈ Σpart, there exists P i, Gi such that ≻i is partner dominant with respect to P i, Gi.

Similarly we define Σproj as the set of all project dominant preferences. Let Σ = Σpart∪Σproj.

A preference profile ≻ is an n-tuple ≻∈ Σn.

2.2 Blocking and Stability

Our notion of stability differs in an important way from the standard notion of stability in the

Gale-Shapley model. There two agents who like each other more than their current partners

can come together while leaving their assigned partners. In our model, we assume that both

agents who are assigned a project have “rights” over that project. A pair of agents can block

an assignment in either of the following two ways: (i) they can leave their current partner

and project and come together with an unassigned project which makes them strictly better

off than before or (ii) they can swap places with each other and strictly improve. Also two

pairs of agents can block the assignment via a project swap which makes all the four agents

strictly better off. We shall refer to blocking of the first type as blocking via unassigned

projects and of the second type as blocking by a position swap. We refer to blocking of the

third type as blocking via a project swap. An assignment is stable if it is immune to blocking

of these three types.

Definition 1 The pair of agents k, l blocks assignment σ via an unassigned project at profile

≻ if there exists c ∈ uσ such that

6These are strong assumptions but they are a convenient starting point for the analysis.
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F1 F2

1 {a} 3 {b}
2 {a} 4 {b}

Table 1: Example 1

1. (k, l, c) ≻k (k, i, a).

2. (k, l, c) ≻l (l, j, b).

where (k, i, a), (l, j, b) ∈ σ.

Definition 2 The pair of agents k, l blocks assignment σ via a position swap at profile ≻
if

1. (k, j, b) ≻k (k, i, a).

2. (l, i, a) ≻l (l, j, b).

where (k, i, a), (l, j, b) ∈ σ.7

Definition 3 The pairs of agents k, i and l, j block assignment σ via a project swap at

profile ≻ if

1. (k, i, b) ≻k (k, i, a).

2. (k, i, b) ≻i (k, i, a).

3. (l, j, a) ≻l (l, j, b).

4. (l, j, a) ≻j (l, j, b).

where (k, i, a), (l, j, b) ∈ σ.8

Examples 1, 2 and 3 illustrate the independence of the various notions of blocking.

Example 1 Let N = {1, 2, 3, 4} and A = {a, b, c, d}. The friendship components are F1 =

{1, 2} and F2 = {3, 4}. Table 1 provides the acceptable set of projects for the agents.

Consider a preference profile ≻ where ≻i is partner dominant for all i. We claim that

the assignment σ = {(1, 2, b), (3, 4, a)} is immune to blocking via an unassigned project and

a position switch. However σ can be blocked via a project switch.

7Note that after the swap the project partner pairs are (l, i, a) and (k, j, b).
8Note that after the project swap, the resulting partner,project pairs are (k, i, b), (l, j, a).
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F1 F2

1 {a} 3 {b}
2 {a} 4 {b}

Table 2: Example 2

The set of unassigned projects is uσ = {c, d}. The projects c, d are unacceptable for all

agents. Thus blocking via an unassigned project is not possible.

Since the preference of each agent is partner dominant, blocking via a position swap will

make the concerned agents worse off. For instance, consider agents 1 and 3. A position swap

results in the assignment {(3, 2, b)(1, 2, a)}. This makes agents 1 and 3 worse off as both

agents now have partners not belonging to their respective components and ≻i is partner

dominant for i ∈ {1, 3}.
However blocking via a project switch is possible. The two pairs swap their assigned

projects and the resulting assignment is {(1, 2, a), (3, 4, b)}. Note that all four agents strictly
improve to the (G,G) class.

Example 2 Let N = {1, 2, 3, 4} and A = {a, b, c}. The friendship components are F1 =

{1, 2} and F2 = {3, 4}. Table 2 provides the acceptable projects sets for the agents.

Consider a preference profile ≻ where ≻i is partner dominant for all i. We claim that the

assignment σ = {(1, 2, c), (3, 4, b)} is immune to blocking via a position swap and a project

swap. But blocking via an unassigned project is possible.

The preference for each agent is partner dominant. Consider two agents who swap po-

sitions, say agents 1, 3. This results in the assignment {(3, 2, c), (1, 4, b)} and 1, 3 are worse

off after the position swap. This shows that any two agents who swap positions in σ will be

worse off after the swap.

Both agents in the pair (3, 4) have an acceptable project and a project switch will not

lead to a strict improvement for 3 and 4. Thus blocking via a project swap is not possible.

However (1, 2) will block σ via the unassigned project a.

Example 3 Let N = {1, . . . , 6} and A = {x, y, e, f}. The friendship components are F1 =

{1, 2, 3}, F2 = {4, 5} and F3 = {6}. Table provides the acceptable project sets.

Consider a preference profile ≻ where ≻1 is project dominant and ≻i is partner dominant

for all i ∈ N \ {1}. We will show that the assignment σ = {(1, 2, y), (4, 5, e), (3, 6, x)} is

immune to blocking via an unassigned project and a project swaps. However blocking via a

position swap is possible.

Note that uσ = {e}. The agents who can strictly improve by any means given σ are
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F1 F2 F3

1 {x} 4 {e, f} 6 {x}
2 {x, y} 5 {e, f}
3 {x, y}

Table 3: Example 3

F1 F2

1 {a} 5 {a}
2 {a, b} 6 {a, b}
3 {a, b, c} 7 {a, b, c}
4 {a, b, c, d} 8 {a, b, c, d}

Table 4: Example 4

agents 1 and 3.9 Agents 1 and 3 cannot strictly improve by moving to project f , as it is an

unacceptable project for both.

There is no project switch possible between two pairs in σ where all four agents strictly

improve. For instance, consider the pairs (1, 2) and (3, 6). Since y ∈ G2 and x ∈ G6, agents

3 will remain indifferent and agent 6 will be worse off after the project swap. Thus blocking

via a project swap is ruled out.

However σ is blocked by agents 1 and 3 by a position swap. The assignment for the two

agents after the position swap is {(3, 2, y), (1, 6, x)}. Agent 1 strictly improves as x ∈ G1

and ≻1 is project dominant. Agent 3 strictly improves because ≻3 is partner dominant.

Definition 4 The assignment σ is stable at ≻ if it is immune to both blocking via an

unassigned project, by a position swap or by a project swap at ≻.

We illustrate the notion of stability with an example.

Example 4 Let N = {1, 2, . . . , 8} and A = {a, b, c, d, e}. The friendship components are

F1 = {1, 2, 3, 4} and F2 = {5, 6, 7, 8}. The set of acceptable projects are summarized in

Table 4.

Consider a preference profile ≻ where ≻i is project dominant for all i. We claim that the

assignment σ = {(1, 5, a), (2, 6, b), (3, 7, c), (4, 8, d)} is stable at ≻. Note that uσ = {e} and e

9Agents 2, 4, 5 are in the (G,G) class and 6 is in (B,G) class. Since agent 6 has an empty acceptable

partner set, agent 6 has only two indifference classes: (B,G) and (B,B).
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is not an acceptable project for any agent. Since each agent is assigned a good project in σ

and ≻ is project dominant, blocking via an unassigned project is not possible.

Consider blocking via a position swap. In the assignment all agents are paired with

partners outside their friendship components. However after any swap, at least one agent

is left with an unacceptable project. Since preferences are project dominant, the blocking

cannot be strictly improving. For instance if agents 7 and 4 swap positions, the resulting

assignment is (3, 4, c), (7, 8, d) and d is an unacceptable project for agent 7.

Consider blocking via a project swap. In the assignment σ, each agent has been assigned

an acceptable project. Thus no two pairs of agents can swap their assigned projects such

that all agents in the concerned pairs strictly improve after the project swap.

Consider a preference profile ≻′ where ≻′
i is partner dominant for all i. The assignment

σ is no longer stable at ≻′. For instance 1 and 2 can block via the unassigned project e.

Finally note that the assignment σ′ = {(1, 2, a), (3, 4, b), (5, 6, d), (7, 8, c)} is stable at

≻′. In this assignment, the agents 1, 2, 3, 4, 7 and 8 are getting both acceptable partners

and projects. Agents 5 and 6 belong to the same friendship component but are getting an

unacceptable project. Blocking via the unassigned project e is not strictly improving. Since

preferences are partner dominant, it suffices to consider swaps within the same friendship

component. However the project assigned to the pair (7, 8) is not acceptable to either 5 or 6.

The only pair of agents where both agents can strictly improve by switching projects with

another pair is (5, 6). However no such pair of agents exists as the projects assigned to (1, 2),

(3, 4) and (7, 8) are acceptable for both agents in the pair. The assignment σ′ is immune to

blocking by a project swap. Hence σ′ is stable at ≻′.

Interestingly σ′ is also stable at ≻. Even though the preferences of 5 and 6 are project

dominant, there is no project “available” which will make them both strictly better off. It is

not strictly improving for either 5 or 6 to swap with either 7 or 8 (since c is unacceptable to

both). Moreover swapping with either 1, 2, 3 or 4 will leave the other agent being swapped

strictly worse off. Blocking via a project switch is not possible for the pair (5, 6) as all other

pairs have been assigned a project which is acceptable for both agents in the pair.

In fact σ′ remains stable at all preference profiles ≻∗ where the underlying acceptable

sets for partners and projects for all agents remain the same. We shall refer to such an

assignment as robustly stable.

Example 5 Let N = {1, 2, 3, 4} and A = {x, y, z}. The friendship components are F1 =

{1, 2} and F2 = {3, 4}. The set of acceptable projects are summarized in Table 5.

Consider a preference profile ≻ where ≻i is partner dominant for all i. We claim that the

assignment σ = {(1, 2, y), (3, 4, x)} is stable at ≻. Since uσ = z and z is not an acceptable

project for agents 1 and 3, there is no blocking possible via an unassigned project. Note that

agents 1 and 3 are the only agents who have been assigned an unacceptable project. Since

≻1 and ≻3 is partner dominant, agents 1 and 3 will not switch positions with each other.
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F1 F2

1 {x} 5 {y}
2 {x, y} 6 {x, y}

Table 5: Example 5

This switch will make both agents worse off. A switch of projects between the pairs (1, 2)

and (3, 4) leads to a strict improvement for only two agents (1 and 3). So blocking via a

project switch is not possible. Thus σ is stable at ≻.

Consider a preference profile ≻′ where ≻′
i is project dominant for all i. The assignment

σ is not stable at ≻′. The agents 1 and 3 will block the assignment via a position switch.

Both agents strictly improve by the position switch as x ∈ G1, y ∈ G3 and their preferences

are project dominant.

Note that the assignment σ′ = {(1, 2, x), (3, 4, y)} is stable at both ≻ and ≻′. In fact σ′

is robustly stable.

These observations motivate the definition below.

The profiles ≻ and ≻′ are acceptable set equivalent if P i(≻i) = P i(≻′
i) and Gi(≻i) =

Gi(≻′
i) for all i.

Definition 5 The assignment σ is robustly stable at profile ≻ if it is also stable at all

profiles ≻′
that are acceptable set equivalent to ≻.

A robustly stable assignment remains stable irrespective of whether agent preferences are

partner or project dominant. We will show that such an assignment exists and is attainable

by the algorithm below.

3 The Algorithm and result

We describe an algorithm below which we refer to as the Minimum Demand Priority Algo-

rithm (MDPA).

The agents in N are ordered using the numerical order ≻N . The set of projects A is

ordered using the alphabetical order ≻A.

Fix an arbitrary profile ≻. This profile induces friendship components {F1, . . . , FL} which
we arbitrarily order as F1, . . . , FL. We can order the agents in any component Fq using ≻N .

