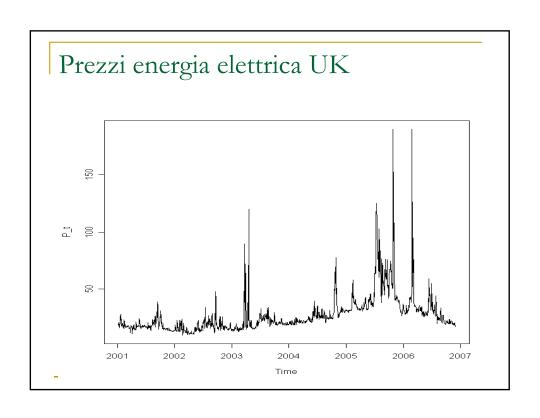
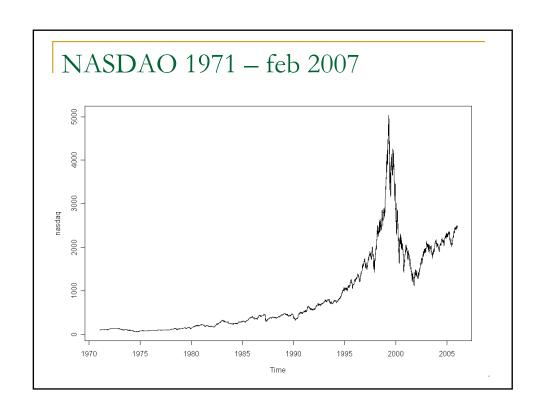
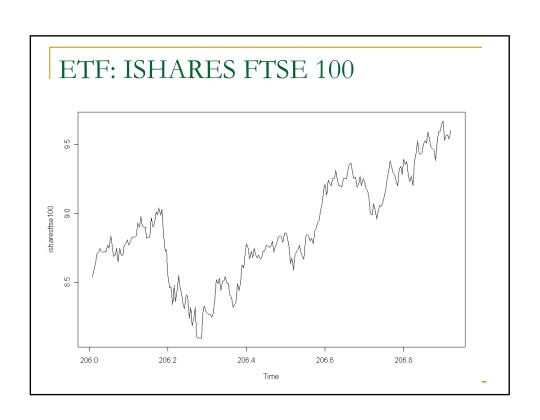

I RENDIMENTI


LE SERIE STORICHE FINANZIARIE


- Attività finanziarie
- Azioni (es. Capitalia, Mediaset, ...)
- Titoli di stato (BOT, BTP, ...)
- Tassi di cambio (Euro/Dollaro, Euro/Sterlina, ...
- Indici di Borsa (S&P/MIB, CAC40, ETF ...)
- Tassi di interesse (tasso ufficiale di sconto, tassi interbancari, ...)
- Merci o commodities (oro, petrolio, ...)
- Prodotti finanziari derivati (opzioni, contratti forward, contratti futures)



LE SERIE STORICHE FINANZIARIE Tipi di analisi

- Singole attività
- Prezzi, rendimenti, volatilità
- Portafoglio di attività
- Rendimenti di un portafoglio, rischio associato ad un portafoglio, scelta del portafoglio ottimo.

I rendimenti

Rendimento assoluto

$$RA_t = P_t + D_t - P_{t-1}$$

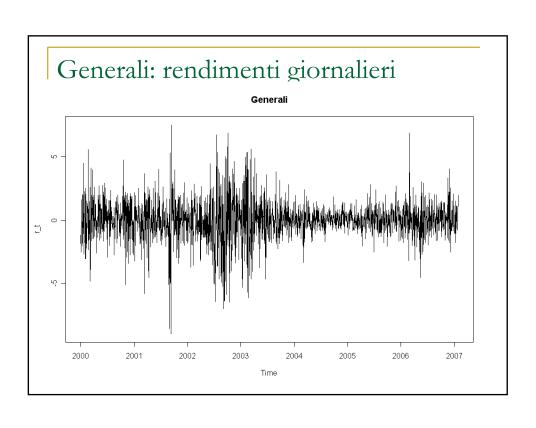
Influenza dell'unità di misura e dell'ordine di grandezza dell'investimento iniziale, varianza proporzionale ai prezzi

Rendimento relativo (o tasso di rendimento semplice)

$$R_{t} = \frac{P_{t} + D_{t} - P_{t-1}}{P_{t-1}} = \frac{P_{t} + D_{t}}{P_{t-1}} - 1$$

