Empirical test of the neo-technological approach

Leads e Lags

Hufbauer (1966), Hirsh (1965 e 1967)

They analise innovation lead and lag in synthetic material industry (rubber, nailon etc.)

E.g.: galalite (a synthetic material produced from milk protein and used in button production)

Introduced in Germany in 1900 e then produced in France and Uk (1912)

Product life-cycle

Wells (1969)

finds that exports of high income goods grow faster than low income goods

He uses two indexes:

1) income elasticity of demand

2) share of households owning a specific good (20 goods). The index is a proxy for market saturation

In the Usa goods with low market diffusion (low saturation) have the highest income elasticity

Wells estimates the following equation in which E represents income elasticity, S market saturation and R the ratio between average exports in periods 1962-3 and 1952-3:

 $R = c + \beta_1 E + \beta_2 S$

$$R = 0.78 + 3.17E R^2 = 0.80 (8.64)^{**} F = 74.5 R = 1.40 + 2.79E - 0.72S R^2 = 0.80 (4.18)^{**} (0.70) F = 36.3 F = 36.3$$

The figures in parentheses are *t*-values. ** Significant at the 1% level.

The Soete test on patents

Soete takes patents as a measure of innovation output

He uses US patents data

He estimates 40 cross-country regressions of the type [22 OECD countries with 40 industries]

$$\ln SX_{ij} = \beta_{0j} + \beta_{1j} \ln SP_{ij} + \beta_{2j} \ln K_i + \beta_{3j} \ln PL_i + \beta_{4j} D_j + u_{ij}$$

- SX= export share of country i in good market j;
- SP= patent share of a country i in a industry j;
- K= capital-labour ratio;
- D= "distance" from the world "center";
- PL= population

Types of	Sectors ¹		Indep	pendent war	iables			
good		Const.	$\mathrm{InSP}_{\mathrm{ff}}$	lnk_{ℓ}	lnP,	D,	<i>R</i> ²	F
"Ricardian" goods	Food products	5.01	0.099	0.402	0.368	0.004	0.32	3.5
		(1.86)	(0.67)	(0.68)	(1.44)	(1.33)		
	Petroleum, natural gas	3.22	-0.151	3.561	1.071	0.009	0.36	4.0
		(0.41)	(-0.42)	(2.61)	(1.30)	(1.13)		
'Heckscher-	Textile-mill products	-12.90	0.145	-0.337	0.631	0.003	0.78	19.5
Ohlin' goods	2000 W 2000 W 2000 W 2000 P 1000	(5.89)**	(1.24)	(-0.612)	(2.74)	(1.00)		
	Paints and allied products	-0.07	0.214	1.585	0.478	0.010	0.68	12.2
		(-0.02)	(1.30)	(2.95)"	(1.41)	(2.50)*		
Product Life	Plastic materials, synthetics	-2.55	0,305	1.148	0.544	0.008	0.91	\$1.2**
Cycle' goods		(-1.28)	(3.11)**	(2.41)	(2.31)	(4.00)**		
	Household appliances	-4.68	0.501	0.109	0.184	0.004	0.78	20.1
		(-1.90)	(3.80)**	(0.18)	(0.74)	(1.33)		
	Communications eq.8c electronic	-8.29	0.463	0.009	0.499	0.610	0.80	22.4
	components and accessories	(-4.00)	(2.69)	(0.01)	(1.45)	(3.33)**		
	Motor vehicles & equipment	-9.45	0.456	0.732	1.027	0.007	0.86	32.9"
		(-3.28)	(2.81)°	(1.01)	(3.31)**	(2.33)		
	Aircrafts and parts	1,09	1.262	-0.206	-0.307	0.009	0.81	22.7**
		(0.24)	(5.21)"	(-0.23)	(-0.68)	(1.80)		

Table 22.1 Selected econometric results from the Soute test

The figures in parentheses are t-values. "" Significant respectively at the 1% and 5% levels. ¹ See note 5 for an explanation of the categorisation used.

Source: Socte (1981).

"First date" test

Hufbauer (1970) uses the date in which a good appears for the first time in the market

More technologically advanced countries should export goods at their early development stage.

Pro-capita GDP is a proxy for technological level of the country

He computes the correlation between data rank and procapita GDP finding an average value of 0,698 (24 countries)

"First date" test

Branson e Junz (1971) estimate the following regression

$$(X-M) = \beta_0 + \beta_1 \frac{K}{L} + \beta_2 \frac{H}{L} + \beta_3 SI + \beta_4 N$$

H is human capital, SI economies of scale and N is the date of introduction of a good in the market (first date)

$$(X - M) = -9.24K/L + 95.13H/L + 4.26SI + 9.29N$$

 $(-2.5)^{**}$ (3.1)^{**} (1.4) (2.0)^{*}
 $R^2 = 0.19$ $F = 5.86$ $n = 101$

The figures in parentheses are the *t*-values. *,** Significant at the 5% and 1% levels respectively.

R&D Test

Lowinger (1974) measure "innovation" efforts using R&D statistics

He takes US data for 16 industries at the 2 and 3 digit SITC classification level

He estimate the regression

$$ES = \beta_0 + \beta_1 R \& D + \beta_2 H + \beta_3 F$$

R&D is the number of scientists employed in research and development activity, H is human capital, F represents average tariffs on exports (trade barriers)

	Dependent variable	Independent variables					
200		Const.	R&D	Н	F		
(1)	ES	0.078 (2.98)	0.054 (6.46)**		-		
(2)	ES	-0.070 (1.67)	0.055 (7.54)**	0.329		0.80	
(3)	ES	-0.037 (0.54)	0.054 (8.86)	0.436 (3.31)**	-0.009 (2.56)*	0.87	
(4)	ES	0.230 (5.65)**	0.058 (10.19)**		-0.010 (2.84)	0.89	

Table 22.2 Selected econometric results from the Lowinger test

The figures in parentheses are *t*-values. Significant at the 5% and 1% levels respectively. Source: Lowinger (1975).