COGNOME										
NOME										
N. MATRICOI	_A				1	EC/	,			

FACOLTA' DI ECONOMIA ESAME SCRITTO DI RICERCA OPERATIVA

Verona, 13 Gennaio 1998

1) E' data la seguente tabella T del simplesso:

relativa ad un problema del tipo $\begin{cases} \min \langle c,x \rangle \\ Ax = b \end{cases} \text{, dove } c_2 = 1, c_3 = 0 \text{ e dove la matrice di base relativa} \\ x \geq 0 \end{cases}$

alla tabella assegnata e' $B = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix}$.

- a) Determinare A, b e c. Detto P il problema cosi' ottenuto, rappresentare P nel piano (x_1, x_2) .
- b) Nel problema P, porre $c = (c_1, c_2, 0, 0, 0)$ e determinare tutti i valori di c_1 e c_2 per cui il problema cosi' ottenuto ammette la soluzione ottima espressa dalla tabella T.
- c) Scrivere il duale di P e determinare una sua soluzione ottima.
- 2) Trovare l'assegnazione di costo minimo tra 4 macchinari diversi e 4 lavoratori, quando i costi di assegnazione sono indicati nella tabella seguente:

10	9	7	8
5	8	7	7
5	4	6	5
2	3	4	5

3) Risolvere il seguente problema di Programmazione Lineare Intera utilizzando la tecnica del Branch and Bound:

$$\begin{cases} \min(-x_1 - x_2) \\ -2x_1 + 9x_2 \le 36 \\ 10x_1 - x_2 \le 40 \\ x_1, x_2 \ge 0 \text{ e interi} \end{cases}$$

Illustrare la procedura risolvendo ogni passo per via geometrica.

COGNOME										
NOME										
N. MATRICOL	Α	Γ				EC	l ·			

FACOLTA' DI ECONOMIA ESAME SCRITTO DI RICERCA OPERATIVA

Verona, 28 Gennaio 1998

1) Dato il seguente problema di programmazione lineare:

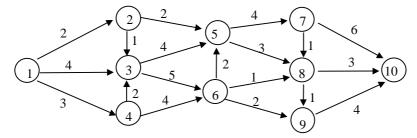
$$\Pr \begin{cases} \min(-x_1 + 2x_2) \\ x_1 - x_2 \le 2 \\ -x_1 + x_2 \le 3 \\ x_1 + x_2 \ge 1 \\ x_1, x_2 \ge 0 \end{cases},$$

rappresentare geometricamente il problema nel piano (x_1, x_2) e successivamente

- a) trovare tutte le soluzioni di base di P, specificando se sono degeneri o no;
- b) risolvere il problema P con l'algoritmo del simplesso;
- c) sostituire in P la funzione obiettivo con $c_1x_1 + c_2x_2$ e successivamente:
- trovare tutti i valori di c_1 e c_2 per cui (1,0) e (0,1) sono entrambe soluzioni ottime di P;
- trovare tutti i valori di c_1 e c_2 per cui P non ha soluzioni ottime finite.

2) Dato il problema
$$\begin{cases} \min(5x_1^2 + 8x_1x_2 + 5x_2^2) \\ 2x_1 + x_2 \ge 2 \end{cases},$$

- a) dire se il problema e' convesso;
- b) dire se il problema e' regolare;
- c) servendosi delle condizioni di Kuhn-Tucker, risolvere il problema.
- 3) Dato il seguente grafo (nel quale i numeri sugli archi sono le distanze)



determinare il cammino di lunghezza minima dal nodo 1 al nodo 10, utilizzando l'algoritmo di Dijkstra.