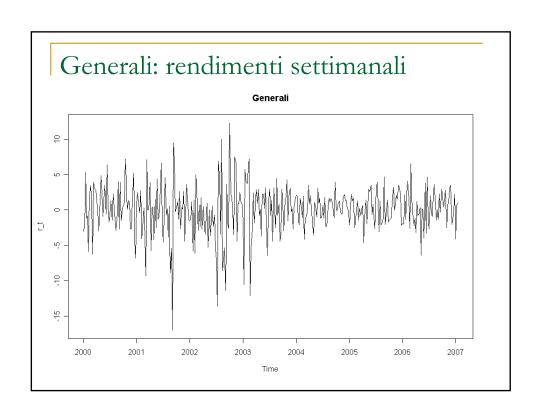
$$\frac{P_{\scriptscriptstyle t} - P_{\scriptscriptstyle t-1}}{P_{\scriptscriptstyle t-1}}$$
 Capital gain $\frac{D_{\scriptscriptstyle t}}{P_{\scriptscriptstyle t-1}}$ dividend yield

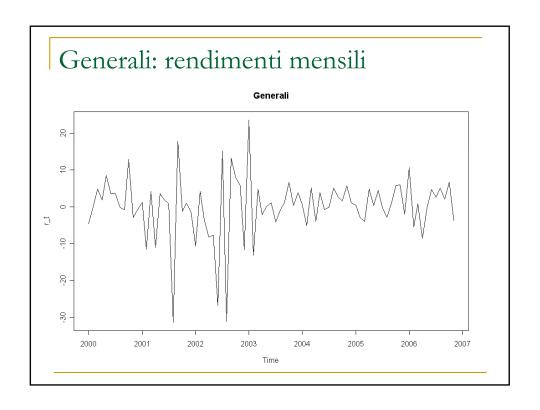
Rendimento logaritmico (o tasso di rendimento con capitalizzazione continua)


$$r_{t} = \ln\left(\frac{P_{t} + D_{t}}{P_{t-1}}\right) = \ln(P_{t} + D_{t}) - \ln P_{t-1}$$

$$\mathbf{N.B.:} \qquad \qquad r_{t} = \ln(1 + R_{t})$$

Esempio di calcolo dei rendimenti con D_t =0


Titolo Eni - Prezzi e rendimenti


DATA	CLOSE	RA_t	R_t (%)	r_t (%)
29/01/2007	24.78	ı	ı	-
30/01/2007	24.77	-0.01	-0.04	-0.04
31/01/2007	24.7	-0.07	-0.28	-0.28
01/02/2007	24.85	0.15	0.61	0.61
02/02/2007	24.64	-0.21	-0.85	-0.85
05/02/2007	24.92	0.28	1.14	1.13
06/02/2007	24.82	-0.10	-0.40	-0.40
07/02/2007	24.78	-0.04	-0.16	-0.16
08/02/2007	24.64	-0.14	-0.56	-0.57
09/02/2007	24.65	0.01	0.04	0.04

Calcolo dei rendimenti settimanali

- N.B. per calcolare i rendimenti settimanali, mensili, ecc. a partire da dati giornalieri si possono seguire almeno due strade:
- calcolo dei prezzi medi settimanali (mensili);
- scelta del giorno in relazione al quale calcolare i rendimenti (ad es. mercoledì per i rendimenti settimanali, giorno centrale del mese per i rendimenti mensili).
- Esempio su DAX30

Una piccola dimostrazione...

Perché F

$$R_t \cong r_t$$
 ?

Per definizione:

$$P_t = P_{t-1}(1+R_t)$$

Passando ai logaritmi:

$$p_t = p_{t-1} + \ln(1 + R_t)$$

Attraverso l'espansione in serie di Taylor di $ln(1+R_{ij})$ attorno a 0 si ottiene:

$$\ln(1+R_t)\cong R_t$$

per cui

$$R_{t} \cong p_{t} - p_{t-1} = r_{t}$$

Espansione in serie di Taylor

Formula generale

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \frac{f'''(x_0)}{6}(x - x_0)^3 + \dots + \frac{f^n(x_0)}{n!}(x - x_0)^n + R_n(x)$$

