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Abstract

The unconditional volatility of financial return is often time-varying. To model this, a common
approach is to decompose the volatility σ2

t multiplicatively into a non-stochastic process gt, and
a de-volatilitised stochastic process ht: σ2

t = gtht. We prove the consistency and asymptotic
normality of the single-step Quasi Maximum Likelihood Estimator (QMLE) of the parameters of gt
for a large class of specifications of gt. Next, we derive a simple but robust and consistent estimator
of the asymptotic coefficient covariance. The exact specification of ht need not be estimated or
known, and ht can even be non-stationary in the distribution. This is important in empirical
applications, since financial returns are frequently characterised by a non-stationary zero-process.
Next, we derive a period-by-period estimator of time-varying periodic unconditional volatility. Due
to the assumptions we rely upon, our results extend directly to the Multiplicative Error Model
(MEM) interpretation of volatility models. So our results can also be applied to the modelling
of the time-varying unconditional mean of non-negative processes (e.g. volume, duration, realised
volatility, dividends and unemployment). Three applications illustrate our results.
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1 Introduction

Financial returns are frequently characterised by a time-varying unconditional volatility. This has

important implications for statistical inference and economic decision making. Lamoureux and Las-

trapes (1990), Mikosch and Starica (2004), and Hillebrand (2005), for example, document that ignor-

ing changes in the unconditional volatility can lead to spurious persistence and long-memory effects.

In turn, the distortions induced by faulty estimates and inference, affect quantities that are key in

economic decision making. Examples include risk estimation (e.g. Andreou and Ghysels, 2008), asset

allocation (e.g. Pettenuzzo and Timmermann, 2011), the equity premium (e.g. Pastor and Stambaugh,

2001) and the shape of the option volatility smile (e.g. Bates, 2000).

Let εt denote an observed financial return (possibly de-meaned), whose variability ε2t is governed

by

ε2t = σ2t η
2
t , σ2t > 0 a.s., η2t ≥ 0 a.s., t = 1, . . . , T.

The σ2t is the volatility, η2t is the squared innovation and T is the sample size. To model changes in

the unconditional volatility E(σ2t ), it is common to decompose σ2t multiplicatively as

σ2t = gtht, (1)

where gt is a non-stochastic “long-term” component, and ht is a stochastic “short-term” component.

An example of ht is the scaled version of the GARCH(1,1) model of Bollerslev (1986):

ht = ω + αφ2t + βht−1, φ2t = ε2t /gt. (2)

Other examples of ht include scaled versions of Stochastic Volatility (SV) models, and scaled versions

of Dynamic Conditional Score (DCS) models. See Amado et al. (2019) for a survey of multiplicative

decompositions of volatility.

Broadly, there are two approaches to the specification and estimation of time-varying unconditional

volatility gt. In the first approach, estimation of gt is nonparametric. Examples include Feng (2004),

the “Lip” specification in Van Bellegem and Von Sachs (2004), Feng and McNeil (2008), Hafner and

Linton (2010), Kim and Kim (2016), and Jiang et al. (2021). In the second approach, gt is parametrised

by a parameter θ. An early example is the piecewise constant specification in Van Bellegem and

Von Sachs (2004). For estimation, they proposed the sample variance of each constant period under the

assumption that break-locations are known. However, asymptotic methods for the joint estimation and
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inference of multiple break-sizes were not considered. Engle and Rangel (2008) (without regressors),

and Brownlees and Gallo (2010), specify gt as a deterministic spline function. The former use Gaussian

Maximum Likelihood (ML) for estimation, whereas the latter employ penalised ML. However, no

asymptotic results are established in either work. Zhang et al. (2020) derive asymptotic results for

a least squares estimator of B-splines. In a series of papers, see e.g. Amado and Teräsvirta (2013),

Amado and Teräsvirta (2014), and Amado and Teräsvirta (2017), gt is specified as a smooth transition

function. In all of these papers the Gaussian Quasi ML Estimator (QMLE) is used to estimate the

parameter θ in the first step of an iterative estimation algorithm. However, consistency of the first

step Gaussian QMLE is only proved under the restrictive and unrealistic assumption that φ2t ≡ ε2t /gt

is iid, see the assumption that ht = 1 for all t in Theorem 1 of Amado and Teräsvirta (2013, p. 145).

Also, neither consistency nor asymptotic normality of their iterative estimator is established formally

(their Theorem 2 on p. 146 is on the infeasible two-step estimator where the parameter values from the

first step are known). To accommodate the possibility of cyclical patterns, Andersen and Bollerslev

(1997), and Mazur and Pipien (2012), specify (3) as a Fourier Flexible Form (FFF). In the former

estimation is by a least squares procedure (see their Appendix B), and in the latter Bayesian methods

are used. No asymptotic results are derived in either work. Escribano and Sucarrat (2018) propose

a log-linear version of gt, and use least squares methods to estimate the parameter θ. However, they

obtain no asymptotic results.

Here, in this paper, gt is parametrised by a finite dimensional parameter θ, and re-scaled time

t/T ∈ [0, 1]. Formally,

gt = g(θ, t/T ). (3)

We prove that the Gaussian QMLE provides Consistent and Asymptotically Normal (CAN) estimates

of θ for a large class of specifications contained in (3). In particular, most of the parametric specifi-

cations of the literature review above are contained in (3) (see Section 3 for specific examples). For

consistency (Theorem 1), g(θ, t/T ) is assumed to be strictly non-negative and bounded, and continu-

ously first order differentiable in θ for all t/T ∈ [0, 1], see assumption A 2. For asymptotic normality

(Theorem 2), we also rely on three times continous differentiability in θ, see assumption A 7. Next,

we derive a simple but robust and consistent positive definite estimator of the asymptotic coefficient

covariance (Corollary 1 and Theorem 3). Our results are characterised by several attractive proper-

ties. First, there is no need to specify – or know – the exact specification of the stochastic component

φ2t ≡ ε2t /gt. We only rely on fairly mild mixing assumptions. So our results hold for a large class

of specifications of φ2t , including GARCH models, Stochastic Volatility (SV) models and Dynamic
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Conditional Score (DCS) models. This contrasts with several previous results, where the expression of

the coefficient covariance is derived under specific assumptions on the structure of φ2t . Nevertheless,

in empirical applications our results can also be used in multi-step estimation procedures, where the

parameters of ht – e.g. a GARCH model – are estimated in a second step (Section 4.1 contains a numer-

ical illustration). Second, a novel and attractive property of our results is that we do not rely on the

stochastic component {φ2t } being strictly stationary. This is important empirically, since recent studies

reveal the zero-process of financial returns – both daily and intradaily – is frequently nonstationary,

see e.g. Kolokolov et al. (2020), Sucarrat and Grønneberg (2020), and Francq and Sucarrat (2021).

In other words, the common practice of scaling ε2t by E(ε2t ) will not result in ε2t /E(ε2t ) being strictly

stationary (Section 4.2 contains an empirical illustration). Third, in analogy to equation-by-equation

estimation of multivariate volatility models – see Francq and Zaköıan (2016), we use our results to

derive a period-by-period estimator of time-varying cyclical volatility (Section 2.4). This means our

results can be used to both model and test whether periodic volatility is time-varying (Section 4.3

contains an empirical illustration). Fourth, another attractive property of our results, due to the

assumptions we rely upon, is that the Multiplicative Error Model (MEM) interpretation of volatility

models holds straightforwardly. The reason is that our assumptions are on ε2t , not on εt. Accordingly,

our results can also be used to model the time-varying unconditional mean of non-negative processes

like volume, duration, realised volatility, dividends, unemployment, and so on by simply interpreting

ε2t as the non-negative variable in question. Finally, a possible drawback with our estimator is that

it may be less efficient asymptotically than alternatives that estimate the parameters of both the

deterministic and stochastic component. An example is the iterative estimator proposed by Amado

and Teräsvirta (2013). However, our simulations (see Section 4.1) do not support the conjecture that

the iterative estimator is more efficient.

The rest of the paper is organised as follows. The next section, Section 2, contains our main

results, and a presentation and discussion of the assumptions they rely on. Section 3 gives examples

of gt specifications that are contained in (3). Section 4 contains numerical illustrations of our results,

whereas Section 5 concludes. The appendix contains the proofs of our main results.
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2 Consistency and Asymptotic Normality

2.1 Consistency

Our objective function, the normal log-likelihood, is given by

LT (θ) =
1

T

T∑
t=1

lt(θ, ε
2
t ), lt(θ, ε

2
t ) = ln gt(θ) +

ε2t
gt(θ)

,

and minimisation of this function leads to the Quasi Maximum Likelihood Estimator (QMLE):

θ̂ = arg min
θ∈Θ

LT (θ). (4)

Let θ0 denote the true parameter value. Our proof of consistency relies on the following assumptions.

A 1 Θ is compact.

A 2 Let Θ∗ be an open and convex set that contains Θ, that is, Θ ( Θ∗, and let {gt} be a non-

stochastic process, gt = g(θ, t/T ), g : Θ∗ × [0, 1]→ R. For all t/T ∈ [0, 1]:

a) gt is bounded and strictly positive: sup
θ∈Θ∗

gt <∞ and inf
θ∈Θ∗

gt > 0;

b) gt(θ) is continuously differentiable on Θ∗.

A 3 Let {ε2t } be a stochastic process that is φ-mixing of size −r/(2r − 1), r ≥ 1, or α-mixing of size

−r/(r − 1), r > 1, and let ε2t ≥ 0 a.s. for all t.

A 4 Let φ2t ≡ ε2t /gt(θ0) be a non-degenerate random variable such that:

a) E(φ2t ) = 1 for all t;

b) E|φ2t |r+ε <∞ for all t, where r > 1 and ε > 0.

A 5 limT→∞ T
−1∑T

t=1E
(
lt(θ, ε

2
t )
)

attains a unique minimum at θ0 ∈ Θ.

A 1 is a standard assumption. A 2 defines the class of gt functions we consider, which is very general.

Section 3 gives some specific examples. The open and convex set Θ∗, and the differentiability assumed

in A 2b), are needed because the score is part of the dominating function we use in our proof of uniform

convergence. A 3 is a fairly mild dependence assumption. In particular, it is substantially milder than

the assumptions used by Amado and Teräsvirta (2013) in their derivations, since they rely on {φ2t }
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being iid, see their Theorem 1 on p. 145 just below equation (15). Here, by contrast, A 3 can be

compatible with any volatility model of φ2t , stationary or not, as long as the mixing conditions are

satisfied. This means our results apply not only to standard models within the ARCH, GAS and SV

classes, but also to semi-strong volatility models, see e.g. Escanciano (2009) and Francq and Thieu

(2018), and to models that are only weakly identified as models of the variance (e.g. intraday high-

frequency measures of volatility), see Sucarrat (2021). The series {ε2t } being α- or φ-mixing of size −a

means α(m) = O(m−a−ε) for some ε > 0.4 For both α- and φ-mixing, the greater the r, the greater

the dependence.