COGNOME								
NOME								

N. MATRICOLA //E0

FACOLTA' DI ECONOMIA ESAME SCRITTO DI RICERCA OPERATIVA

Verona, 6 Aprile 1998

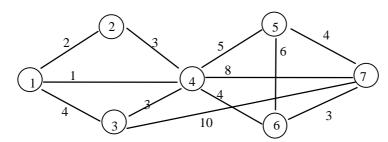
1) E' dato il seguente problema di programmazione lineare:

$$\Pr \begin{cases} \min(3x_1 - 2x_2) \\ 2x_1 - x_2 \ge 0 \\ -x_1 + x_2 \le 2 \\ x_1 + x_2 \le 10 \\ x_1, x_2 \ge 0 \end{cases}$$

- a) Dire se il problema ha soluzioni di base degeneri o no;
- b) determinare 2 soluzioni di base adiacenti tali che in una di esse la funzione obiettivo assuma valore = 0 e nell'altra > 0;
- c) risolvere P con l'algoritmo del simplesso;
- d) come si modifica la soluzione ottima di P se il III vincolo viene sostituito con $x_1 + x_2 \le 3$?
- 2) Si consideri il duale del seguente problema:

$$\begin{cases} \min(x_1 + x_2) \\ x_1 + 3x_2 \le 6 \\ 4x_1 + 3x_2 \le 12 \\ x_2 \le k \\ x_1, x_2 \ge 0 \end{cases}, k \in R.$$

- a) Sia k > 2. Si dica, senza risolvere il duale, se e' vero o falso che in una soluzione ottima del duale la componente relativa al vincolo $x_2 \le k$ e' nulla.
- b) Discutere al variare di k l'ottimalita' del duale ovvero specificare, se esistono,
- per quali valori di *k* il duale ha soluzioni ottime finite;
- per quali valori di k la funzione obiettivo del duale non e' limitata sulla regione ammissibile;
- per quali valori di k la regione ammissibile del duale e' vuota.
- 3) Si consideri il problema di determinare l'albero di supporto minimo sul seguente grafo (i numeri riportati sugli archi sono i costi)



Risolvere sia con l'algoritmo di Kruskal che di Prim e confrontare le soluzioni ottenute.

NOME							

N. MATRICOLA /EG

FACOLTA' DI ECONOMIA ESAME SCRITTO DI RICERCA OPERATIVA

Verona, 9 Luglio 1998

1) Si consideri il seguente problema di programmazione lineare:

P:
$$\begin{cases} \min(-x_1 + cx_2) \\ 2x_1 + 2x_2 - x_3 = 17 \\ -2x_1 + 2x_2 - x_4 = 1. \\ -x_1 + 2x_2 - x_5 = 5 \\ x_i \ge 0, i = 1, ..., 5 \end{cases}$$

- a) Rappresentare geometricamente la regione ammissibile di P nel piano (x_1, x_2) ;
- b) dire quante e quali soluzioni di base ha il problema P, specificando se sono degeneri o no;
- c) determinare la tabella del simplesso relativa alla soluzione $(x_B = (x_1, x_2, x_4), x_N = (x_3, x_5))$;
- d) sia $c = 2 e x^0$ la soluzione di base di cui al punto c);
 - dimostrare che x^0 e' soluzione ottima di P;
 - dire se esistono soluzioni ottime alternative alla soluzione x^0 ;
- e) determinare, per c = 1, una soluzione ottima non di base per il problema P.
- 2) E' dato il seguente problema:

$$\begin{cases} \min(3x_1 + 2x_2 + 12x_3 + 5x_4) \\ x_1 + x_2 + 2x_3 + x_4 \ge 4 \\ -2x_1 + x_2 + 3x_3 + 3x_4 \ge 6 \\ x_i \ge 0, i = 1,2,3,4 \end{cases}$$

Risolvere sia il problema dato, sia il suo duale.

3) Risolvere il problema dei trasporti avente le disponibilità a_1 ed a_2 , le richieste b_1 , b_2 , b_3 e b_4 ed i costi c_{ij} , i = 1,2; j = 1,2,3,4, indicati nella seguente tabella:

	\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_3	${f B}_4$	
A_1	1	2	3	2	25
A_2	2	3	1	2	22
	10	12	10	15	

Usare la regola dell'angolo Nord-Ovest per ottenere una prima soluzione di base ammissibile.