Espansione della funzione log(1+R_t) (attorno allo zero) approssimata al primo grado

$$f(x) = \log(1 + R_t)$$

$$x = R_t$$

$$x_0 \Longrightarrow R_t = 0$$

$$f(x_0) = \log(1+0) = 0$$

$$f'(x_0) = d(\log(1+R_t))|_{R_t=0} = \left(\frac{1}{1+R_t} \times 1\right)|_{R_t=0} = 1$$

$$(x-x_0) = R_t - 0 = R$$

$$f(x) \cong f(x_0) + f'(x_0)(x - x_0) = 0 + 1 \times R_t = R_t$$

OPERAZIONI DI AGGREGAZIONE DEI RENDIMENTI Aggregazione temporale

Rendimento relativo per k istanti

$$R_{t}(k) = \frac{P_{t} - P_{t-k}}{P_{t-k}}$$

$$1 + R_{t}(k) = \frac{P_{t}}{P_{t-k}} = \frac{P_{t}}{P_{t-1}} \cdot \frac{P_{t-1}}{P_{t-2}} \cdot \dots \cdot \frac{P_{t-k+1}}{P_{t-k}} =$$

$$= (1 + R_{t})(1 + R_{t-1}) \dots (1 + R_{t-k+1}) \Rightarrow$$

$$R_{t}(k) = \left[(1 + R_{t})(1 + R_{t-1}) \dots (1 + R_{t-k+1}) \right] - 1$$

Montante unitario per *k* giorni su rendimenti relativi

Rendimento logaritmico per k istanti

$$r(k)_{t} = \ln\left(\frac{P_{t}}{P_{t-k}}\right)$$

$$r_{t}(k) = \ln\left[1 + R_{t}(k)\right] =$$

$$= \ln\left[(1 + R_{t}) \cdot (1 + R_{t-1}) \cdot \dots \cdot (1 + R_{t-k+1})\right] =$$

$$= r_{t} + r_{t-1} + \dots + r_{t-k+1}$$

N.B.: L'operazione di moltiplicazione è stata convertita in un'addizione.

Esempio di aggregazione temporale

Rendimenti a tre giorni (k=3) su ENI

DATA	CLOSE	RA_t	R_t	r_t	R_t(3)	r_t(3)
29/01/2007	24.78					
30/01/2007	24.77	-0.010	-0.040	-0.040		
31/01/2007	24.7	-0.070	-0.283	-0.283		
01/02/2007	24.85	0.150	0.607	0.605	0.282	0.282
02/02/2007	24.64	-0.210	-0.845	-0.849	-0.525	-0.526
05/02/2007	24.92	0.280	1.136	1.130	0.891	0.887
06/02/2007	24.82	-0.100	-0.401	-0.402	-0.121	-0.121
07/02/2007	24.78	-0.040	-0.161	-0.161	0.568	0.567
08/02/2007	24.64	-0.140	-0.565	-0.567	-1.124	-1.130
09/02/2007	24.65	0.010	0.041	0.041	-0.685	-0.687

Ad es.:

 $R_{A}(3)=0.282=[(0.9996*0.99727*1.00607)-1]*100$

 $r_4(3) = 0.282 = -0.040 - 0.283 + 0.605$

Aggregazione cross-section

Portafoglio costituito da N attività fin. Misurato in due istanti t₀=0, t₁=1.

$$P_{10}$$
 P_{20} \cdots P_{N0}

$$P_1$$
 P_2 \cdots P_M

$$q_{10}$$
 q_{20} \cdots q_{N0}

$$w_i = \frac{P_{i0}q_{i0}}{\sum_{i=1}^{N} P_{i0}q_{i0}}$$

$$q_{i0}P_{i0} = w_i P_0$$

$$P_{1} = \sum_{i=1}^{N} P_{i1} q_{i0} = \sum_{i=1}^{N} P_{i0} e^{r_{i}} q_{i0} = \sum_{i=1}^{N} w_{i} P_{0} e^{r_{i}}$$

$$r_{port} = \ln\left(\frac{P_1}{P_0}\right) = \ln\left(\frac{\sum_{i=1}^{N} w_i P_0 e^{r_i}}{P_0}\right) = \ln\left(\sum_{i=1}^{N} w_i e^{r_i}\right)$$

Aggregazione cross-section dei rendimenti (2)

2) Rendimento relativo

-Prezzo del portafoglio $P_{i1} = P_{i0}(1 + R_i)$

$$P_1 = \sum_{i=1}^{N} q_{i0} P_{i1} = \sum_{i=1}^{N} q_{i0} P_{i0} (1 + R_i) = \sum_{i=1}^{N} w_i P_0 (1 + R_i)$$

$$P_1 = w_1 P_0 (1 + R_1) + w_2 P_0 (1 + R_2) + \dots + w_N P_0 (1 + R_N)$$

$$P_1 = w_1 P_0 (1 + R_1) + w_2 P_0 (1 + R_2) + ... + w_N P_0 (1 + R_N)$$

-Rendimento del portafoglio

$$R_{port} = \sum_{i=1}^{N} w_i R_i$$

Infatti, $R_{port} = [(P_1 - P_0)/P_0]$ e

$$\sum w_i = 1$$

Esempio di aggregazione cross-section

Prezzi di tre titoli (Generali, Telecom, Eni)