Step 0: In each component Fq, where |Fq| is odd, remove the agent with the lowest priority in

Fq, say agent i and add agent i to the Residual set R. The remaining friendship components

are {F̃1, . . . , F̃L}. If |Fq| is even, then Fq = F̃q.
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Step 1: We make partial assignments in F̃1 in the following manner. The set of available

projects is A. We first calculate the demand for every available project.

Consider any x ∈ A. The demand for project x is D(x) = ♯
{
i ∈ F̃1 : x ∈ Gi(≻i)

}
. Let

the set of agents who demand project x be S(x). Formally, S(x) = {i ∈ F̃1 : x ∈ Gi(≻i)}.
We can order the projects from the most demanded to the least demanded one.10

Remove all projects with zero demand. Next consider the project (projects) with the least

demand. In case there is more than one such project, we break ties using ≻A by choosing

the project with the lowest alphabet. Suppose the project with the lowest demand (after tie

breaking) is a.

Step 1.1: Assign project a to an agent or a pair of agents in the following manner.

1. D(a) = {1}. Then provisionally assign a to agent j where S(a) = {j}. Put agent,project
pair (j, a) in the waiting set W . Update the set of available projects to A \ {a} and

the set of agents to F̃1 \ {j}. Proceed to Step 1.2.

2. D(a) ≥ 2. Arrange the agents in S(a) acccording to the fixed priority defined on N .

Assign a to the pair comprising of agents with the highest and second highest priority

in S(a). Update the set of available projects to A\{a} and the set of agents to F̃1\{i, j}
where (i, j) is the pair who is assigned project a in this step. Proceed to Step 1.2.

Step 1.2: Repeat Step 1.1 with the following adjustments. Calculate the demand for each

available project wih respect to the updated set of agents obtained at the end of Step 1.1.

Remove all projects with zero demand. Consider the project with the least demand. If

there is more than one such project, break ties using the alphabetical order on A.

Suppose the project with the least demand in this step is b.

1. D(b) = 1 and W ̸= ∅. Let (i, a) ∈ W . and S(b) = {j}. Then pair (i, j) with project

b i.e. (i, j, b) ∈ σ. Remove (i, a) from W . Update the set of projects by removing

b. Update the set of agents by removing agent j.11 Add project a to the set Q1.
12

Proceed to Step 1.3.

2. D(b) = 1 and W = ∅. Assing project b to agent j provisionally. Add (j, b) to W .

Update the set of available projects by removing project b. Update the set of agents

by removing agent j. Proceed to Step 1.3.

10Note that there may be two projects with equal demand.
11Note that agent i with (i, a) ∈ W is not in the set of agents obtained at the end of Step 1.1.
12Note that once a project is added to the set Q1, it is no longer an available project for the component

F̃1. The projects in Q1 will be available to the next component F̃2.
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3. D(b) ≥ 2. Arrange the agents in S(b) acccording to the fixed priority defined on N .

Assign b to the pair comprising of agents with the highest and second highest priority

in S(b). Update the set of available projects by removing b and the set of agents

by removing agents i, j where (i, j) is the pair who is assigned project b in this step.

Proceed to Step 1.3.

...

...

...

Step 1.q: Calculate the demand for each available project at the end of Step 1.(q− 1), using

the set of agents remaining at the end of Step 1.(q − 1). Remove all projects with zero

demand.

Consider the project with the least demand, say project c. If there are several such

projects, break ties using the alphabetical order. Repeat Step 1.(q − 1) with the project c.

Proceeding in this manner, there exists s∗ such that in Step 1.s∗, the demand for every

available project is zero. Here three cases can arise.

I. The set of agents is empty and W = ∅. This means that all agents in F̃1 have been

assigned a partner and a project.

II. There exists an even number of agents in Step 1.s∗ who do not have a partner and a

project and W = ∅. Arrange the agents using the priority order on N . Form pairs of

consecutive agents proceeding in sequence. Assign an arbitrary project to each pair

from the set of available projects.

III. W ̸= ∅ and there exists an odd number of agents in Step 1.s∗ who do not have a

partner and a project. Note that there is exactly one agent,project pair in W , say

(i, a) ∈ W . Arrange the agents (not in W ) using the priority order on N . Pair agent

i (where (i, a) ∈ W ) with the agent who has the highest priority and assign to this

pair project a. Then form pairs of consecutive agents proceeding in sequence. Proceed

in sequence to assign projects to each pair: Assign to each pair the project with the

lowest alphabet (using the order ≻A) from the set of available projects.

Let the set of projects assigned to pairs in F̃1 be ∆(F̃1). At the beginning of Step 2 (or

end of Step 1), the set of available projects is U(F̃2) = [A\∆(F̃1)]∪Q1. We assign projects in

F̃2 in the same manner as Step 1 with the set of available projects being U(F̃2). Proceeding

in this manner, at the end of Step L we have assigned partners and projects to all agents in

F̃1 ∪ F̃2 . . . ∪ F̃L.

14



Step L + 1: In this step, projects are assigned to agents in the set R. The set of available

projects is U(R) = [U(F̃L) \ ∆(F̃L)] ∪ QL. Without loss of generality (and by suitable

relabelling of agents), let R = {1, 2, . . . , 2r} for r ≥ 0.

Step (L + 1.1): In this step, we match agent 1 with the agent with the lowest index t > 1

in R such that G1(≻1) ∩ Gt(≻t) ∩ U(R) is non empty. This pair is assigned a project x in

G1(≻1) ∩Gt(≻t) ∩ U(R). In this case, R1 = {i, t}. If no such agent t exists, then agent 1 is

unmatched at this step and R1 = {1}.
The set of projects assigned in this step is denoted by SR(1) where SR(1) = ∅ if R1 = {1}

and {x} if R1 = {1, t} and x is assigned to (1, t).

The set of agents remaining for the next step is R \R1. The set of projects available for

the next step is U(R) \ SR(1).

Step (L + 1.2): We repeat Step (L + 1.1) with agent 1 being replaced by the agent with

the smallest index in R \ R1 and the set of projects U(R) replaced by U(R) \ SR(1). This

generates possibly another assignment. At the end of this step, we obtain R2 and the set of

available projects U(R) \ ∪2
j=1SR(j).

Proceeding in this manner, there will exist a Step (L + 1.r∗) where ∪r∗
j=1Rj = R. The

set of projects available for assignment at the end of the completion of Step (L + 1.r∗) is

U(R) \ ∪r∗
j=1SR(j).

There are two possibilities. If all agents in R have been assigned a partner (and project),

then move to Step L+ 2.

Otherwise there exists an even number of unmatched agents in R and we move to Step

(L + 1.r∗ + 1). Consider all unmatched agents in the previous step and consider them in

the same order as they were in R. Pair consecutive agents in sequence. At every step in

the sequence, assign the pair an available project which belongs to the acceptable set of the

agent with higher priority in the pair (i.e. lower index). If no such project exists, then assign

one from the acceptable set of the agent with the lower priority which is available. If this

fails, then add this pair to set S.

Finally assign projects to pairs in S: proceed in sequence in S and to each pair, assign

the project with the lowest alphabet (using ≻A) from the set of available projects.

Theorem 1 The MDPA algorithm generates a robustly stable assignment at every ≻. Con-

sequently a robustly stable assignment exists at every profile.

The proof of Theorem 1 is provided in the Appendix.
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4 Friendship Efficiency

We define a weaker version of efficiency that imposes Pareto efficiency among a group of

friends.

Definition 6 Consider an assignment σ and a preference profile ≻. Then σ satisfies friend-

ship efficiency with respect to component Fq if for any (k, i, a), (l, j, b) ∈ σ with k, i, l, j ∈ Fq,

there does exist an assignment σ′ which is constructed by reconfiguring the agents in {k, i, l, j}
and projects in {a, b} ∪ uσ such that

1. There exists an agent s ∈ {k, i, l, j} such that agent s is strictly better off in σ′ at ≻s.

2. The remaining agents in the set {k, i, l, j} are not worse off in σ′.

The assignment σ satisfies friendship efficiency if it satisfies this property for every compo-

nent.

Theorem 2 For any profile ≻, the MDPA generates an assignment which satisfies friend-

ship efficiency.

Proof : Consider a profile ≻. Let σ(≻) be the assignment generated by the MDPA at the

preference profile ≻. We will show that σ satisfies friendship efficiency with respect to every

friendship component.

We will prove the result by contradiction. There exists a profile ≻ (where the MDPA

assignment is σ(≻)), a component Fq, (k, i, a), (l, j, b) ∈ σ(≻) where k, i, l, j ∈ Fq and an

assignment σ′ 13 such that there exists an agent in {k, i, l, j} who strictly improves in σ′

while the remaining agents are as well off as before.

Let agent k be the agent that strictly improves in σ′. This implies that a /∈ Gk(≻k)

and the project assigned to k in σ′ is an acceptable project. Note that this fact is true

independent of whether ≻k is partner dominant or project dominant. This holds because in

both assignments, agent k has an acceptable partner.

Since (k, i, a) ∈ σ(≻) and a /∈ Gk(≻k), we know that (k, i, a) is formed in Step q.s∗ in

the algorithm. The demand for each available project in Step q.s∗ is zero. Also agent k is

an available agent in Step q.s∗. This implies that there does not exist a project x ∈ uσ such

that x ∈ Gk(≻k). So project b is assigned to agent k in σ′ and b ∈ Gk(≻k). Thus there exists

an agent in {l, j} who is assigned project a in σ′.

We claim that b ∈ Gl(≻l) ∩Gj(≻j). To see this, note that agent k is an available agent

in every Step q.s where s ≤ s∗. Note that in Step q.s∗, the demand for each available project

13Note that σ′ is generated by forming pairs from the set of agents in {k, i, l, j} and projects in the set

{a, b} ∪ uσ.
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is zero. Thus project b is assigned in some step q.s′ where s′ < s∗. 14 We will argue that

D(b) ≥ 3 in Step q.s′. Suppose not i.e. 1 ≤ D(b) < 3 in Step q.s′.15 Let D(b) = 1. This

means that S(b) = {k} and the MDPA will form (k, b) ∈ W . Then agent k is assigned an

acceptable project in σ: either (k, ., b) or (k, ., y) for some y ∈ Gk(≻k). This contradicts the

assumption that agent k strictly improves in σ′. The other possibility is D(b) = 2. Here

S(b) = {k, p} where p ∈ F̃q. This results in (k, p, b) in σ and contradicts the assumption that

agent k strictly improves in σ′.

So D(b) ≥ 3 in Step q.s′. Since s′ < s∗, project b is assigned to the two maximal agents

in S(b) according to ≻N . Thus l, j ∈ S(b) in Step q.s′ and b ∈ Gl(≻l) ∩Gj(≻j).

There are two possibilities: either a /∈ Gi(≻i) or a ∈ Gi(≻i).

(I) a /∈ Gi(≻i).

Since (k, i, a) ∈ σ(≻) and a is an unacceptable project for both agents, project a is

available in each step q.s where s < s∗. In particular, project a is available in Step q.s′ (the

step in which project b is assigned).

We know that there exists an agent in i ∈ {l, j} such that agent i is assigned project a

in σ′. W.l.o.g let i = l. Thus a ∈ Gl(≻l) as agent l is assigned an acceptable project in σ(≻)

and all agents remain as well off as before in σ′.

In Step q.s′,

1. Agents l, j, k are available.

2. Projects a, b are available.

3. D(a) > 0 as a ∈ Gl(≻l).

4. D(b) ≥ 3.

5. D(b) ≤ D(a).

Fact 5 follows from the fact that b is the project which is assigned in Step q.s′ and so it

is the project with the least demand.