COGNOME								
NOME								
		,		•				

N. MATRICOLA /EC

FACOLTA' DI ECONOMIA

ESAME SCRITTO DI RICERCA OPERATIVA

Verona, 29 Settembre 1998

1) E' dato il seguente problema di Programmazione Lineare:

$$\begin{cases} \min(3x_1 - x_2) \\ x_1 - 2x_2 \le 2 \\ 2x_1 - x_2 \ge -2 \\ x_1 - x_2 \le 4 \\ x_1, x_2 \ge 0 \end{cases}$$

- a) Rappresentare il problema geometricamente e successivamente scriverlo in forma standard.
- b) Determinare una soluzione di base in cui la funzione obiettivo assume valore = 0 ed una in cui assume valore > 0. Le due soluzioni di base sono adiacenti?
- c) Risolvere il problema con l'algoritmo del simplesso.
- d) Risolvere il problema che si ottiene dal problema dato sostitutendo la funzione obiettivo con $-x_1-x_2$. Specifiicare se il problema cosi' ottenuto ha soluzioni ottime finite o no.
- 2) E' dato il seguente problema:

$$\min(2x_1 + 3x_2 + 5x_3 + 2x_4 + 3x_5)
x_1 + x_2 + 2x_3 + x_4 + 3x_5 \ge 4
2x_1 - 2x_2 + 3x_3 + x_4 + x_5 \ge 3
x_i \ge 0, i = 1, ..., 5$$

- a) Risolvere graficamente il duale del problema dato.
- b) Utilizzare la soluzione del problema duale per risolvere il primale.
- 3) Risolvere il problema dei trasporti avente le disponibilità a_1 ed a_2 , le richieste b_1 , b_2 e b_3 ed i costi c_{ij} , i=1,2; j=1,2,3, indicati nella seguente tabella:

	B_1	B_2	B_3	
A_1	8	2	4	10
A_2	3	5	5	20
	8	7	15	-

Usare la regola dell'angolo Nord-Ovest per ottenere una prima soluzione di base ammissibile.

COGNOME									
NOME									
N. MATRICOL	A				EC	! ,			

FACOLTA' DI ECONOMIA PROVA SCRITTA DI RICERCA OPERATIVA (I parte)

Verona, 17 Novembre 1998

1) E' dato il seguente problema di Programmazione Lineare:

$$\begin{cases} \min(-x_1 + 2x_2) \\ 2x_1 + x_2 - x_3 = 1 \\ x_1 + 3x_2 - x_4 = 1 \\ x_1 - x_2 + x_5 = 1 \\ x_i \ge 0, i = 1, \dots, 5 \end{cases}$$

- a) E' possibile trovare due soluzioni di base adiacenti in cui la funzione obiettivo assume rispettivamente valore <0 e >0 ?
- b) Determinare la tabella del simplesso relativa alla soluzione che ha in base le componenti (x_1, x_2, x_5) . A partire da tale tabella, risolvere il problema con l'algoritmo del simplesso. La soluzione ottima e' unica? E' degenere?
- c) Dare una spiegazione non geometrica del fatto che la regione ammissibile di P e' illimitata.
- 2) E' dato il seguente problema:

$$P \begin{cases} \min(2x_1 + 2x_2 + kx_3) \\ x_1 - x_2 = 0 \\ x_1 + x_2 - x_3 = 1 \\ x_i \ge 0, i = 1, ..., 3 \end{cases}.$$

- a) Scrivere il duale di P e risolverlo $\forall k \in R$.
- b) Dire per quali valori di $k \in R$ il problema P non ha soluzioni ottime finite.
- c) Dire per quali valori di $k \in R$ P ha soluzioni ottime finite e risolverlo per ognuno di tali valori.

