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Using particle system methodologies we study the propagation of finan-
cial distress in a network of firms facing credit risk. We investigate the phe-
nomenon of a credit crisis and quantify the losses that a bank may suffer
in a large credit portfolio. Applying a large deviation principle we compute
the limiting distributions of the system and determine the time evolution of
the credit quality indicators of the firms, deriving moreover the dynamics
of a global financial health indicator. We finally describe a suitable version of
the “Central Limit Theorem” useful to study large portfolio losses. Simula-
tion results are provided as well as applications to portfolio loss distribution
analysis.

1. Introduction.

1.1. General aspects. The main purpose of this paper is to describe propaga-
tion of financial distress in a network of firms linked by business relationships.
Once the model for financial contagion has been described, we quantify the im-
pact of contagion on the losses suffered by a financial institution holding a large
portfolio with positions issued by the firms.

A firm experiencing financial distress may affect the credit quality of business
partners (via direct contagion) as well as of firms in the same sector (due to an
information effect).

We refer to direct contagion when the actors on the market are linked by some
direct partner relationship (e.g., firms in a borrowing-lending network). Reduced-
form models for direct contagion can be found—among others—in Jarrow and Yu
[27] for counterparty risk, Davis and Lo [13] for infectious default, Kiyotaki and
Moore [28], where a model of credit chain obligations leading to default cascade
is considered and Giesecke and Weber [23] for a particle system approach. Con-
cerning the banking sector, a microeconomic liquidity equilibrium is analyzed by
Allen and Gale [1].

Information effects are considered in information-driven default models; here
the idea is that the probability of default of each obligor is influenced by a “not per-
fectly” observable macroeconomic variable, sometimes also referred to as frailty.
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This dependence increases the correlation between the default events. For further
discussions on this point see Schönbucher [33] as well as Duffie et al. [16] and
Collin-Dufresne et al. [7].

1.2. Purpose and modeling aspects. We propose in this paper a direct conta-
gion model which is constructed in a general modeling framework where infor-
mation effects could also be included. In addition to modeling contagion, with
the approach that we shall develop we intend also to find a way to explain what
is usually referred to as the clustering of defaults (or credit crises), meaning that
there is evidence—looking at real data—of periods in which many firms end up in
financial distress in a short time. A standard methodology to reproduce this real-
world effect is to rely on macroeconomic factors as indicators of business cycles.
These factor models seem to explain a large part of the variability of the default
rates. What these models do not explain is above all clustering: as Jarrow and Yu
in [27] argue, “A default intensity that depends linearly on a set of smoothly vary-
ing macroeconomic variables is unlikely to account for the clustering of defaults
around an economic recession.”

A second issue that we would like to capture is—in some sense—more “funda-
mental” and refers to the nature of a credit crisis. We shall propose a model where
the general “health” of the system is described by endogenous financial indicators,
endogenous in the sense that its dynamics depends on the evolution of the vari-
ables of the system. Our aim is to show how a credit crisis can be described as a
“microeconomic” phenomenon, driven by the propagation of the financial distress
through the obligors.

Our model is to be considered within the class of reduced-form models and is
based on interacting intensities. The probability of having a default somewhere in
the network depends also on the state of the other obligors. The first papers on
interacting intensities appear to be those by Jarrow and Yu [27], and Davis and Lo
[13] on infectious default.

In our perspective the idea of a network where agents interact leads naturally to
the literature of particle systems used in statistical mechanics. This point of view
is quite new in the world of financial mathematics especially when dealing with
credit risk management. Among some very recent papers we would like to men-
tion the works by Giesecke and Weber [23], and [24] for an interacting particle
approach, the papers by Frey and Backhaus [19] on credit derivatives pricing and
Horst [26] on cascade processes. More developed is the use of particle and dy-
namical systems in the literature on financial market modeling. It has been shown
that some of these models have “thermodynamic limits” that exhibit similar fea-
tures compared to the limiting distributions (in particular when looking at the tails)
of market returns time series. For a discussion on financial market modeling see
the survey by Cont [9] and the paper by Föllmer [18] that contains an inspiring
discussion on interacting agents.



LARGE PORTFOLIO LOSSES 349

Another reason to focus on particle systems is that they allow to study a credit
crisis as a microeconomic phenomenon and so provide the means to explain phe-
nomena such as default clustering that are difficult to explain by other means. In
fact, interacting particle systems may exhibit what is called phase transition in the
sense that in the limit, when the number N of particles goes to infinity, the dy-
namics may have multiple stable equilibria. The effects of phase transition for the
system with finite N can be seen on different time-scales. On a long time-scale we
expect to observe what is usually meant by metastability in statistical mechanics:
the system may spend a very long time in a small region of the state space around
a stable equilibrium of the limiting dynamics and then switch relatively quickly
to another region around a different stable equilibrium. This switch, of which the
rigorous analysis will be postponed to future work, occurs on a time-scale pro-
portional to ekN for a suitable k > 0, that could be unrealistic for financial appli-
cations. The model we propose exhibits, however, a different feature that can be
interpreted as a credit crisis. For certain values of the initial condition the system
is driven toward a symmetric equilibrium, in which half of the firms are in good
financial health. After a certain time that depends on the initial state, the system
is “captured” by an unstable direction of this symmetric equilibrium, and moves
toward a stable asymmetric equilibrium; during the transition to the asymmetric
equilibrium, the volatility of the system increases sharply, before decaying to a
stationary value. All this occurs at a time-scale of order O(1) (i.e., the time-scale
does not depend on N ).