A 4a) is a very mild identification assumption. The reason the assumption is mild is that almost all

volatility models are invariant to scale-tranformations in the sense that there exists a finite constant

c > 0 such that the stochastic process {φ2∗t } with E(φ2∗t ) = µ for all t satisfies E(cφ2∗t ) = cE(φ2∗t ) = 1

for all t. For volatility models that are not invariant to scale transformations in this sense, in particular

those whose stability conditions are affected by scaling (e.g. the Dynamic Conditional Score (DCS)

model of Harvey and Sucarrat (2014)), the condition E(φ2t ) = 1 may be restrictive. It should also be

noted that A 4a) is compatible with {φ2t } being nonstationary. A case in point is the common situation

where the zero-process of a financial return is nonstationary, see e.g. Sucarrat and Grønneberg (2020),

and Francq and Sucarrat (2021). In particular, part ii) of Proposition 2.1 in Sucarrat and Grønneberg

(2020) implies that E(φ2t ) can be constant over time even though the zero-process of a financial return

is nonstationary. Another implication of A 4a) is that E(ε2t ) = gt(θ0). A 4b) is also a fairly mild

moment assumption. For example, it holds when {ht} is a stationary de-volatilitised GARCH(1,1), as

in (2), with finite E(φ4t ). A finite fourth moment is needed for standard inference on the parameters,

see Francq and Zaköıan (2019). A finite fourth moment is, however, more restrictive than the usual

second moment requirement for consistency in the standard case.

Finally, A 5 is a standard regularity assumption. Note that our proof of consistency shows that

limT→∞ T
−1∑T

t=1E
(
lt(θ, ε

2
t )
)

exists for all θ ∈ Θ. So A 5 simply ensures there exists a unique

minimiser θ0.

Theorem 1 (consistency) Suppose A 1 – A 5 hold. Then θ̂
p→ θ0.

Proof: See Appendix A.1.

4That is, there exists a ∆ > 0 and a finite integer N such that
∣∣ α(m)

m−a−ε

∣∣ < ∆ for all m ≥ N , see White (2001,
Definition 3.45 on p. 49).
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2.2 Asymptotic normality

Let int(Θ) denote the interior of Θ. For Asymptotic Normality (AN), we rely on the following

additional assumptions:

A 6 The true parameter θ0 lies in int(Θ).

A 7 Let gt be as in A 2. For all t and t/T ∈ [0, 1]: gt(θ) is three times continuously differentiable on

Θ∗.

A 8 Let Ht(θ, ε
2
t )
)
≡ ∂2lt(θ, ε

2
t )/∂θ∂θ

′. The limit A = limT→∞ T
−1∑T

t=1E
(
Ht(θ0, ε

2
t )
)

is positive

definite.

A 9 E|φt|4+ν <∞ for all t with ν > 2(r − 1), where r > 1 determines the α-mixing size in A 3.

A 10 The limit B = limT→∞ V ar
(
T−1/2

∑T
t=1 st(θ0)

)
is positive definite.

Assumptions A 6 is standard. In A 7, the third order differentiability requirement is needed, since

the dominating function that we use to show that each entry of the Hessian satisfies the Uniform Law

of Large Numbers (UWLLN) contains the partial derivatives of the Hessian. In the course of proving

UWLLN, we show that the limit in A 8 exists for all θ ∈ Θ. So A 8 simply ensures the limit is positive

definite. In A 9, the value r > 1 determines the α-mixing size in A 3, so ν > 0. This means a moment

higher than the 4th. must exist as a minimum, and that the number of existing moments that are

required depends on the α-mixing size: The more dependence (i.e. the higher r is), the more moments

are required. The limit in A 10 exists due to the preceding assumptions (see the proof of Theorem 2).

So A 10 simply ensures the limit is positive definite.

Theorem 2 (asymptotic normality) Suppose assumptions 6 – 10 hold in addition to the assump-

tions of Theorem 1. Then
√
T (θ̂ − θ0)

d→ N
(
0,A−1BA−1

)
.

Proof: See Appendix A.2.

Note that a direct consequence of Theorem 2 is that

Â =
1

T

T∑
t=1

Ht(θ̂, ε
2
t )

provides a consistent estimate of A = limT→∞ T
−1∑T

t=1E
(
Ht(θ0, ε

2
t )
)
.
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Corollary 1 (Consistent estimation of A) Suppose assumptions A 6 – A 7 hold in addition to

those of Theorem 1. Then Â
p→ A as T →∞.

Proof. In the proof of Theorem 2, assumptions A 6 – A 7 in addition to those of Theorem 1 are used

to show that {Ht(θ, ε
2
t )} satisfies the UWLLN (Theorem 4.2 of Wooldridge, 1994). By Lemma A.1

in Wooldridge (1994, p. 2727) it thus follows that Â
p→ A. �

2.3 Estimation of B

The general form of our estimator is given by

B̂ =

T∑
j=−T

k(j/ST )Γ̂(j),

Γ̂(j) =
1

T

T−j∑
t=1

ŝtŝ
′
t+j , j ≥ 0,

Γ̂(j) = Γ̂(−j)′, j < 0,

where the k(·)’s are kernel weights, and ST is the bandwidth. For consistent estimation of B, we rely

on the following additional assumptions:

A 11 (Kernel) For all x ∈ R, |k(x)| ≤ 1 and k(x) = k(−x); k(0) = 1; k(x) is continuous at zero

and for almost all x ∈ R;
∫
R |k(x)|dx <∞.

A 12 (Bandwidth) ST →∞, and for some q ∈ (1/2,∞), S1+2q
T /T = O(1).

A 13 For some u ∈ (2, 4] such that u > 2 + 1/q, and some p > u:

a) 2(1/u− 1/p) > (r − 1)/r, r > 1, where −r/(r − 1) is the α-mixing size in A 3;

b) E
(
|φ2t |p

)
<∞.

Most kernels considered in the literature satisfy A 11. This includes, amongst other, the Bartlett

kernel (set k(x) = 1 − |x| for x ≤ 1), the Parzen kernel and the Quadratic Spectral kernel. A 13a)

introduces mixing requirements beyond those of A 3 related to the bandwidth parameter q: The

greater the dependence (i.e. the greater the r), the greater q must be for the conditions in A 13a)

to hold. In A 13b) there is a trade-off between q and the number of moments required for φ2t , since

p > u: The lower q is, the more moments are required.
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Theorem 3 (Consistent estimation of B) Suppose assumptions A 11 – A 13 hold in addition to

those of Theorems 1 and 2. Then B̂
p→ B.

Proof: See Appendix A.3.

2.4 Time-varying periodic unconditional volatility

To model intraday periodic volatility, Andersen and Bollerslev (1997), and Mazur and Pipien (2012)

specify gt(θ) as a Fourier Flexible Form (FFF) in terms of nominal time t. No asymptotic results are

established in either work. While it may be possible to extend our results in this direction, an easier

and more general approach is to derive a period-by-period estimator. Period-by-period estimation

can be viewed as the periodic analog of equation-by-equation estimation of multivariate volatility, see

e.g. Francq and Zaköıan (2016). An example is Escribano and Sucarrat (2018). Also, the common

practice of estimating the intraday unconditional volatilities with cross-day averages of squared return

is a special case of period-by-period estimation.

Let εm,t denote the period m return at time t. For example, if εm,t is the hour m return in day t

of an exchange rate that is traded 24-hours a day, then m = 1, . . . , 24. Let M denote the number of

periods at time t, and let

ε2m,t = gm,t(θm)φ2m, t = 1, 2, . . . , for m = 1, . . . ,M.

The process {εt}∞t=1 with εt = (ε1,t, . . . , εM,t)
′ is thus an M -dimensional multivariate process. Let

θ̂m = arg min
θm∈Θm

LT (θm), LT (θm) =
1

T

T∑
t=1

lt(θm, ε
2
m,t),

denote the period m estimator, where lm,t(θm, ε
2
m,t) = ln gm,t(θm) + ε2m,t/gm,t(θm). The following

corollary is a direct consequence of Theorems 1 – 3, and Corollary 1.

Corollary 2 (period-by-period estimation) Suppose θm0, Θm, {gmt} and {ε2m,t} satisfy:

a) A 1 – A 5 for each m = 1, . . . ,M . Then θ̂m
p→ θm0, m = 1, . . . ,M .

b) A 1 – A 10 for each m = 1, . . . ,M . Then

√
T (θ̂m − θm0)

d→ N
(
0,A−1m BmA

−1
m

)
, m = 1, . . . ,M.
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c) A 1 – A 7 for each m = 1, . . . ,M . Then Âm
p→ Am, m = 1, . . . ,M .

d) A 1 – A 13 for each m = 1, . . . ,M . Then B̂m
p→ Bm, m = 1, . . . ,M .

The period-by-period estimator is thus the generalisation of an estimator that is frequently used in

empirical applications. Consider, for example, the intraday returns εm,t, m = 1, . . . ,M of day t. Often,

the sample averages T−1
∑T

t=1 ε
2
m,t, m = 1, . . . ,M , are used to estimate the intraday unconditional

volatilities E(ε21,t), . . . , E(ε2M,t). This collection of sample averages is a special case of the period-by-

period estimator. However, it is only consistent in the special case where the unconditional intraday

volatilities are constant across days, i.e. for each m = 1, . . . ,M we have E(ε2m,t1) = E(ε2m,t2) for all

t1, t2. By contrast, the period-by-period estimator above can also be used to estimate unconditional

intraday volatilities that vary across days (Section 4.3 contains an empirical illustration).

3 Examples of gt(θ)

Here we provide some examples of gt(θ). The main focus is on whether the key assumptions A 2 and

A 7 hold.