An implication of Fact 5 and homophily is S(b) ⊆ S(a) in Step q.s′. To see this, suppose

S(b) ̸⊂ S(a). First consider the case where D(b) = D(a). This means that there exists an

agent p ∈ S(b) such that p /∈ S(a). Also since D(b) = D(a), there exists an agent q ∈ S(a)

such that q /∈ S(b). Thus we have

(i) b ∈ Gp(≻p) and a /∈ Gp(≻p).

14We know D(b) ≥ 1 in all steps q.s where s < s′. This is because agent k is available in each such step

and b ∈ Gk(≻).
15The demand for b is positive is Step q.s′ as project b is assigned in this step and s′ < s∗.
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(ii) a ∈ Gq(≻q) and b /∈ Gq(≻q).

Facts (i) and (ii) imply that Gp(≻p) ̸⊂ Gq(≻q) and Gq(≻q) ̸⊂ Gp(≻p). This contradictions

the assumption of homophily with respect to agents p, q belonging to the component Fq.

The second case is D(b) < D(a). By assumption, S(b) ̸⊂ S(a). Thus there exists an agent

p ∈ S(b) such that p /∈ S(a). Since D(b) < D(a), there exists an agent q ∈ S(b) such that

q /∈ S(a). So there exist agents p, q ∈ Fq such that Gp(≻p) ̸⊂ Gq(≻q) and Gq(≻q) ̸⊂ Gp(≻p).

This contradicts the homophily assumption.

We have established that in Step q.s′, S(b) ⊆ S(a). However by assumption, a /∈ Gk(≻k)

and b ∈ Gk(≻k). So k ∈ S(b) and k /∈ S(a) in Step q.s′, resulting in a contradiction.

(II) a ∈ Gi(≻i).

Since a /∈ Gk(≻k), we know that (k, i, a) is formed in Step q.s∗ in the algorithm.16

An implication of a ∈ Gi(≻i) is that there exists a step q.s where s < s∗ such that

1. (i, a) ∈ W in Step q.s.

2. For all Steps q.s′ with s < s′ < s∗, W = {(i, a)}.17

We know that there exists an agent in i ∈ {l, j} such that agent i is assigned project a

in σ′. W.l.o.g let i = l. Thus a ∈ Gl(≻l) as b ∈ Gl(≻l) and (l, j, b) ∈ σ(≻).

We claim that agent l is not an available agent in Step q.s where (i, a) is added to W .

To see this, suppose not i.e. assume that agent l is available in Step q.s. Then D(a) ≥ 2 as

l, i ∈ S(a) and (i, a) will not be added to the set W in this step. The algorithm will assign

project q to the two maximal agents in S(a) according to ≻N . So l is not an available agent

in Step q.s.

Since (l, j, b) ∈ σ(≻) where b is an acceptable project for both agents and agent l is not

available in Step q.s, we know that (l, j, b) ∈ σ(≻) is formed in Step q.s′ where s′ < s.

In the Step q.s′,

1. Agents l, j, i, k are available.

2. Projects a, b are available.

3. Project a has positive demand as a ∈ Gl(≻l).

4. 3 ≤ D(b) ≤ D(a).

16Step q.s∗ is the termination step for the component F̃q in the MDPA.
17This means that for any Step q.s′, the least demanded project has demand atleast 2. Thus no new

agent,project tuple is assigned to W in any step uptill Step q.s∗. So (i, a) ∈ W is present in the termination

step q.s∗ where (k, i, a) is formed in σ(≻).
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Fact 4 and homophily together imply that S(b) ⊆ S(a) in Step q.s′. However we have

k ∈ S(b) and k /∈ S(a). This results in a contradiction.

■

5 Strategy Proofness

The homophily assumption imposes a restriction on the profile of announced acceptable

sets of agents who belong to the same component. Thus there are some delicate issues in

formulating strategy proofness. We assume that friendship is commonly observable. Since

friendship is mutual and transitive, no agent can individually manipulate and misreport her

set of acceptable partners (or friends). However assuming that the acceptable project set of

an agent is private information may result in a profile of acceptable project sets which are

not consistent with homophily.

So we assume the following: for each component, there is a commonly known linear

order ≻O over the set of projects A. For any x, y ∈ A, if x ≻O y then all agents in the

component who like x also like y.18 The private information of an agent is a project x, and

her acceptable set of projects contains any project y such that x ≻O y (including x). This

assumption ensures that any announced profile of acceptable project sets is consistent with

homophily.

We modify the MDPA algorithm, where ties between projects which have the same de-

mand are broken by using ≻O: in any step where there are multiple minimum demanded

projects, the project which is highest in the order ≻O is chosen to be assigned. Note that

this is a slight modification to the MDPA, and does not change the basic principles of the

algorithm. We show that the MDPA (with this modification) is strategy proof.

Consider an agent i ∈ Fq for some q ∈ {1, . . . , L}. The set of acceptable projects for

agent i is Gi and ≻i is the preference of agent i consistent with Gi.19 Let G−i denote the

acceptable project sets of all agents in N \ {i} and ≻−i be any preference profile consistent

with G−i. Let G−i
q denote the acceptable project sets of all agents in Fq \ {i}.

We now define the assignment mechanism σ. Formally, σ : Σn → F where F is the

feasible set of assignments.20

Consider an agent i ∈ Fq ⊆ N and her acceptable project set Gi. The assignment

mechanism is non manipulable for the agent i if for any ≻i consistent with Gi, for any

18Note that it is possible that for some x, y ∈ A, it is the case that the set of agents who like x and y is

the same. Here ties can be broken using the alphabetical order on A and thus x ≻O y.
19Note that there are two such preferences, namely the partner and the project dominant one.
20Note that every element in F is a collection of distinct triples satisfying two properties: each agent is

paired with exactly one agent and every pair is assigned a distinct project. Also each agent is assigned a

partner and a project.
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Ĝi ̸= Gi; any preference ≻̂i consistent with Ĝi and any (G−i,≻−i), the assignment σ(≻′
i,≻−i)

is not strictly preferred to σ(≻i,≻−i) at ≻i. The assignment mechanism is strategy proof it

is non manipulable for each i ∈ N .

Theorem 3 The MDPA algorithm is strategy proof.

Proof : Fix an agent i ∈ N . Let i ∈ Fq for some q. Let Gi be the set of acceptable projects

for agent i and ≻i be a preference for agent i consistent with Gi. Consider G−i to be the

acceptable project sets for the other agents and ≻−i is a preference profile for the agents in

N \ {i} consistent with G−i.

Let σ(≻i,≻−i) be the assignment generated by the MDPA algorithm at ≻ and (k, i, a) ∈
σ(≻). There are two possibilities.

Case 1: Agent i is in the residual set in σ(≻) i.e. i ∈ R. Note that any misreport by agent i

will not change his residual status as the MDPA algorithm always picks the minimum agent

in Fq according to ≻N .

The priority order in R is fixed and does not depend on the reports about the acceptable

project sets by the agents.

Consider a misreport by agent i, (Ĝi, ≻̂i). Suppose agent i strictly improves at ≻i by the

misreport (Ĝi, ≻̂i). This implies that agent i is assigned an acceptable project in σ(≻̂i,≻−i

), say project b. Also the project assigned to agent i in σ(≻i,≻−i) is not an acceptable

project for i i.e. a /∈ Gi. Note that this fact is independent of whether ≻i is partner or

project dominant as i is a residual agent in both σ(≻̂i,≻−i) and σ(≻i,≻−i). Since a is an

unacceptable project for k, agent k is unmatched agent in Step (L + 1.r∗). There exists a

Step (L+ 1.s) where k is the agent who has the highest priority in this step. There are two

possibilities with respect to the available projects in this Step.

1. All acceptable projects for k are unavailable in Step (L+ 1.s).

2. There is an available acceptable project for k (say x), but there does not exist an agent

j who has lower priority than k in Step (L+ 1.s) and x is an acceptable project for j.

Since the priority of agents in R is fixed in the MDPA algorithm, any misreport by agent

i will leave the two facts above unchanged. Thus agent k will be still be pushed down to

Step (L+ 1.r∗) for any possible misreport by i.

In Step (L+ 1.r∗), agents are still ordered using the priority order in R and consecutive

agents are paired together. Thus k, i are consecutively placed in this Step, and any misreport

by agent i will leave this pairing unchanged. Let k have lower priority than i. Suppose a

is an unacceptable project for both agents (assignment to (k, i) in σ(≻i,≻−i)), there are no

available acceptable projects for i at this point. Thus a misreport by i will not change the

project assigned to i to an acceptable project. Note that either the project assigned to (k, i)
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will be unchanged or will be another unacceptable project for i in σ(≻̂i,≻−i). Let a ∈ Gk.

Since k has higher priority than i in R, any misreport by i leads to no change in the project

assigned to (k, i).

Let i have higher priority than k in R. Then a possible misreport by agent i will either

not change the project assigned to (i, k) or change it to another unacceptable project for i.

Case 2: Agent i is not a residual agent in σ(≻) i.e. k, i ∈ Fq. Any misreport will result in

an assignment where agent i is matched with another agent from her component.

Assume without loss go generality that the set of acceptable projects in Fq is {a1, a2, . . . , aT}.
Assume also that aT ≻o aT−1 ≻o . . . ≻o a1, i.e. if an agent in this component finds object at
acceptable, then she also finds at−1 acceptable, for t = 2, . . . , T .

Consider an arbitrary acceptable object profile {Gj}, j ∈ Fq. As described earlier, it is

determined by a profile of threshold objects, {aj}, j ∈ Fq. This profiles generates a demand

vector D(at), t = 1, . . . , T . By assumption, the acceptable object profile is homophily

consistent and D(a1) ≥ D(a2) ≥ . . . ≥ D(aT ). The profile also specifies the sets of agents

who demand each object S(a1), S(a2), . . . S(aT ).

According to the MDPA (and as a consequence of homophily) , objects are considered in

the sequence aT , aT−1, . . . , a2, a1. Abusing notation slightly, let Dr(at) denote the demand

for object object at when object ar is considered by the algorithm. In other words, DT (at) =

D(at) in the demand vector in the first step when object aT is being considered. When object

ar is being considered, all objects at where t > r have already been considered. Note that

these objects have not necessarily been allocated to some pair; however for the purposes of

the algorithm we can regard Dr(at) = 0 whenever t > r. Let Sr(at), t ≤ r denote the set of

agents who have positive demand for object at.

Suppose i’s threshold object in the {Gj}, j ∈ Fq is ak, i.e she has positive demand

only for objects at where t ≥ k. We begin with an important observation. Agent i can

manipulate only if she does receive an acceptable object when being truthful. This implies

that Dt(at) ≥ 3 for all t ≤ k. Moreover there are at least two agents in each each set St(at)

who are ahead of i in the numerical order. Let at be an object with t ≤ k. If i has been

allocated an object or is waiting when at is being considered, she must be receiving or will

receive an acceptable object. Therefore it must be the case that i ∈ St(at). If Dt(at) = 1,

agent i will be a waiting pair and by construction of the algorithm, must receive an acceptable

object. If Dt(at) = 2, i gets at. Hence Dt(at) ≥ 3 so that object at must be allocated when

it is considered. There must therefore be two agents who are ahead of i in the numerical

order in the set St(at) who are allocated at.

Agent i can attempt to manipulate in only one of two ways - (i) by announcing a threshold

am where T > m > k, i.e by expanding the set of acceptable objects and (ii) by announcing

a threshold am where 1 ≤ m < k, i.e by contracting the set of acceptable objects.