R_t(settimanale)

Data	generali	telecom	eni
01/07/2002	30.67	9.718	13.791
01/08/2002	30.65	9.745	13.966
01/09/2002	31.13	9.676	13.76
01/10/2002	30.69	9.394	13.536
01/11/2002	30.77	9.4	13.951
01/14/2002	30.33	9.136	13.682
n. pezzi	1000	5000	10000
Pesi ass.	30670	48590	137910
Pesi rel.	0.141226	0.223742	0.635032
r _t (settimanale)	-0.01115	-0.06176	-0.00794

N.B.: i pesi sono calcolati al tempo zero

N.B.: il rendimento settimanale è calcolato rispetto al lunedì, cioè lunedì 14 rispetto a lunedì 7.

-0.01109 -0.05989

-0.0079

Esempio di aggregazione cross-section (2)

```
\begin{split} r_{port} &= \ln(0.141*\exp(-0.01115) + 0.224*\exp(-0.06176) + 0.635*\exp(-0.0079)) \\ &= -0.02019 \\ R_{port} &= 0.141*(-0.01109) + 0.224*(-0.05989) + 0.635*(-0.0079) = -0.01998 \end{split}
```

Verifica

```
\begin{split} &P_1{=}30.33^*10000{+}9.136^*5000{+}13.682^*10000{=}212830 \\ &P_0{=}30.67^*10000{+}9.718^*5000{+}13.791^*10000{=}217170 \\ &R_{port}{=}(212830{-}217170)/217170{=}-0.01998 \\ &r_{port}{=}ln(212830/217170){=}-0.02019 \end{split}
```

Primi comandi in R

- L'assegnazione di un valore ad un variabile avviene tramite l'operatore <-
- Il concatenamento di oggetti si ottiene con il comando c x < -c(2,3,4)

```
y<-c("stringa1", "stringa2", "stringa3")</pre>
```

- E' possibile ottenere sequenze numeriche con il comando seq
 a<-seq(minimo, massimo, incremento)
- Per ottenere vettori di costanti o con andamenti regolari si usa il comando rep

```
rep(costante, n. di volte)
rep(min:max, n. di volte)
rep(c(0,6), n. di volte)
```

Per individuare le posizioni di un vettore che soddisfano un criterio which((rep(1:5,4)>3))

Primi comandi in R

- Si supponga di avere una serie storica in formato ASCII contenuta nel file
- u:\dati\pippo.dat. Per assegnare questa serie storica ad una variabile x di tipo array

x<-scan("u:/dati/pippo.dat ")

- Si noti l'uso della barra / al posto della barra rovesciata \ tipica del DOS.
- Nel caso di serie storiche è possibile creare degli oggetti di classe ts mediante
- funzione ts. Per esempio, se i dati fossero annuali e partissero dal 1951 si avrebbe
 - x<-ts(scan("u:/dati/pippo.dat"),start=1951,frequency=1)
- Con dati mensili invece si dovrebbe scrivere
 - x<-ts(scan("c:/sse/pippo.dat"),start=c(1951,1),frequency=12)
- Per salvare il valore di una variabile y in un file u:\dati\results.out si deve usare il
- comando
 - write(y,"u:/dati/reults.out")

Primi comandi in R

- Per creare una matrice
 - matrix(dati, nrow, ncol, byrow=TRUE)
- Numero righe e colonne in una matrice x

nrow(x)

ncol(x)

- Per concatenare matrici o per aggiungere righe o colonne ad una matrice rbind(mat1, mat2) # concatena per riga cbind(mat1, mat2) # concatena per colonna
- Caricamento di un programma
 - source("U:/MSF verona/programmi/prostoc.r")
- Caricamento di una libreria

library(tseries)

- Per vedere gli oggetti correntemente disponibili objects() Is(pat=".r")
- Per rimuovere l'oggetto di nome pippo rm(pippo) rm(list=ls())

Primi comandi in R

- Per aprire una finestra su un comando, ad es. il comando mean
- **?mean**Per vedere gli input di una funzione args(mean)
- E' possibile creare il grafico di una serie di dati con il comando plot
- E possibile creare il grafico di una serie di dati con il comando plot (x, parametri)

 Per creare un diagramma a dispersione tra i dati in x e quelli in y plot(x,y, parametri)
 b=10+2.7*a+rnorm(100)
 Im(b-a,data=as.data.frame(cbind(a,b)))

 Creazione di un istogramma
 hist(x,breaks=15)

- Grafici di sottoserie
- plot(window(x,n1,n2)) # sottoserie n1-n2 #

Grafici multipli win.graph(width=6, height=9)

par(mfrow=c(3,1))

plot(serie1)

- plot(serie2)
 plot(serie3)
 Per rappresentare diverse serie sullo stesso grafico è disponibile il comando ts.plot
- appartenente alla libreria ts

ts.plot(serie1,serie2,...,gpars=list(col=c(2,3,...)))