3.1 Smooth transition models

A variety of smooth transition models have been considered, see Amado and Teräsvirta (2013) for a

survey. Amado and Teräsvirta (2013) consider the following in more detail:

g(θ, t/T ) = δ0 +
s∑
l=1

δlGl(γl, cl, t/T ), Gl(γl, cl, t/T ) =
1

1 + exp
(
− γl(t/T − cl)

) , (5)

where θ = (δ′,γ ′, c′)′ with δ = (δ0, δ1, . . . , δs)
′, γ = (γ1, . . . , γs)

′ and c = (c1, . . . , cs)
′. The δl is the

total size of break l, γl is the speed of transition of break l, cl is the location of break l and s is the

number of breaks. If δ1 = · · · = δs = 0, then there are no breaks. A 1 entails that the parameter space

Θ = {∆× Γ× C} is compact, where δ ∈ ∆,γ ∈ Γ and c ∈ C. Lemma A.1 in Amado and Teräsvirta

(2013, p. 150) contains the derivatives of gt with respect to θ. If the open and convex set Θ∗ in A 2

is suitably bounded, then all the characteristics of A 2 hold. Lemma A.2 in Amado and Teräsvirta

(2013, p. 150) contains the second derivatives of gt with respect to θ. It is straightforward to verify

that also the third order derivatives are continuous on a suitably bounded open and convex set Θ∗.

Accordingly, A 7 also hold.
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3.2 Piecewise constant models

Van Bellegem and Von Sachs (2004) specify gt(θ) as piecewise constant. This amounts to

gt(θ) = δ0 +
s∑
l=1

δlI(t/T ≥ cl), θ = (δ0, δ1, . . . , δs)
′, (6)

where I(A) is an indicator function equal to 1 if A holds and 0 otherwise. The values of the possible

break-locations c1, . . . , cs are known. For estimation, Van Bellegem and Von Sachs (2004) proposed

the sample variance of each constant period. They did not consider asymptotic methods for the joint

estimation and inference of multiple break-sizes. Our results do not permit the ci’s to be estimated in

(6), since gt is not continuously differentiable with respect to the ci’s. It is straightforward to verify

that, for all t/T ∈ [0, 1], gt(θ) is continuously first, second and third order differentible with respect

to θ on RK . So A 2 and A 7 hold.

In Escribano and Sucarrat (2018), gt(θ) is specified as a generic log-linear function. Least Squares

(LS) methods are used for estimation, but no asymptotic results are established. The log-linear version

of a piecewise constant specification is an example of a model contained in their class of models:

gt(θ) = exp

(
δ0 +

s∑
l=1

δl · I(t/T ≥ cl)

)
, θ = (δ0, δ1, . . . , δs)

′. (7)

The advantage of this specification over (6) is that non-negativity constraints on θ are not needed.

Again, it is straightforward to verify that, for all t/T ∈ [0, 1], gt(θ) is continuously first, second and

third order differentible with respect to θ on a suitably bounded open and convex set Θ∗. So A 2 and

A 7 hold.

3.3 Splines

Engle and Rangel (2008), and Brownlees and Gallo (2010), specify gt(θ) as a deterministic spline.

The former use Gaussian ML for estimation, whereas the latter employs penalised ML. However, no

asymptotic results are established in either work. Zhang et al. (2020) derive asymptotic results for a

least squares estimator of B-splines.

Splines that are suitably expressed in terms of re-scaled time can satisfy A 2 and A 7. An example is

the exponential quadratic spline function considered by Engle and Rangel (2008) (without regressors).
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If we remove the trend and replace nominal time with re-scaled time, then we obtain

gt(θ) = exp

(
δ0 +

s∑
l=1

δl(t/T − cl)2I(t/T ≥ cl)

)
, θ = (δ0, δ1, . . . , δs)

′,

where I(A) is an indicator function equal to 1 if A holds and 0 otherwise, and the cl’s are given

knot-locations. Typically, to facilitate estimation, the cl’s are assumed to be equidistant from each

other. However, this is not a requirement. The value s is the number of knots, and δ1, . . . , δs are

the knot-coefficients. Large values of s imply more frequent cycles, and the sharpness of each cycle is

governed by the knot-coefficients. Let τ(t/T, c) = (t/T − c)2I(t/T ≥ c). Note that τ(t/T, c) ≥ 0 for

all t/T, c ∈ [0, 1]. For all t/T ∈ [0, 1], gt(θ) is continuously first, second and third order differentiable

with respect to θ on a suitably bounded open and convex set Θ∗. So A 2 and A 7 hold.

4 Numerical illustrations

4.1 Comparison with the iterative estimator of Amado and Teräsvirta (2013)

Our estimator coincides with the first step of the iterative estimator proposed by Amado and Teräsvirta

(2013). Their iterative estimator is an adaption of the maximisation by part algorithm developed by

Song et al. (2005) for independent data. A reasonable conjecture is that the iterative estimator

of Amado and Teräsvirta (2013) is more efficient asymptotically than our estimator. However, the

iterative estimator is also likely to be more fragile numerically in finite samples, and substantially

slower in relative terms. To shed light on this, we run a simulation experiment where the Data

Generating Process (DGP) is

εt = σtηt, σ2t = gtht, ηt
iid∼ N(0, 1), t = 1, . . . , T,

gt = δ0 +
δ1

1 + exp
(
− γ(t/T − c)

) , (δ0, δ1, γ, c) = (1, 1, 10, 0.5),

ht = ω + αφ2t−1 + βht−1, φ2t = htη
2
t , (ω, α, β) = (0.1, 0.1, 0.8).

Thus, the time-varying unconditional volatility gt is governed by a single break centered about the

middle of the sample, i.e. c = 0.5, and the stochastic component φ2t is governed by a strictly stationary

and ergodic scaled GARCH(1,1).

Table 1 contains the comparison of the gt parameters. As expected, both the bias and standard

deviation of the estimates fall as the sample size T increases. However, the results do not suggest the
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Iterative estimator is asymptotically more efficient. That is, as the sample size becomes large (i.e.

T ≥ 10000), the evidence does not suggest it becomes more efficient at T increases. For the smallest

sample size we investigate (T = 1000), the results suggest the Iterative estimator is substantially less

efficient. For the intermediate sample sizes, the results are mixed. In sum, we do not find clear support

of the hypothesis that the Iterative estimator is more efficient asymptotically for the gt parameters.

Table 2 contains the comparison of the ht parameters. In our case, these estimates are obtained

via a two-step estimation procedure. Again, as expected, the bias and standard deviation both fall

as the sample size increases. When the sample size becomes large (i.e. T ≥ 10000), the evidence does

not suggest – in a clear way – that it becomes more efficient at T increases. Instead, if anything, the

evidence suggest the estimators are equally efficient asymptotically, since the differences are so small

that numerical simulation error cannot be ruled out. For the smaller and intermediate sample sizes

that we investigate (T = 1000 to T = 5000), the results are more mixed. In sum, we do not find

clear support of the hypothesis that the Iterative estimator is more efficient asymptotically for the ht

parameters than a two-step estimator.

4.2 Daily return with a non-stationary zero-process

An attractive feature of our estimator is that the stochastic component φ2t need not be stationary.

To illustrate this, we revisit one of the daily stock returns investigated by Sucarrat and Grønneberg

(2020). Eros International plc., whose market ticker is EROS, was an Indian multinational global mass

media conglomerate (a “Bollywood” company) that merged with the US company STX Entertainment

in April 2020. The left graph of Figure 1 depicts the daily returns at the New York Stock Exchange

(NYSE) from 21 December 2009 to 4 February 2019 (T = 2295). The datasource is Bloomberg. In the

beginning of the period the primary listing of the stock was in India. This explains all the zeros in the

series until November 2013. Thereafter, there are few zeros. The return series thus exhibits a clear

break in the unconditional zero-probability, and so its zero-process is non-stationary. Accordingly, the

return process and the transformation φ2t = ε2t /E(ε2t ) are therefore also non-stationary.

Interestingly, the 500-day moving average of squared return in the right graph of Figure 1 does

not suggest in a clear way that there is a break in the unconditional volatility in November 2013.

Instead, the graph suggests the break or breaks occur later, namely in October 2015 and in October

2017. To illustrate the estimation of a piecewise constant log-linear specification gt, we will use

it to investigate whether there are breaks at the aforementioned points. The advantage of piecewise

constant specifications over smooth transition models is that the latter are not identified if the number

13



of transition terms exceeds the number of breaks. Moreover, closer inspection reveals that the possible

break locations can be identified with a fairly high degree of precision, i.e. the breaks are quite abrupt.

This justifies the usage of a piecewise constant specification. Specifically, the data suggest the possible

break-locations are 11 November 2013, 14 October 2015 and 6 October 2017, respectively. In terms

of re-scaled time these correspond to (c1, c2, c3)
′ = (0.427, 0.638, 0.855), and the estimated model is

l̂n gt = 1.795
(0.4174)

+ 0.351
(0.4355)

I(t/T ≥ c1) + 1.215
(0.2342)

I(t/T ≥ c2)− 0.912
(0.2545)

I(t/T ≥ c3).

The numbers in parentheses are the standard errors of the estimates. These are computed as the square

root of the diagonal of Σ̂/T , where Σ̂ = Â
−1
B̂Â

−1
is the estimate of the asymptotic coefficient

covariance. A Bartlett kernel is used in the computation of B̂, and the bandwidth is obtained as

the integer part of 4(T/100)(2/9). The t-ratios of the break-size estimates are 0.351/0.4355 = 0.806,

1.215/0.2345 = 5.181 and −0.912/0.2545 = −3.583, respectively. So two-sided t-tests at common

significance levels (i.e. 10%, 5% and 1%) suggest there are breaks at c2 and c3, but not at c1.

4.3 Time-varying intraday periodic volatility

The period-by-period estimator of Section 2.4 can be used to estimate time-varying periodic volatility.

Here, we illustrate this for intraday hourly USD/EUR exchange rate volatility. Let Sm,t denote the

exchange rate at the end of hour m in day t, and let εm,t = 1002 · (lnSm,t − lnSm−1,t) denote the

hour m log-return denominated in basis points. The left graph of Figure 2 plots the hourly returns

at Forexite, a currency trading platform, from 2 January 2017 to 31 December 2018 (12 184 hourly

returns). Only trading days are included in the sample (i.e. weekends are excluded), and a trading

day contains M = 24 returns. The first return of a trading day covers the interval from 00:00 CET

to 01:00 CET, whereas the last covers 23:00 CET to 00:00 CET. The right graph of Figure 2 contains

the sample averages of squared returns across days, i.e. T−1m

∑Tm
t=1 ε

2
m,t, where Tm is the number of

observations available for period m. If the period m unconditional volatilities are constant across days,

then the sample averages are consistent. As is clear from the graph, the intraday hourly unconditional

volatility is time-varying. It is at its lowest at the end of the day at 24h CET, and it is at its highest

at 15h CET.