We consider case (i) first. Let D̂r(at), t ≤ r denote the demand of objects when object
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ar is being considered, i.e these are the demands in the various stages of MDPA is run on

the profile where i misreports. Similarly Ŝr(at) denotes the set of agents who demand at at

the misreported profile. We will track the object received by i in this profile and show that

it cannot belong to the set {a1, a2, . . . , ak}.
Consider objects ar where r > m. For such objects, D̂r(ar) = Dr(ar) and Ŝr(ar) =

Sr(ar). Hence these objects if allocated, are allocated to the same agents in the truthful and

misreported profiles. In addition, any agent, object pair who is waiting in one of the profiles

is also waiting in the other.

We now turn to the case where am is being considered in the misreported profile. By

assumption, i ∈ Ŝ(am). Let D̂m
−i(am) = D̂m(am) − 1 and Ŝm

−i(am) = Ŝm(am) \ {i}. Note

that Dm(am) = D̂m
−i(am) and Sm(am) = Ŝm

−i(am) by virtue of the argument in the previous

paragraph.

There are several cases to consider at this point. If D̂m
−i(am) = 0. Clearly (ami) is a

waiting pair. If there already exists a waiting pair, then i is allocated am which is, by as-

sumption, an unacceptable object. Otherwise (am, i) is a waiting pair and will be a allocated

an objected later. Note that D̂m−1
−i (am−1) = Dm−1(am−1) and Ŝm−1

−i (am−1) = Sm−1(am−1).

Suppose D̂m
−i(am) = 1 or D̂m

−i(am) ≥ 2 and i is one of the two greatest agents according

to the numerical order in the set Ŝm(am). Then i is allocated am which is an unacceptable

object. Otherwise, since Sm(am) = Ŝm
−i(am), am will be allocated to the same two players

who were allocated am in the truthful profile. Once again, D̂m−1
−i (am−1) = Dm−1(am−1) and

Ŝm−1
−i (am−1) = Sm−1(am−1).

We can therefore conclude the following. If i is allocated an object at this stage, it must be

to an unacceptable object; if she is not allocated an object then D̂m−1
−i (am−1) = Dm−1(am−1)

and Ŝm−1
−i (am−1) = Sm−1(am−1).

Suppose i is not allocated an object at stage am. Consider stage am−1. Suppose i /∈
S(am−1), i.e. m − 1 > k and am−1 is not an acceptable object for i. If D̂m−1

−i (am−1) =

0, i remains waiting with am. If D̂m−1
−i (am−1) = 1, i is allocated am−1 with the other

demander for am−1. Since am−1 is not an acceptable object for i, manipulation fails. Similarly

D̂m−1
−i (am−1) ≥ 2 and i is one of the two highest agents according to the numerical order in

Ŝm−1(am−1), i is allocated am−1. The only remaining case is when i is not among the two

highest agents Ŝm−1(am−1) according to the numerical order. In this case, Ŝm−1
−i (am−1) =

Sm−1(am−1) implies that the same pair of agents are allocated am−1 in the misreported as in

the truthful profile.

Summarizing, we have reached the same conclusion in stage am−1 as in stage am. Suppose

am−1 is not acceptable object for i. If i is allocated an object in stage am−1, it must be

to an unacceptable object. If i has not been allocated an object, it must be true that

D̂m−2
−i (am−2) = Dm−2(am−2) and Ŝm−2

−i (am−2) = Sm−2(am−2).

In fact, the same argument can be replicated for all stages am−t, t = 0, . . . ,m − k till

one reaches ak where the object been considered by the algorithm in the misreported profile
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is an acceptable object of i. In particular, we can conclude that either i is allocated an

unacceptable object or the algorithm reaches stage ak with D̂k
−i(ak) = Dk(ak) and Ŝk

−i(ak) =

Sk(ak).

At stage ak, we have already argued that Dk(ak) ≥ 3 and there are two agents other than

i in Sk(ak) who are ahead of i in the numerical order. Therefore D̂k
−i(ak) ≥ 2. Moreover

Ŝk
−i(ak) = Sk(ak) implies that the same pair of agents who were allocated ak in the truthful

profile are also allocated ak in the misreported profile. The same argument can be applied

repeatedly to show that if i has not been allocated at stage ak+1, she cannot be allocated

any of the objects a1, . . . ak−1, ak. The algorithm then allocates an unacceptable object to i.

This can happen in one of two ways. If i is waiting with an object al, k < l ≤ T , after a1
has been allocated, t i will be allocated al. Otherwise i will receive an unacceptable object

after allocation of acceptable objects in Fq has been completed. In any case, manipulation

does not succeed.

Finally consider case (ii) where i misreports by contracting her acceptable set. Following

the earlier argument, it is clear that allocation proceeds in exactly the same manner in the

misreported profile as in the truthful profile until stage ak is reached. This implies that the

same agents who were allocated objects a1, . . . ak are not allocated in stages ak+1 and earlier.

Hence at each stage at, t = k, k− 1, . . . , 1, D̂−i(at) ≥ 2 and Ŝ−i(at) contains two agents with

numerical order greater than i. Therefore these agents are allocated a1, . . . , ak and i does

not receive acceptable project. This completes the proof.

■

6 Dichotomous Domain without Homophily

In this section, we demonstrate the centrality of the homophily assumption for the existence

of stable assignments. We provide examples to show that stable assignments do not exist for

either partner dominant or project dominant preferences.

We retain all the assumption on preferences in Section 2.1 except the homophily assump-

tion.

Example 6 Let N = {1, 2, 3, 4} and A = {a, b, c, d, e, f}. Let P 1 = {2, 3}, P 2 = {1, 3},
P 3 = {1, 2} and P 4 = ∅, i.e. F1 and F2 are the two friendship components where F1 =

{1, 2, 3} and F2 = {4}. The set of acceptable projects for the agents are: G1 = {a, b},
G2 = {c, d}, G3 = {e, f} and G4 = {f}. (See Diagram ) Since the acceptable sets of all

agents in the component F1 are non-empty but mutually disjoint, the homophily assumption

is violated. Let ≻ be the partner dominant profile with acceptable sets described above.

Proposition 4 There does not exist a stable matching at ≻.
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Agent Acceptable Set

1 {a, b}
2 {c, d}
3 {e, f}
4 {g, h}
5 {x, y}
6 {z, u}

Table 6: Proposition 3

Proof : Let σ be an arbitrary assignment. Two of the three agents in component F1 must

be matched with each other and one must be matched with 4. Since all agents in F1 are

symmetric, assume w.l.o.g that (1, 2, a) ∈ σ. Suppose (3, 4, f) ∈ σ (The argument is un-

changed if (3, 4, e) ∈ σ). However σ is blocked by (2, 3, c). Agent 2 now gets an acceptable

project and an acceptable partner while 3 gets an acceptable partner and an unacceptable

project which she strictly prefers to getting an unacceptable partner and acceptable project

by virtue of the partner dominance assumption on ≻3. ■

Example 7 below shows that stable assignments may not exist without homophily when

agent preferences are project dominant.

Example 7 Let N = {1, 2, 3, 4, 5, 6} and A = {a, b, c, d, e, f, g, h, x, y, z, u}. The friendship

components are F1 and F2 where F1 = {1, 2, 3} and F2 = {4, 5, 6}. Table 6 specifies the

set of acceptable projects for each agents. The acceptable sets of all agents are non-empty

and mutually disjoint. Once again, the homophily assumption is violated. In the preference

profile ≻, each agent’s preference is project dominant with respect to the acceptable partner

and project sets specified above.

Proposition 5 There does not exist a stable assignment at profile ≻.

Proof : Let σ be an arbitrary stable assignment at ≻. Since there is an odd number of

agents in each component, at least one agent in F1 is matched to an agent in F2. Assume

without lot of generality that 3 and 6 are paired with some project α ∈ A, i.e (3, 6, α) ∈ σ.

Since the acceptable project sets of 3 and 6 are disjoint, at least one of these agents is getting

an unacceptable project. Assume w.l.o.g that agent 3 is such an agent.

In order for 3 not to form a blocking coalition with either 1 or 2 (via an unassigned

project) either (i) 1 and 2 are both getting acceptable projects or (ii) there is no unassigned

project acceptable to both 1 and 2. However, (ii) is impossible since the number of projects
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acceptable to either 1 or 2 is four while the total number of assigned projects is three. Hence

(i) must be true.

The set of acceptable projects for 1 and 2 are disjoint; in order for (i) to hold, it must be

the case that both 1 and 2 are matched to agents in F2, i.e. to agents 4 and 5. Irrespective of

who agents 4 and 5 are matched to in F1, they must both be getting unacceptable projects.

Since they are also both getting unacceptable partners (by virtue of getting matched with

agents in F1), they can form a blocking coalition with any unassigned project (there must

be at least five such projects). Hence σ is not stable which is a contradiction.

■

7 Non Dichotomous Preferences

We show the non existence of stable allocations when the preferences of the agents are

non dichotomous. In particular, we assume that the preference for an agent i satisfies

single peakedness on each component (partner and project) and the project component

lexicographically dominates the partner component.21

Consider a strict ordering <o on A and <p on N . Let τ(i) denote the project peak of

agent i. Let Pi denote a single peaked ordering with respect to <o. Note that Pi is single

peaked with respect to <o if

• for all a, b ∈ A with b <o a <o τ(i), we have aPib and

• for all a, b ∈ A with τ(i) >o a >o b, we have aPib.

Let π(i) denote the partner peak of agent i.22 Also let P ′
i (a strict ordering over the set

N \ {i}) denote a single peaked ordering with respect to <p.

Let ≻i denote the preference of agent i over all possible partner-project tuples i.e. all

tuples in N \ {i} × A. The preference for agent i satisfies the following properties.

(i) For all j ∈ N \ {i} and a, b ∈ A with aPib, we have (j, a) ≻i (j, b).

(ii) For all a ∈ A and j, k ∈ N \ {i} with jP ′
ik, we have (j, a) ≻i (k, a).

(iii) For all a, b ∈ A and j, k ∈ N \ {i} such that aPib, we have (j, a) ≻i (k, b).

Example 8 Let N = {1, 2, 3, 4, 5, 6} and A = {a, b, c, d, e, f}. Let a <o b <o c <o d <o e <o

f and 1 <p 2 <p 3 <p 4 <p 5 <p 6.

21Note that the preference described satisfies multi dimensional single peakedness as defined in

Barberà et al. (1993).
22For any agent i, <p provides a strict ordering on N \ {i}.
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P1 P2 P3 P4 P5 P6

a b c d e f

b a b e f e

c c a f d d

d d d c c c

e e e b b b

f f f a a a

Table 7: Single peaked preferences on projects

P ′
1 P ′

2 P ′
3 P ′

4 P ′
5 P ′

6

2 1 1 1 1 1

3 3 2 2 2 2

4 4 4 3 3 3

5 5 5 5 4 4

6 6 6 6 6 5

Table 8: Single peaked preferences on partners

The project peaks are: τ(1) = a, τ(2) = b, τ(3) = c, τ(4) = d, τ(5) = e and τ(6) = f .

Table 7 provides preferences of all agents on projects. Note that for any agent i, Pi satisfies

single peakedness with respect to <o. The agents 2 and 3 are left oriented i.e. any project

which lies to the left of the project peak is preferred to a project which lies to the right of

the peak. Similarly agents 4 and 5 are right oriented.

The partner peaks for the agents are π(1) = 2, π(j) = 1 for all j ̸= 1. Table 8 provides

the preferences of agents on partners.

In the preference profile ≻, each agent’s preference ≻i satisfies properties (i), (ii) and (iii)

with respect to Pi and P ′
i .

Proposition 6 There does not exist a stable matching at ≻.