Primi comandi in R

- Lunghezza di una serie
 - length(x)
- Varie statistiche descrittive
- summary(x)
- Media
- mean(x)
- Mediana median(x)
- Varianza
- var(x)
- Quantili
 - quantile(x, c(0.3,0.8))
- Trasformazione logaritmica
 - log(x),log10(x)
- Differenziazione
 - diff(x,lag=1,differences=1)
- Campionamento da una serie (una osservazione ogni 4)
- x.sub<-x[seq(1,length(x),by=4)]
- Indice di asimmetria (libreria fBasics)
- skewness(x)
- Indice di curtosi (libreria fBasics)

kurtosis(x)

Alcuni comandi in R per le serie storiche

- nomi<-as.matrix(nomi)
 a<-(paste("u:/dati/",nomi[i],".csv",sep=""))
 titolo<-read.csv(a,header=TRUE_dec=".",sep=",")
 close<-as.matrix(seq(durata,1-1))
 close<-cbind(close,titolo[1:durata,5])
 close<-close(psi.iist(close[,1]),1
 close<-as.matrix(close[,2:ncol(close)]))
 close.ts<-ts(close,start=data.iniz,frequency=260,names=nomi)
- # Calcolo dei rendimenti giornalieri (Assoluti, Relativi, Logaritmici) close.ra<-as.matrix(diff(close.ts[.ind])) close.Rt<-as.matrix((lag(close.ts[.ind],1)/close.ts[.ind])-1) close.rt<-as.matrix(diff(log(close.ts[.ind]),lag=1))

- # Calcolo rendimenti con lag superiore a 1 lag.div-<3 # indica il lag per il calcolo della serie dei rendimenti (se lag=1 ---> rend. a un giorno) close.Rt.3--as.matrix((lag(close.ts[,ind],3)/close.ts[,ind])-1) close.rt.3--as.matrix(diff(log(close.ts[,ind]),lag=3))

- # Calcolo dei rendimenti settimanali (Assoluti, Relativi, Logaritmici)
 lag.aggr<-5 # indica il lag per l'aggregazione (5 per i rendimenti settimanali)
 ind.aggr<-seq(1,nrow(close.ts,lag.aggr) # è il vettore per l'estrazione dei giorni su cui calcolare i rend.
 close.set<-close.ts[ind.aggr,ind]
 close.ra.s<-as.matrix(diff(close.ts[ind.aggr,ind],lag=1))
 close.Rt.s<-as.matrix(close.ra.s/close.set[1:length(close.set)-1])

- close.rt.s<-as.matrix(diff(log(close.ts[ind.aggr,ind]),lag=1))
- $ts.plot(ts(close.rt*100,start=data.iniz,frequency=260),type="l",main=nomi,ylab="r_t",xlab="Time") \\ ts.plot(ts(close.rt.s*100,start=data.iniz,frequency=12),type="l",main="Generali",ylab="r_t",xlab="Time") \\ ts.plot(ts(close.rt.s*100,start=data.iniz,frequency=12),type="l",main="Generali",ylab="r_t",xlab="Time") \\ ts.plot(ts(close.rt.s*100,start=data.iniz,frequency=12),type="l",main=nomi,ylab="r_t",xlab="Time") \\ ts.plot(ts(close.rt.s*100,start=data.iniz,frequency=12),type="l",main=nomi,ylab="r_t",xlab="Time") \\ ts.plot(ts(close.rt.s*100,start=data.iniz,frequency=12),type="l",main=nomi,ylab="r_t",xlab="Time") \\ ts.plot(ts(close.rt.s*100,start=data.iniz,frequency=12),type="l",main="Generali",ylab="r_t",xlab="Time") \\ ts.plot(ts(close.rt.s*100,start=data.iniz,frequency=12),type="l",main="Generali",ylab="r_t",xlab="Time") \\ ts.plot(ts(close.rt.s*100,start=data.iniz,frequency=12),type="l",main="Generali",ylab="r_t",xlab="Time") \\ ts.plot(ts(close.rt.s*100,start=data.iniz,frequency=12),type="l",main="Generali",ylab="r_t",xl$