To shed light on whether the intraday unconditional volatilites are constant across days, we esti-

mate a quadratic spline function a la Engle and Rangel (2008) with re-scaled time and four knots at
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equidistant locations, i.e.

l̂n gm,t = δm,0 +
4∑
l=1

δm,l(t/T − cl)2I(t/T ≥ cl), (c1, c2, c3, c4) = (0.2, 0.4, 0.6, 0.8),

for each period m = 1, . . . ,M . Table 3 contains the estimation results together with a Wald-test of

H0 : δ1 = · · · = δ4 = 0. So under the null the unconditional volatility of period m is constant and

equal to gm,t = exp(δm,0) for all t. The p-values of the test are contained in the square brackets of

the last column. Out of the 24 tests, 8 reject the null at the 5% significance level, and 4 reject the

null at 1%. Without time-varying period m volatilities, we should on average expect 1.2 rejections

at 5%, and 0.24 rejections at 1%. Accordingly, the results support the hypothesis that some of the

unconditional intraday volatilites are time-varying across days.

5 Conclusions

The unconditional volatility of financial return is frequently time-varying. Let gt(θ) denote the time-

varying unconditional volatility as a function of a finite-dimensional parameter θ. We establish the

Consistency and Asymptotic Normality (CAN) of the (Gaussian) QMLE for a large class of specifica-

tions gt. For consistency, continuous first order differentiability in θ is the main requirement for our

results to be applicable, whereas for asymptotic normality continuous third order differentiability is

the main requirement. We also derive a simple but robust and consistent positive definite estimator

of the asymptotic coefficient covariance. Our results are characterised by several attractive properties.

First, there is no need to specify – or know – the exact specification of the stochastic component (we

only rely on fairly mild mixing assumptions). So our results hold for a large class of specifications

of the stochastic component, including GARCH models, Stochastic Volatility (SV) models and Dy-

namic Conditional Score (DCS) models. Nevertheless, in empirical applications our results can also

be used in multi-step estimation procedures, where the parameters of the stochastic component – e.g.

a GARCH model – are estimated in a second step. Another attractive property of our results is that

the stochastic component does not have to be strictly stationary. This is important empirically, since

recent studies reveal the zero-process of financial returns – both daily and intradaily – is frequently

nonstationary. Third, we use our results to derive a period-by-period estimator of time-varying peri-

odic volatility. A fourth attractive property of our results, due to the assumptions we rely upon, is that

the Multiplicative Error Model (MEM) interpretation of volatility models holds straightforwardly. Ac-

cordingly, our results can also be used to model the time-varying unconditional mean of non-negative
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processes like volume, duration, realised volatility, dividends, unemployment, and so on. Finally, a

possible drawback with our estimator is that it may be less efficient asymptotically than alternatives

that estimate the parameters of both the deterministic and stochastic compoments. An example is

the iterative estimator proposed by Amado and Teräsvirta (2013). However, our simulations do not

provide support of the conjecture that the iterative estimator is more efficient.
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A Proofs of main results

A.1 Proof of Theorem 1

To establish consistency, we use two theorems from Wooldridge (1994), which rely on the following

two definitions:

Definition 4.1 (Wooldridge, 1994, p. 2651): WLLN. A sequence of random variables

{zt} satisfies the weak law of large numbers (WLLN) if

i) E(|zt|) <∞ for t = 1, 2, . . .;

ii) limT→∞ T
−1∑T

t=1E(zt) exists;

iii) T−1
∑T

t=1

(
zt − E(zt)

) p−→ 0.
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Definition 4.2 (Wooldridge, 1994, p. 2651): UWLLN. Let Θ ⊂ RP , let {wt : t =

1, 2, . . .} be a sequence of random vectors with wt ∈ Wt and let {qt : Θ ×Wt → R, t =

1, 2, . . . } be a sequence of real-valued functions. Assume that

i) Θ is compact;

ii) qt(θ,wt) satisfies the following measurability and continuitiy requirements on Θ×Wt:

a) for each θ ∈ Θ, qt(θ, ·) is measurable;

b) for each wt ∈ Wt, qt(·,wt) is continuous on Θ;

iii) E
(
|qt(θ,wt)|

)
<∞ for all θ ∈ Θ, t = 1, 2, . . .;

iv) limT→∞ T
−1∑T

t=1E
(
qt(θ,wt)

)
exists for all θ ∈ Θ;

v) maxθ∈Θ
∣∣T−1∑T

t=1 qt(θ,wt)− E
(
qt(θ,wt)

)∣∣ p−→ 0.

Then {qt(θ,wt)} is said to satisfy the uniform weak law of large numbers (UWLLN) on

Θ.

The first theorem from Wooldridge (1994) that we rely upon ensures UWLLN holds:

Theorem 4.2 (Wooldridge, 1994, p. 2652): UWLLN for the heterogeneous

case. Let Θ ⊂ RP and {wt : t = 1, 2, . . .} be as in Definition 4.2. Assume that

i) Θ is compact;

ii) qt(θ,wt) satisfies the standard measurability and continuitiy requirements on Θ×Wt,

see ii) in Definition 4.2 above;

iii) for each θ ∈ Θ, {qt(θ,wt)} satisfies the Weak Law of Large Numbers (WLLN);

iv) there exists a function ct(wt) ≥ 0 such that

(a) for all θ1,θ2 ∈ Θ,
∣∣qt(θ1,wt)− qt(θ2,wt)

∣∣ ≤ ct(wt) ‖ θ1 − θ2 ‖;

(b) {ct(wt)} satisfies the WLLN.

Then {qt(θ,wt)} satisfies the UWLLN on Θ.

We now verify each condition of this theorem for lt(θ, ε
2
t ), so ε2t = wt and lt(θ, ε

2
t ) = qt(θ,wt).

i) This holds due to A 1.

ii) gt(θ) is bounded (due to A 2a)) and continuous (due to A 2b)) on θ ∈ Θ∗. Accordingly, lt(·, ε2t ) is

continuous on θ ∈ Θ for each ε2t ∈ [0,∞), and lt(θ, ·) is measurable for each θ ∈ Θ. So ii) holds.
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iii) {lt(θ, ε2t )} satisfies the WLLN:

i) A 2a) ensures 0 < gt(θ) < ∞ for all θ ∈ Θ, and A 4a) implies that ε2t = gt(θ0)φ
2
t and

E(φ2t ) = 1 <∞. Hence, by the triangle inequality, E
∣∣lt(θ, ε2t )∣∣ ≤ | ln gt(θ)|+ gt(θ0)

gt(θ)
E(φ2t ) <∞

for all θ ∈ Θ, t = 1, 2, . . ..

ii) Recall that gt(θ) = g(θ, t/T ). We have

1

T

T∑
t=1

E
(
lt(θ, ε

2
t )
)

=
1

T

T∑
t=1

(
ln gt(θ) +

E(ε2t )

gt(θ)

)

=
1

T

T∑
t=1

(
ln gt(θ) +

gt(θ0)

gt(θ)
· 1
)

=
1

T

T∑
t=1

(
ln g(θ, t/T ) +

g(θ0, t/T )

g(θ, t/T )

)

for all θ ∈ Θ. That E(φ2t ) = 1 follows from A 4a). Next, the compactness of Θ (A 1), the

continuity of gt(θ) in θ for all t/T ∈ [0, 1] and the boundedness of gt(θ) for all t/T ∈ [0, 1]

(assumed in A 2), imply there exists a strictly positive constant C <∞, such that

∣∣∣∣ln g(θ, t/T ) +
g(θ0, t/T )

g(θ, t/T )

∣∣∣∣ ≤ C

for all t. Hence, we also have |T−1E
(
lt(θ, ε

2
t )
)
| ≤ T−1C for all t, and

limT→∞
∑T

t=1 T
−1C = C. From a comparison test it thus follows that also

limT→∞
1
T

∑T
t=1E

(
lt(θ, ε

2
t )
)

exists.

iii) From the measurability of lt(θ, ε
2
t ), it follows from Theorem 14.1 in Davidson (1994, p. 210)

that {lt(θ, ε2t )} inherits the α- and φ-mixing properties of {ε2t } in A 3. Next, A 4b) implies

that E|ε2t |r+ε <∞ for some r > 1, ε > 0. From Corollary 3.48 in White (2001, p. 49) it thus

follows that
∣∣∣T−1∑T

t=1 lt(θ, ε
2
t )− E

(
lt(θ, ε

2
t )
)∣∣∣ p−→ 0 for all θ ∈ Θ.

iv) Let ct(ε
2
t ) = supθ∈Θ ||st(θ)||, where st(θ) is the score at t:

st(θ) =
∂lt(θ, ε

2
t )

∂θ
=

∂gt(θ)

∂θ
·
(

1

gt(θ)
− ε2t
gt(θ)2

)
.

A 2b) ensures ∂gt(θ)/∂θ exists on Θ∗, and therefore also on Θ.
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a) By a mean value expansion, there exists a θ ∈ Θ∗ such that

lt(θ1, ε
2
t )− lt(θ2, ε2t ) = st(θ)′(θ1 − θ2)

⇒
∣∣lt(θ1, ε2t )− lt(θ2, ε2t )∣∣ =

∣∣st(θ)′(θ1 − θ2)
∣∣.

Let ||x|| =
√
x21 + · · ·+ x2K . From the Cauchy-Schwarz inequality we obtain

∣∣st(θ)′(θ1 − θ2)
∣∣ ≤ ‖ st(θ) ‖‖ θ1 − θ2 ‖

≤ sup
θ∈Θ
‖ st(θ) ‖‖ θ1 − θ2 ‖

for all θ1,θ2 ∈ Θ. So a) holds.

b) {ct(ε2t )} satisfies the WLLN:

i) Let ∂gt(θ)/∂θ = (
.
g1t, . . . ,

.
gKt)

′ and yt =
(

1
gt(θ)

− ε2t
gt(θ)2

)
, and recall that ε2t = gt(θ0)φ

2
t (due

to A 4). We have:

||st(θ)|| =
√

.
g
2
1ty

2
t + · · ·+ .

g
2
Kty

2
t =

√
.
g
2
1t + · · ·+ .

g
2
Kt · |yt|

=

√
.
g
2
1t + · · ·+ .

g
2
Kt ·

∣∣∣∣ 1

gt(θ)
− gt(θ0)

gt(θ)2
φ2t

∣∣∣∣
= |vt(θ)− wt(θ)| ,

where

vt(θ) =

√
.
g
2
1t + · · ·+ .

g
2
Kt ·

1

gt(θ)
and wt(θ) =

√
.
g
2
1t + · · ·+ .

g
2
Kt ·

gt(θ0)

gt(θ)2
φ2t .