Proof : Consider an assignment σ such that σ is stable at ≻. For any agents i, j ∈ N such

that τ(i) <o τ(j), the interval (τ(i), τ(j)) consists of all projects which lie between τ(i) and

τ(j). The closed interval [(τ(i), τ(j) = (τ(i), τ(j)) ∪ {τ(i), τ(j)}.

Lemma 1 If the assignment σ is stable at ≻, then for any i, j ∈ N with (i, j, x) ∈ σ, either

(i) or (ii) holds. W.l.o.g let τ(i) <o τ(j).

(i) x ∈ [τ(i), τ(j)].
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(ii) {τ(i), τ(j)} ∩ uσ = ∅.23

Proof : We will prove the lemma by contradiction. Let σ be an assignment which is stable

at ≻. Suppose Lemma 1 is false i.e. there exist agents i, j ∈ N (with τ(i) <o τ(j)) such that

1, 2 and 3 hold.

1. (i, j, x) ∈ σ.

2. x /∈ [τ(i), τ(j)].

3. {τ(i), τ(j)} ∩ uσ ̸= ∅.
Let τ(i) ∈ uσ. We consider two cases based on the position of x with respect to the

projects peaks of agents i, j.

Case I: Let x <o τ(i) <o τ(j). We have (j, τ(i)) ≻i (j, x) and (i, τ(i)) ≻j (i, x).
24 Thus the

pair (i, j) blocks σ via the unassigned project τ(i).

Case II: Let τ(i) <o τ(j) <o x. There are two subcases: either τ(j) ∈ uσ or τ(j) is assigned

to another pair.

Let τ(j) ∈ uσ. The pair (i, j) blocks σ via the unassigned project τ(j). So τ(j) /∈ uσ.

Thus there exist agents k, l with (k, l, τ(j)) ∈ σ.

We require the following claims to complete the argument for this case.

Claim 1.1: There does not exist an agent s ∈ {k, l} such that τ(s) <o τ(i).

Proof : Suppose not i.e there exists an agent s ∈ {k, l} with τ(s) <o τ(i). We assume w.l.o.g

that s = k. We know τ(i)Pkτ(j). Then by Requirement (iii) about ≻k, (i, τ(i)) ≻k (l, τ(j).

Similarly for agent i, (k, τ(i)) ≻i (j, x). Since τ(i) ∈ uσ, the pair (k, i) blocks σ via the

unassigned project τ(i). ■

Thus by Claim 1.1, we have τ(i) <o τ(s) for any s ∈ {k, l}.

Claim 1.2: There does not exist an agent s ∈ {k, l} such that τ(s) ∈ (τ(i), τ(j)).25

Proof : Suppose not i.e. there exists an agent s ∈ {k, l} with τ(i) < τ(s) < τ(j). Assume

w.l.o.g s = k.

We claim τ(k) /∈ uσ. To show this, let τ(k) ∈ uσ. Since τ(i) < τ(k) < τ(j) < x and

(i, j, x), (k, l, τ(j)) ∈ σ, the pair (i, k) blocks the assignment via the unassigned project τ(k).

So τ(k) /∈ uσ. Thus project τ(k) must be assigned to the two remaining agents, say agents

p, q.26 We have (p, q, τ(k)) ∈ σ and τ(p) ∈ uσ.

23Note that uσ is the set of unassigned projects in the assignment σ.
24Note that this follows from the fact that the preference for any agent s, ≻s satisfies single-peakedness

with respect to the project component. The partner, project pairs being compared only differ in the projects.
25It is sufficient to consider the open interval as all agents have distinct project peaks.
26Note that p, q ∈ N \ {i, j, k, l}.
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Next we show that there does not exist an agent s ∈ {p, q} with τ(s) <o τ(k). Suppose

the claim is false. Let agent p be such that τ(p) <o τ(k). There are two subcases.

(i) τ(p) <o τ(i) <o τ(k). The pair (p, i) blocks σ via τ(i).

(ii) τ(i) <o τ(p) <o τ(k). The pair (i, p) blocks σ via τ(p).

By a similar argument, we have τ(k) <o τ(q).
27

We argue that τ(p), τ(q) /∈ (τ(k), x). Let us suppose the claim is false. Let agent p be

such that τ(p) ∈ (τ(k), x). The pair (i, p) blocks σ via the unassigned project τ(p). By a

similar argument, we have a contradiction if τ(q) ∈ (τ(k), x).

Thus τ(p), τ(q) satisfy either (i) or (ii): (i) one of the peaks is equal to x and the other

one lies to the right of x; (ii) both peaks lie to the right of x. In both cases, there is

atleast one project from {τ(p), τ(q)} which is unassigned in σ. We know (p, q, τ(k)) ∈ σ

and τ(k) <o τ(s) for any s ∈ {p, q}. The pair (p, q) blocks σ via the unassigned project in

{τ(p), τ(q)}. This completes the proof of Claim 1.2.

■

Claims 1.1 and 1.2 imply that τ(k) and τ(l) must lie to the right of τ(j). We will show

that this fact contradicts the assumption that σ is stable. There are three possibilities:

x /∈ {τ(k), τ(l)}, x = τ(k) and x = τ(l).

Let x /∈ {τ(k), τ(l)}. Note that at least one project from {τ(k), τ(l)} is unassigned in

σ. Then σ is not stable as (k, l) blocks it via the unassigned project in {τ(k), τ(l)}. This

follows from (k, l, τ(j)) ∈ σ and τ(j) <o τ(s) for any s ∈ {k, l}.
So either x = τ(k) or x = τ(l) holds.

Let x = τ(k). Thus (i, j, τ(k)), (k, l, τ(j) ∈ σ. The agents j and k block σ via a posi-

tion swap. The assignments for agents j and k after the position swap are (j, l, τ(j)) and

(i, k, τ(k)). The agents j, k obtain their project peaks and strictly improve after the position

swap.

Let x = τ(l). Then (i, j, τ(l)), (k, l, τ(j)) ∈ σ. The agents j and l block σ via a position

switch. This is because both agents obtain their project peaks after the position swap and

thus strictly improve. This completes the proof for Case II. ■

Remark: Consider any stable assignment σ. There are three pairs formed in σ. Since all

agents in N have distinct project peaks, it is not possible that each pair formed in σ satisfies

Requirement (ii) of Lemma 1. Also there cannot exist two pairs formed in σ such that

Requirement (ii) of Lemma 1 is satisfied for these pairs. To see this, let us assume that

there exist two such pairs, say (i, j) and (k, l). By Requirement (ii), all projects in the set

27Note that since all agents have distinct peaks, τ(s) ̸= τ(k) for any s ∈ {p, q}.
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{τ(i), τ(j), τ(k), τ(l)} have to be assigned in σ. This is not possible as only three projects

will be assigned in σ. So there can exist at most one pair in σ such that Requirement (ii) of

Lemma 1 is satisfied for this pair.

Lemma 2 If σ is stable, then at least one project from {τ(1), τ(2)} is assigned in σ.

Proof : We prove the lemma by contradiction. Let σ be a stable assignment with τ(1), τ(2) ∈
uσ. Also let x and y be the projects assigned to agents 1 and 2 in σ.28 Also for any

x ∈ A \ {τ(1), τ(2)}, τ(1) <o τ(2) <o x. Thus agents 1, 2 are assigned projects in σ which

lie to the right of τ(2). The pair (1, 2) blocks via τ(1) or τ(2), contradicting the assumption

that σ is stable. ■

Lemma 3 If σ is stable, then at least one object from {τ(5), τ(6)} is assigned in σ.

Proof : We use similar arguments as in Lemma 2. The only difference is that agents 5, 6 are

assigned projects which lie to the left of their respective peaks. Thus the pair (5, 6) blocks

σ via τ(5) or τ(6). ■

Lemma 4 Consider σ = {(1, 2, x), (3, 4, y), (5, 6, z)} for any x, y, z ∈ A. The assignment σ

is not stable at ≻.

Proof : We assume for the sake of contradiction that σ is stable at ≻. From Lemma 1

and Lemma 2, we have x ∈ {τ(1), τ(2)}. Similarly Lemma 1 and Lemma 3 together imply

z ∈ {τ(5), τ(6)}. Since x, z /∈ {τ(3), τ(4)}, Lemma 1 implies y ∈ {τ(3), τ(4)}.
Let x = τ(1). Then τ(2) ∈ uσ. We claim that if σ is stable at ≻, y = τ(3). This

means that agent 3 is assigned her project peak in σ. Suppose not i.e. y ̸= τ(3). Thus

(3, 4, τ(4)) ∈ σ. Agent 3 is left oriented (and τ(2)P3τ(4)) and strictly improves by moving

to τ(2). The pair (2, 3) blocks σ via τ(2).

So (1, 2, τ(1)), (3, 4, τ(3)) ∈ σ. We claim that z = τ(5). Suppose not i.e. τ(5) ∈ uσ.

Then (4, 5) block the assignment via τ(5). Agent 4 strictly improves as τ(5)P4τ(3) (agent 4

is right oriented).

Thus σ = {(1, 2, τ(1)), (3, 4, τ(3)), (5, 6, τ(5)) and τ(6) ∈ uσ. The pair (4, 6) blocks σ

via τ(6). Agent 4 strictly improves because τ(6)P4τ(3)) (as agent 4 is right oriented). This

contradicts the assumption that σ is stable at ≻.

Suppose x = τ(2). Then stability of σ at ≻ implies that agent 3 must be assigned τ(3).

This is because τ(1) ∈ uσ and agent 3is left oriented. Then (1, 2, τ(2)), (3, 4, τ(3)) ∈ σ. Since

28It is possible that x = y which means that agents 1, 2 are paired together in σ.
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agent 4 is not assigned her project peak in σ and is right oriented, agent 5 must be assigned

τ(5) ∈ uσ. Finally we have (5, 6, τ(5) ∈ σ and τ(6) ∈ uσ. The pair (4, 6) blocks σ via τ(6).

This contradicts the assumption that σ is stable at ≻. ■

Lemma 5 Consider σ such that (1, 2, x) ∈ σ for some x ∈ A. The assignment σ is not

stable at ≻.

Proof : We assume that σ is stable at ≻. By Lemma 2, atleast one of the projects from

{τ(1), τ(2)} must be assigned. Since agents 1, 2 are paired together in σ, Lemma 1 implies

x ∈ {τ(1), τ(2)}.
Since σ is stable, Lemma 4 implies that agent 3’s partner in σ is either agent 5 or 6. Let

(3, s, y) ∈ σ where s ∈ {5, 6} and y ̸= x. We claim that y = τ(3). To show this, let y ̸= τ(3).

There are two possibilities.

(i) y <o τ(3). This implies that y ∈ {τ(1), τ(2)}. By Lemma 1, {τ(3), τ(s)} ∩ uσ = ∅.
However in the assignment at least one of projects in {τ(3), τ(s)} is unassigned resulting

in a contradiction.

(ii) τ(3) <o y. We claim that at least one project in {τ(1), τ(2)} is unassigned in σ.29 Let

τ(s) (where s ∈ {1, 2}) be the unassigned project in σ. The pair (s, 3) blocks σ via

τ(s). This follows from the fact that agent 3 is left oriented.

We know (3, s, τ(3)) ∈ σ where s ∈ {5, 6}. W.l.o.g assume that s = 5. Then (4, 6, z) ∈ σ.

Since x ∈ {τ(1), τ(2)}, y = τ(3), Lemma 1 and Lemma 3 imply that the pair z is assigned a

project in {τ(5), τ(6)}. Thus τ(4) ∈ uσ and the pair (5, 4) block σ via τ(4). This contradicts

the assumption that σ is stable.

■

Lemma 6 Consider σ such that (1, 3, x) ∈ σ for some x ∈ A. The assignment σ is not

stable at ≻.