COGNOME								
NOME								
N MATRICOL	Г			1	TO			

N. MATRICOLA /EC

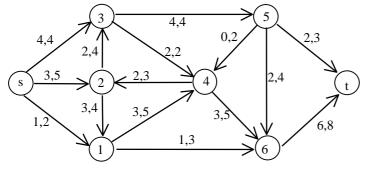
FACOLTA' DI ECONOMIA PROVA SCRITTA DI RICERCA OPERATIVA

Verona, 15 Dicembre 1998

1) Si consideri il seguente problema di programmazione lineare, dipendente dal parametro reale α:

P:
$$\begin{cases} \min(-x_1 - 2x_2) \\ x_1 + x_2 \le \alpha \\ -x_1 + x_2 \le \alpha \\ x_2 \le 3 \\ x_1, x_2 \ge 0 \end{cases}$$

- a) Dire quanti e quali vertici ha la regione ammissibile di P al variare di α .
- b) Dire per quali valori di α la regione ammissibile di P ha vertici corrispondenti a soluzioni di base degenere, specificando tali soluzioni.
- c) Scrivere il duale di P e dire se esistono valori di α per cui il duale ha regione ammissibile vuota.
- d) Dire per quali valori di α il duale di P non ha soluzioni ottime finite.
- e) Risolvere P per α =4 con l'algoritmo del simplesso. Successivamente, sostituire la funzione obiettivo con $c_1x_1+c_2x_2$ e dire per quali valori di c_1 e c_2 la soluzione trovata rimane ottima.
- 2) Dato il grafo in figura in cui i numeri associati ad ogni arco rappresentano rispettivamente il flusso e la capacita' dell'arco, utilizzando l'algoritmo di Ford e Fulkerson (a partire dal flusso ammissibile dato), determinare il massimo flusso inviabile dal nodo *s* al nodo *t*. Verificare l'ottimalita' della soluzione trovata determinando un taglio di capacita' minima.



3) Si consideri il seguente problema di Programmazione Lineare Intera:

$$\begin{cases} \min(-x_1 - 2x_2) \\ 2x_1 - 6x_2 \le -17 \\ -x_1 + 10x_2 \le 40 \\ x_1, x_2 \ge 0 \text{ e interior} \end{cases}$$

- a) Risolvere geometricamente il problema lineare LP senza il vincolo di interezza.
- b) A partire da a) risolvere il problema lineare intero ILP, utilizzando la tecnica del Branch and Bound (risolvere ogni passo geometricamente).

COGNOME									
NOME									
N. MATRICOL	A				/	EC			

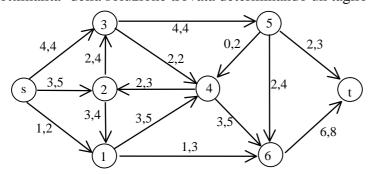
FACOLTA' DI ECONOMIA PROVA SCRITTA DI RICERCA OPERATIVA (II parte)

Verona, 15 Dicembre 1998

1) Trovare l'assegnazione di costo minimo, quando i costi di assegnazione sono quelli indicati dalla tabella seguente:

8	11	9	10
8	4	8	9
5	4	4	3
3	1	4	2

2) Dato il grafo in figura in cui i numeri associati ad ogni arco rappresentano rispettivamente il flusso e la capacita' dell'arco, utilizzando l'algoritmo di Ford e Fulkerson (a partire dal flusso ammissibile dato), determinare il massimo flusso inviabile dal nodo *s* al nodo *t*. Verificare l'ottimalita' della soluzione trovata determinando un taglio di capacita' minima.



3) Si consideri il seguente problema di Programmazione Lineare Intera:

$$\begin{cases} \min(-x_1 - 2x_2) \\ 2x_1 - 6x_2 \le -17 \\ -x_1 + 10x_2 \le 40 \\ x_1, x_2 \ge 0 \text{ e interi} \end{cases}$$

- a) Risolvere geometricamente il problema lineare LP senza il vincolo di interezza.
- b) A partire da a) risolvere il problema lineare intero ILP, utilizzando la tecnica del Branch and Bound (risolvere ogni passo geometricamente).
- c) Scrivere la tabella del simplesso relativa alla soluzione ottima di LP trovata al punto a) e determinare il taglio ad essa corrispondente.