By the compactness of Θ (A 1) and the continuity of gt(θ) and ∂gt(θ)/∂θ in θ (A 2b)), there

exists constants C1, C2 > 0 such that

sup
θ∈Θ
||st(θ)|| = sup

θ∈Θ
|vt(θ)− wt(θ)| ≤ sup

θ∈Θ

(
|vt(θ)|+ |wt(θ)|

)
≤ sup

θ∈Θ

(
vt(θ) + wt(θ)

)
≤ sup

θ∈Θ
vt(θ) + sup

θ∈Θ
wt(θ)

≤ C1 + C2φ
2
t
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for all t. Using that E(φ2t ) = 1 from A 4a), we obtain

E
(
|ct(ε2t )|

)
= E

(
ct(ε

2
t )
)
≤ E

(
C1 + C2φ

2
t

)
= C1 + C2 <∞.

This holds for all t, so i) holds.

ii) What we have just shown implies that there exists a positive constant C such that
∣∣E(ct(ε2t ))∣∣ ≤

C for all t. This implies that also
∣∣T−1E(ct(ε2t ))∣∣ ≤ T−1C for all t. Since limT→∞

∑T
t=1 T

−1C =

C, the comparison test implies that also limT→∞
∑T

t=1 T
−1E

(
ct(ε

2
t )
)

exists. So ii) holds.

iii) From the measurability of ct(ε
2
t ), it follows from Theorem 14.1 in Davidson (1994, p. 210)

that {ct(ε2t )} inherits the α- and φ-mixing properties of {ε2t } in A 3. Next, using that

ct(ε
2
t ) ≤ C1 + C2φ

2
t from above with C1, C2 > 0, and setting r > 1 and ε > 0, we obtain

E
(
|ct(ε2t )|r+ε

)
≤ E

∣∣C1 + C2φ
2
t

∣∣r+ε ≤ Cr+ε · E∣∣1 + φ2t
∣∣r+ε for all t,

where C = max{C1, C2}. This yields

E
∣∣1 + φ2t

∣∣r+ε =

∫
φ2t<1

∣∣1 + φ2t
∣∣r+εdP +

∫
φ2t≥1

∣∣1 + φ2t
∣∣r+εdP

≤
∫
φ2t<1

∣∣1 + φ2t
∣∣r+εdP +

∫
φ2t≥1

∣∣2φ2t ∣∣r+εdP
≤

∫
φ2t<1

∣∣1 + φ2t
∣∣r+εdP + 2r+εE

∣∣φ2t ∣∣r+ε.
The first expression on the right hand side is finite due to the measurability of

∣∣1+φ2t
∣∣r+ε, and

due to its boundedness on [0, 1]. The second expression is finite due to the assumption that

E
∣∣φ2t ∣∣r+ε < ∞ in A 4b). Accordingly, we have shown that E

∣∣ct(ε2t )|r+ε < ∞ for all t. From

Corollary 3.48 in White (2001, p. 49) it thus follows that
∣∣∣T−1∑T

t=1 ct(ε
2
t )−E

(
ct(ε

2
t )
)∣∣∣ p−→ 0

for all θ ∈ Θ.

As a consequence, {lt(θ, ε2t )} satisfies the UWLLN.

To complete the proof of consistency, we use the following theorem from Wooldridge (1994):

Theorem 4.3 (Wooldridge, 1994, p. 2653): Weak consistency of M-estimators.

Let Θ ⊂ RP , Γ ⊂ RR, {wt ∈ Wt : t = 1, 2, . . .} be a sequence of random vectors, and let

{qt : Θ×Wt × Γ→ R : t = 1, 2, . . .} be a sequence of objective functions. Assume that
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M.1 i) Θ and Γ∗ are compact;

ii) γ̂∗
p→ γ∗ ∈ Γ∗;

iii) qt satisfies the standard measurability and continuity requirements, see ii) in

Definition 4.2;

M.2 {qt(θ,wt, γ̂
∗) : t = 1, 2, . . .} satisfies the UWLLN on Θ× Γ∗;

M.3 θ0 is the unique minimiser of

lim
T→∞

T−1
T∑
t=1

E
[
qt(θ,wt, γ

∗)
]

on Θ.

Then a random vector θ̂ exists that solves (4) and θ̂
p→ θ0.

Again, ε2t = wt and lt = qt in our proof. The theorem accommodates the presence of a prior estimator

γ̂∗ of a nuisance parameter γ∗, which we do not have here. So the conditions involving γ∗ hold

trivially. The compactness of Θ is assumed in A 1, whereas M.1 iii) and M.2 were verified above.

Finally, condition M.3 is assumed in A 5. This completes the proof of consistency. �

A.2 Proof of Theorem 2

To prove asymptotic normality, we use Theorem 4.4 in Wooldridge (1994):

Theorem 4.4 (Wooldridge, 1994, p. 2655): Asymptotic Normality of M-

estimators. Let Θ, Γ, {wt : t = 1, 2, . . .} and {qt : Θ × Wt × Γ → R : t = 1, 2, . . .}

be as in Theorem 4.3. In addition to M.1 – M.3, assume

M.4 i) θ0 is interior to Θ;

ii) γ∗ is interior to Γ∗;

iii)
√
T (γ̂∗ − γ∗) = Op(1);

iv) For each γ∗ ∈ Γ, qt satisfies the following measurability and differentiability

requirements on Θ×Wt:

a) for each θ ∈ Θ, qt(θ, ·, γ∗) is measurable;

b) for each wt ∈ Wt, qt(·,wt, γ
∗) is twice continuously differentiable on int(Θ);

Define the P ×1 score vector st(θ; γ∗) = ∂qt(θ,wt, γ
∗)/∂θ and the P ×P Hessian

matrix Ht(θ,wt, γ
∗) = ∂2qt(θ,wt, γ

∗)/∂θ∂θ′.

v) For each θ ∈ Θ, st(θ) is continuously differentiable on int(Γ∗);
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M.5 i) {Ht(θ, ε
2
t ; γ
∗)} satisfies the UWLLN on Θ× Γ∗;

ii) A = limT→∞ T
−1∑T

t=1E
(
Ht(θ0, ε

2
t ; γ
∗)
)

is positive definite;

iii) {∂st(θ, γ∗)/∂γ∗} satisfies the UWLLN on Θ× Γ∗;

M.6 At the true value θ0, {st(θ0, γ∗)} satisfies

i) E(s′tst) <∞ for all t;

ii) T−1/2
∑T

t=1E(st)→ 0 as T →∞;

iii) T−1/2
∑T

t=1 st
d→ N

(
0,B

)
, where B = limT→∞ V ar

(
T−1/2

∑T
t=1 st

)
is positive

definite.

M.7 E
(
∂st(θ, γ

∗)/∂γ∗
)

= 0 for all t.

Then
√
T (θ̂ − θ0)

d→ N
(
0,A−1BA−1

)
.

The theorem accommodates the presence of a prior estimator γ̂∗ of a “nuisance” parameter γ∗, which

we do not have here. Accordingly, conditions M.4 ii)–iii), M.4 v), M.5 iii) and M.7 hold trivially. Next,

M.4 i) holds due to A 6. M.4 iv) a) holds due to the measurability of lt. To verify M.4 iv) b), we need

to show that a generic entry of the Hessian Ht(θ, ε
2
t ) exists and is continuous on int(Θ). The Hessian

matrix at t is

Ht(θ, ε
2
t ) =

∂2lt(θ, ε
2
t )

∂θ∂θ′
=
∂2gt(θ)

∂θ∂θ′
· at(θ) +

∂gt(θ)

∂θ
·
(
∂at(θ)

∂θ

)′
where

at(θ) =

(
1

gt(θ)
− ε2t
gt(θ)2

)
.

The generic (i, j)th. entry of Ht(θ, ε
2
t ) can be written as

mij,t(θ, ε
2
t ) =

∂2gt(θ)

∂θj∂θi

(
1

gt(θ)
− ε2t
gt(θ)2

)
− ∂gt(θ)

∂θi

∂gt(θ)

∂θj

(
1

gt(θ)2
− 2ε2t
gt(θ)3

)
. (8)

A 2a) ensures gt(θ) is non-zero, positive and finite, and A 7 ensures the first and second order partial

derivatives of gt(θ) with respect to θ exist. Accordingly, lt(θ, ε
2
t ) is twice continuously differentiable

on int(Θ) for each ε2t ∈ [0,∞), so M.4 iv) b) holds.

To verify condition M.5 i), we need to show that the generic (i, j)th. entry of the Hessian satisfies

the UWLLN. To this end, we verify the conditions of Theorem 4.2:

i) This holds due to A 1.
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ii) gt(θ), ∂gt(θ)/∂θ and ∂2gt(θ)/∂θ∂θ′ are all continuous and bounded on Θ due to A 1, A 2a)–b)

and A 7. Accordingly, mij,t(·, ε2t ) is continuous in θ ∈ Θ for each ε2t ∈ [0,∞), and mij,t(θ, ·) is

thus measurable for each θ ∈ Θ. So ii) holds.

iii) {mij,t(θ, ε
2
t ) : t = 1, 2, . . .} satisfies the WLLN:

i) Using that ε2t = gt(θ0)φ
2
t (recall A 4a)), the (i, j)th entry of the Hessian at t can be written

as

mij,t(θ, ε
2
t ) =

∂2gt(θ)

∂θj∂θi

1

gt(θ)
− ∂gt(θ)

∂θi

∂gt(θ)

∂θj

1

gt(θ)2

−
(
∂2gt(θ)

∂θj∂θi

1

gt(θ)
+
∂gt(θ)

∂θi

∂gt(θ)

∂θj

2

gt(θ)2

)
gt(θ0)φ

2
t

gt(θ)
.