Proof : We claim that x ∈ [τ(1), τ(3)]. Suppose not i.e. assume x /∈ [τ(1), τ(3)]. By

Requirement (ii) of Lemma 1, τ(1) and τ(3) have to be assigned in σ. Then Lemma 3

implies that x ∈ {τ(5), τ(6)}. Clearly, one project from {τ(5), τ(6)} is unassigned. Also

29Lemma 1 implies that either Reqirement (i) or (ii) must hold for the remaining two pairs formed from

{3, 4, 5, 6}. Since x ∈ {τ(1), τ(2)}, it must be the case that both pairs are assigned projects from their

respective intervals.
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agent s where s ∈ {5, 6} is assigned a project to the left of τ(s). The pair (5, 6) blocks σ via

the unassigned project in {τ(5), τ(6)}. Thus x ∈ [τ(1), τ(3)].

(6.1) Let x = τ(2). Let agent 2’s assignment in σ be (2, s, y) where s ∈ {4, 5, 6}. We

claim that y >o τ(2). To show this, assume y <o τ(2) which implies y = τ(1). Since

τ(1) /∈ [τ(2), τ(s)] for any s ∈ {4, 5, 6}, Lemma 1 implies that τ(s) must be assigned in σ.

There are three possibilities about the pairs formed in σ: {(2, 4),(5, 6)}; {(2, 5), (4, 6)} and

{(2, 6), (4, 5)}. In all these cases, Lemma 1 is violated for the pair which does not contain

agent 2. For instance, consider {(2, 4), (5, 6)}. Then τ(4) is assigned to the pair (5, 6) and

τ(5), τ(6) ∈ uσ. For the pair (5, 6), the project assigned in σ does not belong to [τ(5), τ(6)]

and both peaks are unassigned in σ. Thus τ(2) <o y.

Let y = τ(3). So (1, 3, τ(2)), (2, s, τ(3)) ∈ σ where s ∈ {4, 5, 6}. The assignment σ is not

stable at ≻ as agents 2 and 3 block it via a position swap. Both agents strictly improve by

the position swap by obtaining their respective projects peaks in the new assignment.

So y >o τ(3). We claim that τ(3) ∈ uσ. This follows from Lemma 3 and the fact that

there is only one remaining pair (different from (1, 3) and (2, s) where s ∈ {4, 5, 6}). Thus

this pair is assigned a project from {τ(5), τ(6)} in σ. Finally the pair (2, 3) blocks σ via τ(3).

(6.2) Let x ̸= τ(2). We claim that agent 2 is assigned τ(2) in σ. Agent 2’s partner in σ is

an agent from {4, 5, 6}. Lemma 1 and x ∈ {tau(1), τ(3)} imply that any pair formed in σ

from the set {2, 4, 5, 6} is assigned a project which lies in the interval of the project peaks.

Thus (2, s, y) ∈ σ where s ∈ {4, 5, 6}, y ∈ (τ(2), τ(s)]. The last remaining pair is assigned a

project from {τ(4), τ(5), τ(6)}. So tau(2) ∈ uσ. There exists i ∈ {1, 3} such that x ̸= τ(i).

Then (i, 2, τ(2)) is a blocking coalition.30

We have (1, 3, x) (with x ∈ {τ(1), τ(3)}) and (2, s, τ(2)) (with s ∈ {4, 5, 6}) belong to σ.

We first consider the case x = τ(1). Here τ(3) ∈ uσ. The pair (3, s) (where s ∈ {4, 5, 6})
blocks σ via τ(3). Agent s strictly improves as τ(s) >o τ(3) >o τ(2) for all s ∈ {4, 5, 6}.

The remaining case is x = τ(3). We have (2, s, τ(2) ∈ σ where s ∈ {4, 5, 6}. Finally

(k, l, z) ∈ σ where k, l ∈ {4, 5, 6} \ s and z ∈ [τ(k), τ(l)]. Note that there exists an agent in

{k, l}, say agent k such that z ̸= τ(k) and τ(k) ∈ uσ. Also for any agent s ∈ {4, 5, 6}, we
have τ(k)Psτ(2). This follows from the fact that agents 4, 5 are right oriented and agent 6’s

project peak is to the right of the peak of all other agents. Then (s, k, τ(k)) is a blocking

coalition and hence σ is not stable at ≻.

■

Lemma 7 Consider σ such that (1, 4, x) ∈ σ for some x ∈ A. The assignment σ is not

stable at ≻.
30Suppose i = 1. Then agent 1 strictly improves by blocking as τ(2)P1τ(3). Let i = 3. Agent 3 strictly

improves by blocking as τ(2)P3τ(1).
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Proof : By Lemma 1, we have x ∈ [τ(1), τ(4)]. Note that if x /∈ [τ(1), τ(4)], then Lemma

1 implies that τ(1) and τ(4) must be assigned in σ. Note that there can exist exactly one

pair in σ such that Requirement (ii) of Lemma 1 is satisfied. Thus we know that the pairs

formed from {2, 3, 5, 6} must satisfy Requirement (i) of Lemma 1. This is not possible as

τ(1) does not belong to the interval of the peaks of any i, j ∈ {2, 3, 5, 6}. In fact any pair

formed in σ from {2, 3, 5, 6} is assigned a project belonging to the interval of the peaks of

the agents in the pair.

So x ∈ [τ(1), τ(4)] and the following three possibilties can arise.

(6.1) x = τ(2). Then (1, 4, τ(2)), (2, k, y) ∈ σ where k ∈ {3, 5, 6}.
Let k = 3. Lemma 1 implies y = τ(3). Also (5, 6, z) ∈ σ with z ∈ [τ(5), τ(6)]. There

exists i ∈ {5, 6} with τ(i) ∈ uσ. The pair (4, i) blocks σ via τ(i). Agent 4 strictly improves

as she is right oriented and τ(i)P4τ(2) (as τ(2) <o τ(4) <o τ(i)).

Let k ∈ {5, 6}. W.l.o.g assume k = 5. We claim τ(5) /∈ uσ. To see this, suppose

τ(5) ∈ u5. Then (4, 5) block σ via τ(5). Also τ(3) /∈ uσ. Note that if τ(3) is unassigned,

then (3, 4, τ(3)) is a blocking coalition. Thus τ(6) ∈ uσ. Finally the pair (4, 6) blocks σ via

τ(6) resulting in a contradiction.

(6.2) Let x <o τ(2) and in particular x = peak(1).

We have (1, 4, τ(1)), (2, k, y) ∈ σ with k = {3, 5, 6}. We know y ∈ [τ(2), τ(k)]. We claim

y = τ(2). Suppose not i.e. y ̸= τ(2). Then τ(2) ∈ uσ and (4, 2, τ(2) is a blocking coalition.

So (2, k, τ(2)) ∈ σ with k ∈ {3, 5, 6}.
Let k = 3. Then τ(3) ∈ uσ (by Lemma 1) and the pair (3, 4) blocks σ via τ(3).

Let k ∈ {5, 6}. W.l.o.g assume k = 5. By Lemma 1, z ∈ [τ(3), τ(6)]. Let z ̸= τ(4). Then

τ(4) ∈ uσ and (4, 5, τ(4)) is a blocking coalition. So z = τ(4). This implies τ(5) ∈ uσ and

(5, 6, τ(5)) is a blocking coalition.

(6.3) Let x >o τ(2). We claim that agent 2 is assigned τ(2) in σ.31

We have (1, 4, x) with x ∈ {τ(3), τ(4)} and (2, k, τ(2)) with k ∈ {3, 5, 6} in the assign-

ment. Note that there exists an agent i ∈ {5, 6} such that τ(i) ∈ uσ. For instance, consider

the case where k = 5. Here (3, 6, z) ∈ σ with z ∈ [τ(3), τ(6)]. For any possible choice of z,

it is always the case that either τ(5) or τ(6) is unassigned in σ.

Let x = τ(3). Since agent 4 is right oriented, τ(i)P4τ(3) for any i ∈ {5, 6}. The pair

(4, i) blocks σ via τ(i).

Let x = τ(4). We claim that stability of σ implies that agent 3 must be assigned τ(3). To

see this, we assume that agent 3 is not assigned τ(3). By Lemma 1, we know that τ(3) ∈ uσ.

Then (1, 3, τ(3)) is a blocking coalition.

31The argument used to prove this claim in (6.2) is still valid.
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Thus agent 3 is assigned τ(3) in σ, implying that k ̸= 3. Thus (2, k, τ(2)), (3, l, τ(3)) ∈ σ

with k, l ∈ {5, 6}. Also τ(5) ∈ uσ. The pair (5, 6) blocks σ via τ(5). This contradicts the

assumption that σ is stable at ≻.

■

Lemma 8 Consider σ such that (1, 5, x) ∈ σ for some x ∈ A. The assignment σ is not

stable at ≻.

Proof : By Lemma 1, we have x ∈ [τ(1), τ(5)]. Note that if x /∈ [τ(1), τ(5)], then Lemma

1 implies that τ(1) and τ(5) must be assigned in σ. Note that there can exist exactly one

pair in σ such that Requirement (ii) of Lemma 1 is satisfied. Thus we know that the pairs

formed from {2, 3, 4, 6} must satisfy Requirement (i) of Lemma 1. This is not possible as

τ(1) does not belong to the interval of the peaks of any i, j ∈ {2, 3, 4, 6}. In fact any pair

formed in σ from {2, 3, 4, 6} is assigned a project belonging to the interval of the peaks of

the agents in the pair.

(7.1) Let x <o τ(2).

We claim that for any agent i ∈ {3, 4}, τ(i) /∈ uσ. To see this, assume w.l.o.g τ(i) ∈ uσ

for some i ∈ {3, 4}. Then (5, i, τ(i)) is a blocking coalition. Agent 5 strictly improves as

τ(i)P5x for any i ∈ {3, 4}.
Thus τ(3) and τ(4) are assigned to the two pairs formed from {2, 3, 4, 6} in σ. Also τ(5) ∈

uσ. Finally the pair (5, 6) blocks σ via τ(5). Agent 6 strictly improves as τ(5)P6τ(4)P6τ(3).

This contradicts the assumption that σ is stable.

(7.2) Let x = τ(2). So (1, 5, τ(2)) and (2, k, y) with k ∈ {3, 4, 6} belong to σ. By Lemma 1

and x = τ(2), we have y ∈ (τ(2), τ(k)] where k ∈ {3, 4, 6}. Note that for any k ∈ {3, 4, 6},
τ(k)P5τ(2). Thus agents 2 and 5 block σ via a position swap.

(7.3) Let x >o τ(2). Then x ∈ [τ(3), τ(5)].

We claim that τ(2) /∈ uσ. To see this, let τ(2) ∈ uσ. The pair (1, 2) blocks σ via τ(2).

Agent 1 strictly improves as τ(2)P1x and 2 strictly improves by moving to her peak.

We show that τ(2) is assigned to agent 2 in σ. Suppose not i.e. τ(2) is not assigned

to agent 2. Since τ(2) /∈ uσ and x >o τ(2), we have (l, j, τ(2)) ∈ σ with l, j ∈ {3, 4, 6}.
Note that τ(2) does not lie in the interval of the peaks of any two agents in {3, 4, 6}. By

Lemma 1, the projects τ(l) and τ(j) have to be assigned to the remaining two pairs in σ

with an additional contraint: the project assigned to any pair must lie in the interval of

the peaks of the agents in the pair. This implies l, j ∈ {3, 4} and (3, 4, τ(2)) ∈ σ.32 Also

32We know that there exists exactly one pair in σ which satisfies Requirement (ii) of Lemma 1. The pair

(l, , τ(2) cannot contain agent 6. This is because τ(6) will then need to be assigned to two pairs, (1, 5) and

(2, k) with k ∈ {3, 4}.
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x, y ∈ {τ(3), τ(4)} and τ(5) ∈ uσ. The pair (5, 6) block σ via τ(5). Agent 6 strictly improves

as (2, 6, y) where y ∈ {τ(3), τ(4)}.
We have (1, 5, x) with x ∈ [τ(3), τ(5)] and (2, k, τ(2)) with k ∈ {3, 4, 6} belong to σ. Also

(3, 4, z) ∈ σ where z ∈ [τ(3), τ(4)]. This follows from the fact that the pair (3, 4) must satisfy

Requirement (i) of Lemma 1.33

We claim that agent 5 is assigned τ(5) i.e. x = τ(5). To show this, assume x ̸= τ(5).