1.3. Financial application. As already mentioned in Section 1.1, the applied
financial aim of this paper is to quantify the impact of contagion on the losses
suffered by a financial institution holding a large portfolio with positions issued
by the firms. In particular, we aim at obtaining a dynamic description of a risky
portfolio in the context of our contagion model. The standard literature on risk
management usually focuses on static models allowing to compute the distribution
of a risky portfolio over a given fixed time-horizon T . For a recent paper that in-
troduces a discussion relating to static and dynamic models see Dembo, Deuschel
and Duffie [14].

We shall consider large homogeneous portfolios. Attention to large homoge-
neous portfolios becomes crucial when looking at portfolios with many small en-
tries. Suppose a bank is holding a credit portfolio with N = 10,000 open positions
with small firms; it is quite costly to simulate the dynamics of each single firm, tak-
ing into account all business ties. If the firms are supposed to be exchangeable, in
the sense that the losses that they may cause to the bank in case of financial distress
depend on the single firm only via its financial state indicator, it is worth evaluat-
ing a homogeneous model where N goes to infinity and then to look for “large-N”
approximations. This apparently restrictive assumption may be easily relaxed by
considering many homogeneous groups within the network (in this context see
also [19]).
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We shall provide formulas to compute quantiles of the probability of excess
losses in the context of our contagion model; we shall in fact determine the entire
portfolio loss distribution. Other credit risk related quantities can also be com-
puted, as we shall briefly mention at the end of Section 4.

We conclude this section by noticing that in recent years the challenging issue
of describing the time evolution of the loss process connected with portfolios of
many obligors has received more and more attention. Applications can be found,
for example, in the literature dealing with pricing and hedging of risky derivatives
such as CDOs, namely Collateralized Debt Obligations (see, e.g., the papers by
Frey and Backhaus [20], Giesecke and Goldberg [22] and Schönbucher [34]).

We believe that our paper may be considered as an original contribution to the
modeling of portfolio loss dynamics: to our knowledge, this is the first attempt to
apply large deviations on path spaces (i.e., in a dynamic fashion) for finance or
credit management purposes. For a survey on existing large deviations methods
applied to finance and credit risk see Pham [31].

1.4. Methodology. Our interacting particle system, which describes the firms
in the network, will be Markovian, but nonreversible. Usually, when the dynamics
admit a reversible distribution, this distribution can be found explicitly by the de-
tailed balance condition [see (6) below]. In the model we propose in this paper, and
that will be introduced in Section 2, no reversible distribution exists. This makes it
difficult to find an explicit formula for the stationary distribution. For this reason
we have not pursued the “static” approach consisting in studying the N → +∞
asymptotics of the stationary distribution. We shall rather proceed in a way that in
addition allows to obtain nonequilibrium properties of the system dynamics. First
we study the N →∞ limiting distributions on the path space. To this effect we
shall derive an appropriate law of large numbers based on a large deviations prin-
ciple. We then study the possible equilibria of the limiting dynamics. This study
leads to considering different domains of attraction corresponding to each of the
stable equilibria. Finally, we study the finite volume approximations (for finite but
large N ) of the limiting distribution via a suitable version of the Central Limit The-
orem that allows to analyze the fluctuations around this limit. As a consequence
of the different domains of attraction of the limiting dynamics one obtains for fi-
nite N and on ordinary time-scales an interesting behavior of the system that has
an equally interesting financial interpretation, which was already alluded to at the
end of Section 1.2. This behavior will also be documented by simulation results.

Our interaction model is characterized by two parameters indicating the strength
of the interactions. Phase transition occurs in an open subset of the parameter
space, whose boundary is a smooth curve (critical curve) that we determine ex-
plicitly. We shall derive the Central Limit Theorem in a fixed time-interval [0, T ]
for every value of the parameters. We do not consider in this paper the Central
Limit Theorem in the case when the time-horizon T depends on N itself; it will
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be dealt with elsewhere. When T grows with N we expect the behavior to de-
pend more strongly on the parameters. In the case when the parameters belong to
the uniqueness region (the complement of the closure of the region where phase
transition occurs) we believe that the Central Limit Theorem should be uniform in
time, while in the phase transition region the Central Limit Theorem should extend
to any time-scale strictly smaller than the metastability scale (which grows expo-
nentially in N ). On the critical curve one expects a critical time-scale (of order√

N ) at which large and non-Gaussian fluctuations are observed.
For real applications the interaction parameters have to be calibrated to market

data. In this paper we do not consider the issue of calibration but rather present
some simulation results of the loss behavior for different values of the parame-
ters.