A 2a) ensures 0 < gt(θ) < ∞ for all θ ∈ Θ. A 1, A 2b) and A 7 ensure ∂gt(θ)/∂θ and

∂2gt(θ)/∂θ∂θ′ are bounded on Θ, and A 4a) implies E(φ2t ) = 1 <∞. Hence, by the triangle

inequality, since we can write mij,t(θ, ε
2
t ) = vij,t(θ) +wij,t(θ)φ2t where vij,t(θ) is equal to the

first term of mij,t and wij,t(θ)φ2t is equal to the second, the compactness of Θ entails that

there exists constants C1, C2 > 0 such that

E
∣∣mij,t(θ, ε

2
t )
∣∣ ≤ C1 + C2E(φ2t ) = C1 + C2 <∞ for all θ ∈ Θ, t = 1, 2, . . .

ii) Since A 4a) implies E(ε2t ) = gt(θ0), there exists, for all θ ∈ Θ, a constant C > 0 such that∣∣E(mij,t(θ, ε
2
t )
)∣∣ ≤ C for all t, and hence also that

∣∣T−1E(mij,t(θ, ε
2
t )
)∣∣ ≤ T−1C

for t = 1, 2, . . . , T . Since limT→∞
∑T

t=1 T
−1C = C, the comparison test implies that also

limT→∞
∑T

t=1 T
−1E

(
mij,t(θ, ε

2
t )
)

exists.

iii) From the measurability of mij,t(θ, ε
2
t ), it follows from Theorem 14.1 in Davidson (1994, p.

210) that {mij,t(θ, ε
2
t )} inherits the α- and φ-mixing properties of {ε2t } in A 3. Next, A 4b)

implies that E|ε2t |r+ε <∞ for some r > 1, ε > 0. From Corollary 3.48 in White (2001, p. 49)

it thus follows that
∣∣∣T−1∑T

t=1mij,t(θ, ε
2
t )− E

(
mij,t(θ, ε

2
t )
)∣∣∣ p−→ 0 for all θ ∈ Θ.

iv) Let ct(εt) = supθ∈Θ ||nt(θ)||, where nt(θ) = ∂mij,t(θ, ε
2
t )/∂θ. The existence of nt(θ) on Θ∗ is

ensured by A 2 and A 7.
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a) By a mean value expansion, there exists a θ ∈ Θ∗ such that

mij,t(θ1, ε
2
t )−mij,t(θ2, ε

2
t ) = nt(θ)′(θ1 − θ2)

⇒
∣∣mij,t(θ1, ε

2
t )−mij,t(θ2, ε

2
t )
∣∣ =

∣∣nt(θ)′(θ1 − θ2)
∣∣.

The right-hand side satisfies

∣∣nt(θ)′(θ1 − θ2)
∣∣ ≤ ‖ nt(θ) ‖‖ θ1 − θ2 ‖

≤ sup
θ∈Θ
‖ nt(θ) ‖‖ θ1 − θ2 ‖

for all θ1,θ2 ∈ Θ. So a) holds.

b) {ct(ε2t )} satisfies the WLLN:

i) Let nt(θ) = n1t(θ) + · · · + nKt(θ). By Loève’s inequality, see e.g. Theorem 2.14 in Hansen

(2021), we have

||nt(θ)|| =
√
n1t(θ)2 + · · ·+ nKt(θ)2 ≤ |n1t(θ)|+ · · ·+ |nKt(θ)|

for all θ. Accordingly,

sup
θ∈Θ
||nt(θ)|| ≤ sup

θ∈Θ
|n1t(θ)|+ · · ·+ sup

θ∈Θ
|nKt(θ)|.

Write mij,t(θ, ε
2
t ) = vij,t(θ) + wij,t(θ)φ2t so that

nt(θ) =
∂mij,t(θ, ε

2
t )

∂θ
=
vij,t(θ)

∂θ
+
wij,t(θ)

∂θ
φ2t , nkt(θ) =

vij,t(θ)

∂θk
+
wij,t(θ)

∂θk
φ2t .

For each k = 1, . . . ,K, there exists constants C1,k, C2,k > 0 such that

sup
θ∈Θ
|nkt(θ)| = sup

θ∈Θ

∣∣∣∣vij,t(θ)

∂θk
+
wij,t(θ)

∂θk
φ2t

∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣vij,t(θ)

∂θk

∣∣∣∣+ sup
θ∈Θ

∣∣∣∣wij,t(θ)

∂θk
φ2t

∣∣∣∣
≤ C1,k + C2,kφ

2
t .

This means

sup
θ∈Θ
||nt(θ)|| ≤ C1 + C2φ

2
t ,
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where C1 = C1,k + · · ·+ C1,K and C2 = C2,1 + · · ·+ C2,K . This gives

E
(
|ct(ε2t )|

)
= E

(
ct(ε

2
t )
)
≤ E

(
C1 + C2φ

2
t

)
= C1 + C2 <∞.

Since there exists suitable constants C1, C2 such that this holds for all t, it follows that i)

holds.

ii) Since ct(ε
2
t ) ≥ 0 for all t, there exists a suitable constant C > 0 such that

∣∣E(ct(ε2t ))∣∣ ≤ C

for all t. This implies that
∣∣T−1E(ct(ε2t ))∣∣ ≤ T−1C for all t. Since limT→∞

∑T
t=1 T

−1C = C,

the comparison test implies that also limT→∞
∑T

t=1 T
−1E

(
ct(ε

2
t )
)

exists.

iii) From the measurability of ct(ε
2
t ), it follows from Theorem 14.1 in Davidson (1994, p. 210)

that {ct(ε2t )} inherits the α- and φ-mixing properties of {ε2t } in A 3. Next, by an argument

similar to as in b)i) above with r > 1 and ε > 0,

E
(
|ct(ε2t )|r+ε

)
≤ E

∣∣C1 + C2φ
2
t

∣∣r+ε ≤ C · E∣∣1 + φ2t
∣∣r+ε for all t,

where C1, C2 > 0 are constants, and C = max{C1, C2}. Next:

E
∣∣1 + φ2t

∣∣r+ε =

∫
φ2t<1

∣∣1 + φ2t
∣∣r+εdP +

∫
φ2t≥1

∣∣1 + φ2t
∣∣r+εdP

≤
∫
φ2t<1

∣∣1 + φ2t
∣∣r+εdP +

∫
φ2t≥1

∣∣2φ2t ∣∣r+εdP
≤

∫
φ2t<1

∣∣1 + φ2t
∣∣r+εdP + 2r+εE

∣∣φ2t ∣∣r+ε.
The first expression on the right hand side is finite due to the measurability of

∣∣1+φ2t
∣∣r+ε, and

due to its boundedness on [0, 1]. The second expression is finite due to the assumption that

E
∣∣φ2t ∣∣r+ε < ∞ in A 4b). Accordingly, we have shown that E

∣∣ct(ε2t )|r+ε < ∞ for all t. From

Corollary 3.48 in White (2001, p. 49) it thus follows that
∣∣∣T−1∑T

t=1 ct(ε
2
t )−E

(
ct(ε

2
t )
)∣∣∣ p−→ 0

for all θ ∈ Θ.

As a consequence, {mij,t(θ, ε
2
t )} satisfies the UWLLN.

We now turn to M.5 ii). Above, when verifying that the generic (i, j)th. entry of the Hessian

mij,t(θ, ε
2
t ) satisfies the UWLLN, we showed that limT→∞ T

−1∑T
t=1E

(
mij,t(θ, ε

2
t )
)

exists for all θ ∈

Θ. A 8 asserts the limit is positive definite, so M.5 ii) holds.

We now turn to M.6:
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i) At the true value θ0, the score is

st =
∂gt(θ0)

∂θ
·
(

1

gt(θ0)
− ε2t
gt(θ0)2

)
=

∂gt(θ0)

∂θ
·
(

1

gt(θ0)
− φ2t
gt(θ0)

)
=

∂gt(θ0)

∂θ
· 1

gt(θ0)
(1− φ2t ).

From A 2 we have that gt(θ0) is strictly positive, and that gt(θ0) and ∂gt(θ0)/∂θ are bounded.

Accordingly, E(s′tst) <∞ if E(φ4t ) <∞ for each t, which is a consequence of A 9. So condition

i) holds.

ii) From A 4a) it follows that E(1− φ2t ) = 1− E(φ2t ) = 0 for all t, so condition ii) holds.

iii) Under suitable α-mixing we can use the CLT by Herrndorf (1984). Given a series {Xt}, define

the mixing coefficient between two σ-fields as

αX(h) = sup
t
α{σ(Xu, u ≤ t), σ(Xu, u ≥ t+ h)}.

If αX(h) → 0 as h → ∞, then {Xt} is said to be α-mixing. In Francq and Zaköıan (2019, p.

375), Corollary 1 in Herrndorf (1984, p. 42) is written as:

Theorem A.4 (Herrndorf, 1984): CLT for α-mixing processes. Let {Xt} be a

centred process (i.e. E(Xt) = 0 for all t) such that

supt||Xt||2+ν <∞,
∞∑
h=0

αX(h)ν/(2+ν) <∞, for some ν > 0,

where ||X||b = E1/b|X|b. If σ2X = limT→∞V ar(T
−1/2∑T

t=1Xt) exists and is not zero,

then

T−1/2
T∑
t=1

Xt
d→ N(0, σ2X).

Let λ be a (K × 1) vector of finite scalars such that λ′λ = 1, and let

Xt = λ′st = g∗t (θ0) · (1− φ2t ), where g∗t (θ0) = λ′ · ∂gt(θ0)
∂θ

· 1

gt(θ0)
.

A 1, A 2 and the finiteness of λ imply that g∗t (θ0) is bounded for all t, and A 4a) implies

that E(Xt) = 0 for all t. From Theorem 14.1 in Davidson (1994, p. 210) it follows that {Xt}

inherits the α-mixing properties of {ε2t } in A 3, since φ2t ≡ ε2t /gt(θ0). So {Xt} is α-mixing of
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size −r/(r − 1), r > 1. Next, for some ν > 0,

E
(
|Xt|2+ν

)
=

∣∣g∗t (θ0)∣∣2+ν · E∣∣1− φ2t ∣∣2+ν ,
≤

∣∣g∗t (θ0)∣∣2+ν · E∣∣1 + φ2t
∣∣2+ν ,

and

E
∣∣1 + φ2t

∣∣2+ν =

∫
φ2t<1

∣∣1 + φ2t
∣∣2+νdP +

∫
φ2t≥1

∣∣1 + φ2t
∣∣2+νdP

≤
∫
φ2t<1

∣∣1 + φ2t
∣∣2+νdP +

∫
φ2t≥1

∣∣2φ2t ∣∣2+νdP
≤

∫
φ2t<1

∣∣1 + φ2t
∣∣2+νdP + 22+νE

∣∣φ2t ∣∣2+ν .
The first expression on the right hand side is finite due to the measurability of

∣∣1 + φ2t
∣∣2+ν , and

due to its boundedness on [0, 1]. The second expression is finite due to the assumption that

E|φ2t |2+ν < ∞ in A 9. Accordingly, we have shown that E
(
|Xt|2+ν

)
< ∞ for all t, and so

supt||Xt||2+ν <∞.