Then τ(5) ∈ uσ as y = τ(2) and z ∈ [τ(3), τ(4)]. The pair (5, 6) blocks σ via τ(5).

We have shown that if σ is stable, then (1, 5, τ(5))(2, 6, τ(2)) ∈ σ. Agents 1 and 6 block

σ via a position swap. This contradicts the assumption that σ is stable at ≻. ■

Lemma 9 Consider σ such that (1, 6, x) ∈ σ for some x ∈ A. The assignment σ is not

stable at ≻.

Proof : We claim that the pair (1, 6) formed in σ must satisfy Requirement (i) of Lemma

1. To see this, assume Requirement (i) is violated for (1, 6). Then the pair (1, 6) must

satisfy Requirement (ii) and both projects τ(1) and τ(6) have to be assigned in σ. This will

imply that any pair formed in σ from {2, 3, 4, 5} will violate both Requirement (i) and (ii)

of Lemma 1. So x ∈ [τ(1), τ(6)].

(8.1) Let x ∈ [τ(1), τ(2)]. Let x = τ(1). There exists an agent i ∈ {2, 3, 4, 5} such that i is

assigned a project different from τ(i) and τ(i) ∈ uσ. Then (i, 6, τ(i) is a blocking coalition.

Agent 6 strictly improves as τ(i)P6τ(1) for any i ∈ {2, 3, 4, 5}.
Let x = τ(2). There exists an agent i ∈ {3, 4, 5} such that i is assigned a project different

from τ(i) and τ(i) ∈ uσ. For instance, (2, 3, τ(3)), (4, 5, τ(4)) ∈ σ. In this case, i = 5. The

pair (6, i) blocks σ via τ(i).

(8.2) Let x >o τ(2) i.e. x ∈ [τ(3), τ(6)].

We claim that τ(2) /∈ uσ. To see this, assume τ(2) ∈ uσ. Th pair (1, 2) blocks σ via τ(2).

Next we show that τ(2) must be assigned to agent 2. We assume for contradiction that

τ(2) is not assigned to agent 2. Since τ(2) /∈ uσ, it is assigned to a pair formed from {3, 4, 5}.
There are two subcases: (a) the pairs (2, 3) and (4, 5) are formed in σ and (b) the pairs

{(2, 4), (3, 5)} or {(2, 5), (3, 4)} are formed in σ.

(a) Here (4, 5, τ(2)) ∈ σ. The pair (4, 5) is assigned a project which does not belong to

[τ(4), τ(5)]. Then by Requirement (ii) of Lemma 1, both τ(4) and τ(5) must be assigned in

σ. This will result in the pair (2, 3) violating both requirements of Lemma 1.

33It is not possible that (3, 4) satisfies Requirement (ii) of Lemma 1 as y = τ(2) in σ. So it is possible to

assign exactly one project from {τ(3), τ(4)}.
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(b) Here either (3, 5, τ(2) or (3, 4, τ(2) belongs to σ. We have x ∈ [τ(3), τ(6)]. Let (3, 5, τ(2)) ∈
σ. Agents 1 and 5 block σ via a position swap. Agent 5 strictly improves as τ(i)P5τ(2) for

any i ∈ {3, 4, 5, 6}.34 We can argue similarly for the case where (3, 4, τ(2)) ∈ σ. Agents 1

and 4 block σ via a position swap.

Thus we have (2, k, τ(2)) ∈ σ with k ∈ {3, 4, 5}. We first consider the case where

k ∈ {4, 5}. So (1, 6, x) (with x ∈ [τ(3), τ(6)]) and (2, k, τ(2)) (with k ∈ {4, 5}) belong to σ.

Agents 1 and k block σ via a position swap. For instance, let k = 4. We have xP4τ(2) for

x ∈ [τ(3), τ(6)]. This follows from the fact that 4 is right oriented.

The only remaining case is k = 3. There are two possibilties: x = τ(3) or x ∈ (τ(3), τ(6)].

Let x = τ(3). Then agents 1 and 3 block σ via a position swap.

So x ∈ (τ(3), τ(6)]. By Lemma 1, (4, 5, z) ∈ σ with z ∈ [τ(4), τ(5)]. This implies

τ(3) ∈ uσ and the pair (1, 3) blocks σ via τ(3). We have a contradiction to the assumption

that σ is stable.

■

This completes the proof of the theorem.

■

8 Conclusion

In this paper, we have investigated a class of matching models where agents’ have to be

matched in pairs with a project. We provide a restriction on partner,project pairs based

on homophily that guarantees the existence of a robustly stable assignment. We provide an

algorithm, the MDPA algorithm which generates a robustly stable assignment and satisfies

Pareto efficiency imposed on each friendship component and has good strategic properties.

In future, we hope to extend our work to teams of general size. Our current results on

pairs do not extend in a straightforward manner to the more general case. We also hope to

investigate other notions of capturing homophily in project and team assignment models.

9 Appendix

We show that MDPA algorithm generates a robustly stable assignment at every preference

profile.

Proof : Let ≻ be an arbitrary profile and σ be the assignment generated by the PBCA

algorithm at ≻. We will show that σ cannot be blocked via an unassigned project, by a

34This is because either agent 5 moves closer to her peak or moves to an alternative to the right of her

peak. Agent 5 is right oriented.
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position swap or by a project swap at any ≻′ which is acceptable set equivalent to ≻.

An important initial observation is that the algorithm relies only on the P i(≻i),G
i(≻i)

sets for all agents. Therefore if two profiles ≻,≻′ induce the same acceptable sets for all

agents, the algorithm generates the same assignment.

Case I: Suppose by way of contradiction that σ is blocked via an unassigned project, i.e.

there exist (k, i, a), (l, j, b) ∈ σ and b ∈ uσ such that35

1. (k, l, b) ≻′
k (k, i, a).

2. (k, l, b) ≻′
l (l, j, c).

where ≻′ is acceptable set equivalent to ≻.

We consider various subcases.

I.(i) The agents k, l ∈ Fq for some q. There are two subcases to consider.

(a) Agents k, l are paired together in σ, i.e. (k, l, a) ∈ σ. An application of 1 and 2 above

yields a /∈ Gk(≻′
k), a /∈ Gl(≻′

l) and b ∈ Gk(≻′
k) ∩ Gl(≻′

l).
36 In the algorithm, it must have

been the case that (k, l, a) was formed in Step q.s∗ (the termination step for the component

Fq) and the demand for each available project in this step is zero. Since b ∈ uσ, b is available

in Step q.s∗ and D(b) = 2 in Step q.s∗. This results in a contradiction.

(b) Agents k, l are not paired together in σ, i.e. (k, i, a), (l, j, c) ∈ σ where i ̸= l and j ̸= k.

In the algorithm, there is atmost one residual agent from each friendship component. Thus

there are three subcases: i, j ∈ Fq; i ∈ Fq, j /∈ Fq and i /∈ Fq,j ∈ Fq. Without loss of

generality, we assume that agent l is the residual agent.37 Thus we can remove the third

possibility and we have k, i ∈ Fq. From 1, we have a /∈ Gk(≻′
k) and b ∈ Gk(≻′

k). In the

algorithm, it must have been the case that agent k is assigned a project and partner in Step

q.s∗, where the demand for each available project is zero. Since b ∈ uσ, project b is available

in Step q.s∗. Also D(b) = 1 in Step q.s∗ as b ∈ Gk(≻′
k). This results in a contradiction.

I.(ii) Agents k, l belong to different partitions. Let k ∈ Fq and l ∈ Fp. There are several

possibilities to consider.

(a) ≻′
k and ≻′

l are both partner dominant. Since k and l are strictly improving, we must have

i /∈ Fq and j /∈ Fp. Thus k, i, l, j all belong to the residual set R. Moreover from 1 and 2, we

have a /∈ Gk(≻′
k), b ∈ Gk(≻′

k), c /∈ Gl(≻′
l) and b ∈ Gl(≻′

l). Since k and l are being assigned

unacceptable projects in σ, we can conclude that (k, i, a) and (l, j, c) are being formed in

Step (L+ 1.r∗ + 1). Suppose agent k has higher priority than l in R. Since b is unassigned,

35Note that it is possible that i = l and j = k. This means that in σ, agents k, l are paired together with

an project i.e. a = c.
36This fact is independent of whether ≻′

k is partner or project dominant.
37Note that the second and third subcases are symmetric.
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there will exist a Step (L+1.q) (q ≤ r∗)) where agents (k, l) could have been paired together

with project b. Therefore we have a contradiction.

(b) ≻′
k and ≻′

l are both project dominant.

Suppose one of the pairs (k, i), (l, j) belong to the same friendship component. Without loss

of generality, suppose k, i ∈ Fq for some q. From 1, we have a /∈ Gk(≻′
k) and b ∈ Gk(≻′

k).

We have a contradiction exactly as in Case I.(i)(b).

Finally suppose neither k, i nor l, j belong to the same component. Thus k, i, l, j belong

to the residual set. This reduces to Case I.(ii)(a) which we have dealt with.

(c) One of ≻′
k and ≻′

l is partner dominant while the other is project dominant. Suppose ≻′
k

is partner dominant. From 1, i and k cannot belong to the same friendship component. Also

a /∈ Gk(≻′
k) and b ∈ Gk(≻′

k).

There are two possibilities. Suppose l, j do not belong to the same component. Then

agents k, i, l, j are residual agents. Once again, we are back to Case I.(ii).(a). The remaining

case is l, j ∈ Fp for some p. By 2, we have c /∈ Gl(≻′
l) and b ∈ Gl(≻′

l). Note that this case is

equivalent to case I.(i).(b), where agent k is replaced by l and i is replaced by j.

So this concludes Case I, i.e. σ cannot be blocked via an unassigned project.

Case II: Suppose σ can be blocked by a position swap. Suppose (k, i, a), (l, j, b) ∈ σ and

3. (k, j, b) ≻′
k (k, i, a).

4. (l, i, a) ≻′
l (l, j, b).

where ≻′ is acceptable set equivalent to ≻.

We will deal with this case by showing that all the agents k, i, l, j belong to the residual

set. We are then able to show a contradiction. Claims 1, 2 and 3 show that all four, no three

and no pair of agents can belong to the same friendship component respectively.

Claim 1: {k, i, l, j} cannot belong to the same friendship component.

Proof : Suppose not i.e. k, i, l, j ∈ Fq for some q. By homophily, either Gk(≻′
k) ⊆ Gl(≻′

l)

or Gl(≻′
l) ⊆ Gk(≻′

k). We assume w.l.o.g that Gk(≻′
k) ⊆ Gl(≻′

l). Since k, i, j are in the same

friendship component and k strictly improves in the blocking, it must be true that a /∈ Gk(≻′
k

and b ∈ Gk(≻′
k). By an analogous argument, b /∈ Gl(≻′

l) and a ∈ Gl(≻′
l). This contradicts

the homophily assumption. ■

Claim 2: No three agents from the set {k, i, l, j} belong to the same friendship component.

Proof : Suppose not. In view of Claim 1, there must exist exactly three agents from the set

{k, i, l, j} who belong to the same friendship component. The triple is one of the following

sets: {k, i, l},{k, i, j},{k, l, j}, {i, l, j}.
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Suppose that the agents k, i, l belong to the same friendship component i.e. k, i, l ∈ Fq

for some q. There are two possibilities. Suppose ≻′
k is partner dominant. Since j /∈ Fq, agent

k does not strictly improve by blocking.

The other possibility is ≻′
k is project dominant. Since j /∈ Fq and (l, j, b) ∈ σ, we know

l, j are residual agents and b ∈ U(R). Also U(R) ⊆ U(Fq) and project b is available when

projects are assigned to any pair in Fq. Application of 3 yields a /∈ Gk(≻′
k) and b ∈ Gk(≻′

k).

Since a /∈ Gk(≻′
k) and (k, i, a) ∈ σ, agent k is assigned a partner and a project in Step

q.s∗. Note that the demand for each available project in Step q.s∗ is zero. However project

b is available in Step q.s∗ (as b ∈ U(R)). Also D(b) ≥ 1 as b ∈ Gk(≻′

k) in Step q.s∗. This is

because agent k is available in this Step and b ∈ Gk(≻′
k). This results in a contradiction.

Suppose the triple is {k, i, j} and k, i, j ∈ Fq for some q. After the swap, agent k’s

partner is still acceptable. Therefore 3 implies a is an acceptable project for k, while b isn’t.

Since l /∈ Fq and (l, j) was paired with the project b in σ, l, j ∈ R and b ∈ U(R). Also

b ∈ U(R) ⊆ U(Fq) i.e. project b was available when projects were assigned to any pair in

Fq. This reduces to the case above where the triple is {k, i, l}.
The case where {k, l, j} is the triple belonging to the same friendship component can be

dealt with in the same way as {k, i, l}.38 Similarly the {i, j, l} case is identical to the {k, i, j}
case. This completes the proof of the Claim.

■

Claim 3: No two agents in the set {k, i, l, j} can belong to the same friendship component.

Proof : Suppose k, l ∈ Fq for some q. We know from Claims 1 and 2 that i, j /∈ Fq. Since

(k, i, a), (l, j, b) ∈ σ, agents k, l are residual agents from the component Fq. This is impossible

according to the algorithm. Similarly {k, j} and {i, j} cannot belong to the same component.

The remaining cases are: {k, i} and {l, j}. By symmetry it suffices to consider only one case.

Suppose k, i ∈ Fq for some q. If ≻k is partner dominant, agent k cannot strictly improve

by blocking since j /∈ Fq. Suppose therefore ≻k is project dominant. Using 3, we have

a /∈ Gk(≻′
k) and b ∈ Gk(≻′

k). There are two subcases possible: l, j ∈ Fp for some p ̸= q or

l, j do not belong to the same friendship component.

Let l, j ∈ Fp. If ≻l is partner dominant, agent l cannot strictly by blocking since i /∈ Fp.

Suppose ≻l is project dominant. W.l.o.g let q < p.39 This implies U(Fp) ⊆ U(Fq). Since

(l, j, b) ∈ σ, we have b ∈ U(Fp). This means that b ∈ U(Fq) and b was available when projects

were assigned to any pair in Fq. Since a /∈ Gk(≻′
k) and (k, i, a) ∈ σ, agent k is assigned a

partner and a project in Step q.s∗. Note that the demand for each available project in Step

q.s∗ is zero. However project b is available in Step q.s∗ (as b ∈ U(R)). Also D(b) ≥ 1 as

38We argue by replacing agent k with l.
39Suppose p < q. Then a ∈ U(Fq) ⊆ U(Fp). An implication of 4 is a ∈ Gl(≻′

l) and b /∈ Gl(≻′
l). We can

now replicate the argument described for the case p < q by replacing agent k with l and agent i with agent

j.
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b ∈ Gk(≻′

k) in Step q.s∗. This is because agent k is available in this Step and b ∈ Gk(≻′
k).

This results in a contradiction.

Let l, j ∈ R. Thus b ∈ U(R) ⊂ U(Fq) and b was available when projects were assigned

to any pair in Fq. This reduces to the above case where l, j ∈ Fp and q < p.

■

In view of Claims 1, 2 and 3, the only remaining possibility is all agents in {k, i, l, j} belong
to different friendship components i.e. all these agents belong to the set R. We show below

that this leads to a contradiction. Since k, l block, we must have a /∈ Gk(≻′
k),b ∈ Gk(≻′

k)

and b /∈ Gl(≻′
l), a ∈ Gl(≻′

l). This implies that the assignments (k, i, a) and (l, j, b) are made

in the Step (L+ 1.r∗ + 1) in the algorithm. Assume w.l.o.g. that k has higher priority than

l in R. We consider several possibilities based on the priorities of the agents {k, i, j} in R.

Suppose k has highest priority amongst {k, i, j}. Suppose one of the agents in {i, j} has

b as an acceptable project. Since b is available in Step (L+1.r∗ +1), it must also have been

available at all steps (L+ 1.s) where s ≤ r∗. According to the algorithm, there exists a step

(L+1.s′) where s′ ≤ r∗ where there exists an agent with a common acceptable project with k

and a lower priority than k. According to the algorithm, k must be assigned a partner and a

project in Step (L+1.s′). Consequently k cannot be an agent in Step (L+1.r∗+1). Suppose

such an agent does not exist. Since (k, i, a) in σ, k and i must be consecutive priority in Step

(L+1.r∗+1). Since k, i have higher priority than l, j in Step (L+1.r∗+1) and b is assigned

to pair (l, j), project b must also be available to the pair (k, i). Also k has higher priority

than i by assumption, a /∈ Gk(≻′
k) and b ∈ Gk(≻′

k). Hence (k, i, a) ∈ σ is not possible.

Agent j cannot have higher priority than k in Step (L + 1.r∗ + 1). If this were true,

then l, j could not be paired in σ. The only remaining case is that agent i has the highest

priority in the set {k, i, j}. Suppose a ∈ Gi(≻′
i). It follows from the argument in the

previous paragraph that i must have been assigned a partner and a project in a step before

(L + 1.r∗ + 1). Finally suppose a /∈ Gi(≻′
i). Since a is not an acceptable project for both

agents i, k and b is available when (i, k) is assigned a project in Step (L + 1.r∗ + 1). Hence

(i, k, a) ∈ σ is not possible.

Case III: Suppose by way of contradiction that σ is blocked via a project swap i.e. there

exists (k, i, a), (l, j, b) ∈ σ such that

5. (k, i, b) ≻′
k (k, i, a).

6. (k, i, b) ≻′
i (k, i, a).

7. (l, j, a) ≻′
l (l, j, b).

8. (l, j, a) ≻′
j (l, j, b).
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We will deal with this case by arguing that all the agents k, i, l, j belong to the residual

set and then show a contradiction.

Claim 4: {k, i, l, j} do not belong to the same friendship component.

Proof : Suppose not i.e. k, i, l, j ∈ Fq for some q. By homophily, either Gk(≻′
k) ⊆ Gl(≻′

l)

or Gl(≻′
l) ⊆ Gk(≻′

k). We assume w.l.o.g that Gk(≻′
k) ⊆ Gl(≻′

l). Since k, i, j are in the

same friendship component and k strictly improves in the blocking, it must be true that

a /∈ Gk(≻′
k) and b ∈ Gk(≻′

k). By an analogous argument, b /∈ Gl(≻′
l) and a ∈ Gl(≻′

l). This

contradicts the homophily assumption. ■

Claim 5: No three agents from the set {k, i, l, j} belong to the same friendship component.

Proof : Suppose not. In view of Claim 4, there must exist exactly three agents who belong

to the same friendship component. The triple is one of the following sets: {k, i, l}, {k, i, j},
{i, j, l} and {k, j, l}. Note that any triple contains an agent s ∈ {k, l} and her assigned

partner in σ. Since the argument relies only on the agent s and her partner in σ, it suffices

to consider one case.

Suppose the triple is {k, i, l} i.e. k, i, l ∈ Fq for some q. Since j /∈ Fq, we conclude l, j

are residual agents and b ∈ U(R). Implications of 5 and 6 are a /∈ Gk(≻′
k), a /∈ Gi(≻′

i) and

b ∈ Gk(≻′
k) ∩Gi(≻′

i). According to the algorithm, (k, i, a) is formed in Step q.s∗. Step q.s∗

is the termination step for the component Fq where the demand for each available project is

zero. However project b is available in Step q.s∗. Also D(b) = 2 in step q.s∗. This results in

a contradiction. ■

Claim 6: No two agents in the set {k, i, l, j} can belong to the same friendship component.

Proof : Suppose k, l ∈ Fq for some q. We know from Claims 4 and 5 that i, j /∈ Fq. Since

(k, i, a), (l, j, b) ∈ σ, agents k, l are residual agents from the component Fq. This is impossible

according to the algorithm. Similarly {k, j} and {i, j} cannot belong to the same component.

The remaining cases are: {k, i} and {l, j}. By symmetry it suffices to consider only one case.

Suppose k, i ∈ Fq for some q. Using 5 and 6, we have a /∈ Gk(≻′
k), a /∈ Gk(≻′

k) and

b ∈ Gk(≻′
k) ∩Gi(≻′

i).

There are two subcases possible: l, j ∈ Fp for some p ̸= q or l, j do not belong to the

same friendship component.

Let l, j ∈ Fp and w.l.o.g assume q < p. Thus b ∈ U(Fp) ⊆ U(Fq). Since (k, i, a) ∈ σ and

a is not an acceptable project for both agents k and i, we infer that (k, i, a) is formed in Step

q.s∗. Note that in Step q.s∗, the demand for each available project is zero. This contradicts

that b is an available project in Step q.s∗ and has demand D(b) = 2.

The remaining case is l, j do not belong to the same component. Since (l, j, b) ∈ σ, l, j

are residual agents and b ∈ U(R). Exactly as in the previous paragraph, b is available in

Step q.s∗ resulting in a contradiction. ■
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In view of Claims 4, 5 and 6, the only remaining possibility is that all agents in {k, i, l, j}
belong to different friendship components i.e. k, i, l, j ∈ R. Requirements 5 and 6 imply a /∈
Gk(≻′

k), a /∈ Gi(≻′
i) and b ∈ Gk(≻′

k)∩Gi(≻′
i). Similarly from 7 and 8, b is not an acceptable

project for l, j while a is an accepatable project for both agents. Since (k, i, a), (l, j, b) ∈ σ,

we know that k, i and l, j are consecutive in priority in Step (L + 1.r∗ + 1).40 Also since a

is not an acceptable project for both k, i, the pair (k, i) is a waiting pair and is assigned a

project in Step (L + 2). Similarly the project assignment for the pair (l, j) is made in Step

(L + 2). Note that both projects a, b are available for assignment in Step (L + 1.s) for all

1 ≤ s ≤ r∗ + 1.

W.l.o.g assume that agent k has higher priority than l in R. Let agent i have higher

priority than k in R. According to the algorithm, there exists a Step s′ ≤ r∗ where there

exists an agent (here agent k) with a common acceptable project with i (project b) and a

lower priority than i. According to the algorithm, agent i must be assigned a partner and

project in Step (L+ 1.s′). Thus i cannot be an agent in Step (L+ 1.r∗ + 1).

Let agent k have higher priority than i in R. Following the arguments in the previ-

ous paragraph, we conclude that k cannot be an agent in Step (L + 1.r∗ + 1) which is a

contradiction.

This completes the proof of the theorem. ■
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