We now show that
∑∞

h=0 α(h)ν/(2+ν) <∞. Since {Xt} is α-mixing of size −r/(r−1) with r > 1,

there exists an integer N such that α(h)
h−a < ∆ for T ≥ N , where a = r/(r − 1) + ε for some

∆, ε > 0. Set b = ν/(2 + ν), and without loss of generality set ∆ = 1. We have:

∞∑
h=0

α(h)b =
∞∑
h=0

h−ab
(
α(h)

h−a

)b
=

N−1∑
h=0

h−ab
(
α(h)

h−a

)b
+
∞∑
h=N

h−ab
(
α(h)

h−a

)b

≤
N−1∑
h=0

h−ab
(
α(h)

h−a

)b
+

∞∑
h=N

h−ab∆b (since
α(h)

h−a
< ∆)

≤
N−1∑
h=0

h−ab
(
α(h)

h−a

)b
+
∞∑
h=N

h−ab.

The first term on the right hand side is finite, and the second term is finite if ab > 1, i.e. if

ν >
2(r − 1)

(r − 1)ε+ 1

for some ε > 0. This holds for all ε > 0 when ν > 2(r − 1), which is assumed in A 9. So∑∞
h=0 α(h)ν/(2+ν) <∞.

We now turn to the variance. We have V ar(T−1/2
∑T

t=1Xt) = T−1
∑T

t1=1

∑T
t2=1E(Xt1Xt2).
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A 1, A 2 and the finiteness of λ imply that g∗t (θ0) is bounded for all t, and A 9 implies

E(φ2t1φ
2
t2) < ∞ for all pairs t1, t2. Accordingly, |E(Xt1Xt2)| < ∞ for all pairs t1, t2, and so

V ar(T−1/2
∑T

t=1Xt) < ∞ for finite T . Next, write V ar(T−1/2
∑T

t=1Xt) =

T · E
[
(T−1

∑T
t=1Xt)

2] = T · E(X
2
). Since supt||Xt||2+ν < ∞ and

∑∞
h=0 αX(h)ν/(2+ν) < ∞,

Corollary A.2 in Francq and Zaköıan (2019, p. 373) implies that E(X
2
) = O(T−1). So

T · E(X
2
) = O(1). Accordingly, limT→∞ V ar(T

−1/2∑T
t=1Xt) <∞. The non-degenerateness of

φ2t assumed in A 4 ensures the limit is non-zero.

Thus far, we have shown that T−1/2
∑T

t=1Xt
d→ N(0, σ2X) for all λ that satisfies λ′λ = 1,

where Xt = λ′st. If a stochastic vector s satisfies s ∼ N
(
0,B

)
, then λ′s ∼ N

(
0,λ′Bλ

)
.

From the Cramér-Wold theorem, see e.g. Hansen (2021, Theorem 8.4), it thus follows that
√
T
∑T

t=1 st
d→ N

(
0,B

)
. The existence of B follows from limT→∞ V ar(T

−1/2∑T
t=1Xt) < ∞

(shown above), and its positive definiteness is assumed in A 10.

This completes the proof of asymptotic normality. �

A.3 Proof of Theorem 3

The result follows from Theorem 2 in Hansen (1992):

Theorem 2 (Hansen, 1992, p. 969): Assume

(K) (Kernel) For all x ∈ R, |k(x)| ≤ 1 and k(x) = k(−x); k(0) = 1; k(x) is continuous at

zero and for almost all x ∈ R;
∫
R |k(x)|dx <∞.

(S) (Bandwidth) ST →∞, and for some q ∈ (1/2,∞), S1+2q
T /T = O(1);

(V1) For some u ∈ (2, 4] such that u > 2 + 1/q, and some p > u,

(i) 12
∑∞

h=1 α
2(1/u−1/p)
h <∞ or 4

∑∞
h=1 φ

1−2/p
h <∞;

(ii) sup
t≥1
||st(θ0)||p <∞, where ||st(θ0)||p =

(∑
j E|sjt(θ0)|p

)1/p
;

where {αh}∞h=1 and {φh}∞h=1 denote the α-mixing and φ-mixing coefficients, respec-

tively, for {st(θ0)}∞t=1;

(V2) Let N denote some neighbourhood of θ0, and let || · || denote the Euclidean norm:

(i)
√
T (θ̂ − θ0) = Op(1);

(ii) sup
t≥1

E

(
sup
θ∈N
||st(θ)||2

)
<∞;

(iii) sup
t≥1

E

(
sup
θ∈N
|| ∂
∂θ′
st(θ)||2

)
<∞.
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Then B̂
p→ B.

Conditions (K) and (S) hold by assumption (i.e. A 11 and A 12).

To verify condition (V1)(i) for α-mixing, we use the same approach as in our proof of Theorem 2

when we verified
∑∞

h=0 α(h)ν/(2+ν) < ∞ in Herrndorf’s (1984) theorem. Set a = r/(r − 1) + ε and

b = 2(1/u − 1/p). Using the same reasoning,
∑∞

h=0 α(h)b < ∞ if ab > 1 for some ε > 0. This holds

for all ε > 0 when 2(1/u− 1/p) > (r − 1)/r, which is assumed in A 13a). So condition (V1)(i) holds.

To verify condition (V1)(ii), note that the score at θ0 can be written as

st(θ0) =
∂gt(θ0)

∂θ
·
(

1

gt(θ0)
− ε2t
gt(θ0)2

)
=

∂gt(θ0)

∂θ
·
(

1

gt(θ0)
− φ2t
gt(θ0)

)
=

∂gt(θ0)

∂θ
· 1

gt(θ0)

(
1− φ2t

)
= kt(θ0)(1− φ2t ).

From A 2 we have that gt(θ0) is strictly positive, and that gt(θ0) and ∂gt(θ0)/∂θ0 are bounded.

Accordingly, there exists a constant C > 0 such that

||st(θ0)||p =

∑
j

E
∣∣kjt(θ0)(1− φ2t )∣∣p

1/p

≤

∑
j

E|kjt(θ0)|p|(1− φ2t )|p
1/p

≤

∑
j

|kjt(θ0)|p
1/p

·
(
E|(1− φ2t )|p

)1/p
≤ C ·

(
E|(1 + φ2t )|p

)1/p
,

where

E
∣∣1 + φ2t

∣∣p =

∫
φ2t<1

∣∣1 + φ2t
∣∣pdP +

∫
φ2t≥1

∣∣1 + φ2t
∣∣pdP

≤
∫
φ2t<1

∣∣1 + φ2t
∣∣pdP +

∫
φ2t≥1

∣∣2φ2t ∣∣pdP
≤

∫
φ2t<1

∣∣1 + φ2t
∣∣pdP + 2pE

∣∣φ2t ∣∣p.
The first expression on the right hand side is finite due to the measurability of

∣∣1 + φ2t
∣∣p, and due to

its boundedness on [0, 1]. The second expression is finite due to the assumption that E|φ2t |p <∞ for

p > u > 2 + 1/q in A 13. Finally, since this holds for all t, it follows that condition (V1)(ii) holds.

In verifying condition (V2)(i), set N = int(Θ). Then condition (V2)(i) holds, since
√
T (θ̂−θ0)

d→
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N(0,A−1BA−1) by Theorem 2.

To verify condition (V2)(ii), we use an argument similar to the one we used to verify that ct(ε
2
t )

satisfies the WLLN in the proof of Theorem 1. Note that N ⊂ Θ. Let ∂gt(θ)/∂θ = (
.
g1t, . . . ,

.
gKt)

′.

Using the triangle inequality, and that ε2t = gt(θ0)φ
2
t (due to A 4) and gt > 0 (due to A 2a)), we

obtain

||st(θ)||2 =
(
.
g
2
1t + · · ·+ .

g
2
Kt

)
·
(

1

gt(θ)
− gt(θ0)

gt(θ)2
φ2t

)2

=
(
.
g
2
1t + · · ·+ .

g
2
Kt

)
·
(

1

gt(θ)2
− 2

gt(θ0)

gt(θ)3
φ2t +

gt(θ0)
2

gt(θ)4
φ4t

)
≤ ut(θ) + vt(θ)φ2t + wt(θ)φ4t ,

where ut(θ), vt(θ), wt(θ) ≥ 0 for all t and all θ ∈ Θ. By A 1 and A 2b), ∂gt(θ)/∂θ is bounded for all

θ ∈ Θ. So there exists strictly positive constants C1, C2, C3 > 0 such that

sup
θ∈Θ
||st(θ)||2 ≤ sup

θ∈Θ
ut(θ) + sup

θ∈Θ
vt(θ)φ2t + sup

θ∈Θ
wt(θ)φ4t

≤ C1 + C2φ
2
t + C3φ

4
t .

A 4 and A 9 ensure E(φ2t ) and E(φ4t ) are finite for all t, so

E

(
sup
θ∈Θ
||st(θ)||2

)
≤ E

(
C1 + C2φ

2
t + C3φ

4
t

)
= C1 + C2 + C3E(φ4t ) <∞.

This holds for at each t for suitable constants C1, C2, C3. Finally, since N ⊂ Θ, it follows that

sup
t≥1

E

(
sup
θ∈N
||st(θ)||2

)
<∞.

So condition (V2)(ii) holds.

In condition (V2)(iii), the term inside || · ||2 is the Hessian. In the proof of Theorem 2 (when

proving that each entry in the Hessian satisfies the UWLLN), the (i, j)th entry of the Hessian at t

was written as mij,t(θ, ε
2
t ) = vij,t(θ) +wij,t(θ)φ2t . This means, by Loève’s inequality (see e.g. Theorem
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2.14 in Hansen (2021)), that

∣∣∣∣∣∣ ∂
∂θ
st(θ)

∣∣∣∣∣∣2 =
∑
i

∑
j

(
vij,t(θ) + wij,t(θ)φ2t

)2
=

∑
i

∑
j

(
u
(1)
ij,t(θ) + u

(2)
ij,t(θ)φ2t + u

(3)
ij,t(θ)φ4t

)
≤

∑
i

∑
j

|u(1)ij,t(θ)|+ |u(2)ij,t(θ)|φ2t + |u(3)ij,t(θ)|φ4t ,

where u
(1)
ij,t, u

(2)
ij,t and u

(3)
ij,t are introduced to reduce the notational burden. Due to the compactness of

Θ, A 2 and A 7, there exists constants C
(1)
ij , C

(2)
ij , C

(3)
ij > 0 such that

sup
θ∈Θ

∣∣∣∣∣∣ ∂
∂θ
st(θ)

∣∣∣∣∣∣2 ≤ sup
θ∈Θ

∑
i

∑
j

|u(1)ij,t(θ)|+ |u(2)ij,t(θ)|φ2t + |u(3)ij,t(θ)|φ4t


≤

∑
i

∑
j

sup
θ∈Θ
|u(1)ij,t(θ)|+ sup

θ∈Θ
|u(2)ij,t(θ)|φ2t + sup

θ∈Θ
|u(3)ij,t(θ)|φ4t

≤
∑
i

∑
j

C
(1)
ij + C

(2)
ij φ

2
t + C

(3)
ij φ

4
t

≤ C
(1)

+ C
(2)
φ2t + C

(3)
φ4t ,

where C
(1)

, C
(2)

and C
(3)

are suitable sums of C
(·)
ij ’s. A 9 ensure E(φ4t ) is finite for all t, so

E

(
sup
θ∈Θ
‖ ∂

∂θ′
st(θ)‖2

)
≤ C

(1)
+ C

(2)
E(φ2t ) + C

(3)
E(φ4t ) < ∞,

This holds for all t. And since N ⊂ Θ, condition (V2)(iii) is satisfied.

This completes the proof of B̂
p→ B. �
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Table 1: Comparison of estimators of the gt parameters (see Section 4.1)

T m(δ̂0) se(δ̂0) m(δ̂1) se(δ̂1) m(γ̂) se(γ̂) m(ĉ) se(ĉ)

Our estimator:
1000 −0.156 0.375 0.575 1.182 35.108 42.987 0.040 0.246
2000 −0.138 0.340 0.489 1.077 24.069 38.212 0.037 0.217
5000 −0.093 0.272 0.295 0.759 12.852 28.732 0.024 0.161

10000 −0.053 0.187 0.151 0.482 5.430 17.562 0.011 0.102
20000 −0.024 0.106 0.072 0.288 1.795 9.432 0.007 0.062
40000 −0.009 0.049 0.022 0.114 0.447 2.951 0.001 0.029

Iterative estimator (Amado and Teräsvirta, 2013):

1000 −0.177 0.395 77.75 1469.7 82.010 109.20 0.030 0.245
2000 −0.146 0.349 0.856 4.116 61.671 99.219 0.018 0.200
5000 −0.094 0.262 0.292 0.893 27.127 68.009 0.016 0.153

10000 −0.045 0.173 0.143 0.529 9.768 39.112 0.012 0.096
20000 −0.026 0.131 0.073 0.332 2.314 15.693 0.007 0.061
40000 −0.013 0.090 0.036 0.246 0.552 3.437 0.003 0.039

Relative efficiency (Our/Iterative):

T se(δ̂0) se(δ̂1) se(γ̂) se(ĉ)

1000 0.949 0.001 0.394 1.008
2000 0.974 0.262 0.385 1.086
5000 1.038 0.850 0.422 1.048

10000 1.080 0.910 0.449 1.063
20000 0.809 0.869 0.601 1.023
40000 0.537 0.466 0.858 0.764

T , sample size. m(x̂), average bias of estimate x̂ across replications (no. of replica-
tions = 1000). se(x̂), sample standard deviation of estimate x̂ across replications.
All computations in R (R Core Team, 2021). Our estimator is implemented with
own code. The Iterative estimator is implemented with the tvgarch() function of
the CRAN package tvgarch (Campos-Martins and Sucarrat, 2021).
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Table 2: Comparison of estimators of the ht parameters (see Section 4.1)

T m(ω̂) se(ω̂) m(α̂) se(α̂) m(β̂) se(β̂)

Our estimator:
1000 0.044 0.082 −0.002 0.030 −0.042 0.096
2000 0.019 0.039 0.000 0.020 −0.019 0.050
5000 0.007 0.020 0.000 0.013 −0.007 0.028

10000 0.003 0.015 0.000 0.009 −0.003 0.020
20000 0.001 0.010 0.000 0.006 −0.001 0.014
40000 0.001 0.007 0.000 0.004 −0.001 0.009

Iterative estimator (Amado and Teräsvirta, 2013):

1000 0.078 0.278 −0.001 0.029 −0.042 0.095
2000 0.024 0.066 0.000 0.020 −0.020 0.051
5000 0.008 0.024 −0.001 0.013 −0.007 0.029

10000 0.003 0.015 0.000 0.009 −0.004 0.020
20000 0.002 0.010 0.000 0.006 −0.002 0.014
40000 0.001 0.007 0.000 0.004 0.000 0.009

Relative efficiency (Our/Iterative):

T se(ω̂) se(α̂) se(β̂)

1000 0.293 1.048 1.009
2000 0.597 0.990 0.979
5000 0.826 0.980 0.977

10000 0.995 1.009 1.019
20000 1.023 1.027 1.033
40000 0.990 0.947 0.971

T , sample size. m(x̂), average bias of estimate x̂ across replications (no. of replications
= 1000). se(x̂), sample standard deviation of estimate x̂ across replications. All
computations in R (R Core Team, 2021). Our estimator is implemented with own
code. The Iterative estimator is implemented with the tvgarch() function of the
CRAN package tvgarch (Campos-Martins and Sucarrat, 2021).
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Table 3: Spline estimates of intraday hourly volatility (see Section 4.3)

m δ̂m,0
(s.e.)

δ̂m,1
(s.e.)

δ̂m,2
(s.e.)

δ̂m,3
(s.e.)

δ̂m,4
(s.e.)

Tm χ2(4)
[p-value]

1 5.299
(0.7500)

−15.810
(13.4499)

21.374
(35.3870)

−6.012
(42.0694)

53.597
(52.1365)

515 21.853
[0.0002]

2 3.775
(0.2522)

1.133
(5.5682)

−11.494
(17.2066)

9.289
(27.5935)

53.769
(44.4830)

516 13.659
[0.0085]

3 3.643
(0.1799)

2.215
(5.6775)

−8.954
(18.0865)

18.192
(29.0815)

−22.852
(51.8127)

516 0.518
[0.9717]

4 3.881
(0.2042)

−1.513
(5.8468)

−0.526
(17.8306)

10.394
(24.7749)

−31.197
(36.2192)

516 3.739
[0.4425]

5 3.374
(0.2480)

−3.385
(5.6154)

17.916
(25.1045)

−22.709
(50.8933)

−58.255
(65.4091)

516 11.252
[0.0239]

6 2.735
(0.1639)

4.456
(4.8266)

−13.627
(14.8996)

17.628
(21.9418)

−6.619
(35.6272)

516 2.678
[0.6131]

7 2.828
(0.1880)

2.119
(4.8304)

2.422
(14.8860)

−18.812
(23.0798)

24.475
(41.8866)

516 4.935
[0.2940]

8 3.857
(0.1761)

0.895
(4.7520)

−5.108
(15.6553)

27.629
(27.3967)

−85.692
(50.4111)

515 4.605
[0.3303]

9 4.521
(0.1046)

1.519
(3.3636)

1.150
(11.0443)

−10.082
(17.3552)

−6.229
(26.6340)

517 9.899
[0.0422]

10 5.017
(0.1083)

−4.345
(4.1078)

20.107
(14.1020)

−44.509
(23.5988)

86.918
(39.2159)

517 5.067
[0.2805]

11 4.639
(0.1883)

−6.359
(4.2830)

31.118
(13.0861)

−61.819
(19.7580)

82.749
(32.9960)

517 12.851
[0.0120]

12 4.270
(0.1340)

3.207
(6.0619)

−9.070
(19.7662)

7.739
(27.8525)

8.046
(31.5353)

517 1.285
[0.8638]

13 4.557
(0.2465)

−1.464
(5.8333)

4.095
(16.2240)

−6.101
(20.1852)

−3.786
(27.0234)

517 6.345
[0.1748]

14 4.543
(0.1308)

−2.035
(5.9661)

19.024
(20.3573)

−47.267
(30.2697)

52.408
(33.8313)

517 6.326
[0.1761]

15 5.459
(0.1745)

−2.838
(6.1910)

10.719
(19.1027)

−19.411
(26.1795)

11.935
(39.5819)

517 4.168
[0.3838]

16 5.119
(0.1370)

2.594
(3.5311)

−9.415
(11.2707)

11.557
(18.2838)

10.993
(29.4810)

517 4.806
[0.3078]

17 5.409
(0.2084)

−4.002
(6.1471)

10.676
(18.9852)

−19.079
(26.0643)

51.860
(33.0375)

517 6.545
[0.1620]

18 4.525
(0.1408)

2.129
(4.2691)

−5.967
(14.9245)

8.191
(25.3191)

−22.307
(35.8562)

517 1.757
[0.7803]

19 4.538
(0.2072)

−8.461
(4.6763)

28.788
(14.3695)

−45.468
(22.1033)

89.723
(37.5707)

517 11.391
[0.0225]

20 4.812
(0.2824)

−12.499
(6.1909)

42.377
(18.0694)

−66.247
(25.3022)

78.278
(37.1935)

515 7.316
[0.1201]

21 4.762
(0.2543)

12.607
(8.3225)

−51.998
(27.7942)

68.146
(41.7357)

13.428
(60.2765)

516 13.748
[0.0081]

22 4.247
(0.2998)

−9.138
(6.8886)

26.477
(22.1287)

−37.022
(36.0341)

50.927
(50.1771)

516 3.522
[0.4746]

23 3.192
(0.1530)

−0.677
(6.5807)

−1.918
(21.7801)

17.689
(34.8831)

−34.275
(58.9980)

412 3.196
[0.5257]

24 2.203
(0.1849)

20.118
(4.9577)

−68.402
(15.6429)

80.915
(24.5480)

−18.442
(37.1555)

413 34.318
[0.0000]

The estimated model is l̂n gm,t = δm,0 +
∑4

l=1 δm,l(t/T − cl)
2I(t/T ≥ cl) with

(c1, c2, c3, c4)
′ = (0.2, 0.4, 0.6, 0.8). m, intraday period/hour. s.e., standard error

of estimate. T , number of observations. χ2(4), the test statistic of a Wald-test with
H0 : δm,1 = · · · = δm,4 = 0 (p-value in square brackets).
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Figure 1: Daily log-returns in % of the EROS stock at NYSE (left) and 500-day moving average of
squared returns (right), 21 December 2009 – 4 February 2021 (see Section 4.2). Datasource: Bloomberg
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Figure 2: Hourly log-returns in basis points of the USD/EUR exchange rate (left) and estimates of its
intraday hourly volatility (right), 2 January 2017 – 31 December 2018 (see Section 4.3). Datasource:
Forexite
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