The outline of the paper is as follows. The more detailed description of the
model will be given in Section 2. Section 3 is devoted to stating the main limit
theorems on the stochastic dynamics, in particular a law of large numbers and
a central limit theorem. The financial application, in particular to large portfolio
losses with specific examples, will be described in Section 4. Section 5 contains the
proofs of the results stated in Sections 3 and 4. A Conclusions section completes
the paper.

2. The model.

2.1. A mean-field model. In this section we describe a mean-field interaction
model. What characterizes a mean-field model—within the large class of particle
systems—is the absence of a “geometry” in the configuration space, meaning that
each particle interacts with all the others in the same way. This “homogeneity”
assumption is clearly rather restrictive; nevertheless this kind of framework has
been proposed by authors in different fields. Among the others we quote Frey
and Backhaus [19] for a credit risk model and Brock and Durlauf [4] for their
contribution to the Social Interaction models. These models are used to capture the
interaction of agents when facing any kind of decision problems. As pointed out
in [19], if we are considering a large group of firms belonging to the same sector
(e.g., the energy sector), then the ability of generating cash flows and the capacity
of raising capital from financial institutions may be considered as “homogeneous”
characteristics within the group (and this assumption is quite common in practice);
we moreover recall that the final aim of this work is to study aggregate quantities
for a large economy such as the expected global health of the system and large
portfolio losses as well as related quantities. These considerations allow us to avoid
the (costly) operation of modeling a fully heterogeneous set of firms.

Other approaches, different from the mean-field one, have also been proposed in
the literature: Giesecke and Weber have chosen a local-interaction model (the Voter
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model1) assuming that each particle interacts with a fixed number d of neighbors;
it may be argued that the hypothesis that each firm has the same (constant) number
of partners is rather unrealistic. Cont and Bouchaud (see [10]) suggest a random
graph approach, meaning that the connections are randomly generated with some
distribution functions.

The philosophy behind our model can be summarized as follows:

• We introduce only a small number of variables that, however, have a simple
economic interpretation.

• We define dynamic rules that describe interaction between the variables.
• We keep the model as simple as possible; in particular, as we shall see, we de-

fine it in such a way that it has some symmetry properties. On one hand this
may make the model less adherent to reality; on the other it leads to exact com-
putations and still allows to show what basic features of the model produce
phenomena such as clustering of defaults, phase transition, etc. More generally,
it allows to show how, contrary to most models relying on macroeconomic fac-
tors, the “health” of the system can here be described by endogenous financial
indicators so that a credit crisis can be viewed as a microeconomic phenom-
enon.

Consider a network of N firms. The state of each firm is identified by two vari-
ables, that will be denoted by σ and ω [(σi ,ωi) is the state of the ith firm]. The vari-
able σ may be interpreted as the rating class indicator: a low value reflects a bad
rating class, that is, a higher probability of not being able to pay back obligations.
The variable ω represents a more fundamental indicator of the financial health of
the firm and is typically not directly observable. It could, for example, be a liquid-
ity indicator as in Giesecke and Weber [23] or the sign of the cash balances as in
Çetin et al. [5]. The important fact is that, while there is usually a strong interaction
between σi and ωi , the nonobservability of ω makes it reasonable to assume that
ωi cannot directly influence the rating indicators σj for j $= i.

In this paper we assume that the two indicators σi ,ωi can only take two val-
ues, that we label by 1 (“good” financial state) and −1 (financial distress). In
the case of portfolios consisting of defaultable bonds, we may then refer to the
rating class corresponding to σ = −1 also as “speculative grade” and that corre-
sponding to σ = +1 as “investment grade.” Although the restriction to only two
possible values may appear to be unrealistic, we believe that many aspects of the
qualitative behavior of the system do not really depend on this choice. On the
other hand, modulo having more complex formulae, the results below can be eas-
ily extended to the case when these variables take an arbitrary finite number of
values.

1The Voter model assumes—roughly speaking—that the variable σi ∈ {−1,1} is more likely to
take a positive value if the majority of the nearest neighbors of i are in a positive state and vice versa.
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In our binary variable model we are naturally led to an interacting intensity
model, where we have to specify the intensities or rates (inverse of the average
waiting times) at which the transitions σi '→ −σi and ωi '→ −ωi take place. If we
neglect direct interactions between the ωi ’s, and we make the mean-field assump-
tion that the interaction between different firms only depends on the value of the
global financial health indicator

m
σ
N := 1

N

N∑

i=1

σi ,

we are led to consider intensities of the form

σi '→ −σi with intensity a(σi ,ωi ,m
σ
N),

(1)
ωi '→ −ωi with intensity b(σi ,ωi ,m

σ
N),

where a(·, ·, ·) and b(·, ·, ·) are given functions. Since both financial health
and distress tend to propagate, we assume that a(−1,ωi ,m

σ
N) is increasing

in both ωi and m
σ
N , and a(1,ωi ,m

σ
N) is decreasing. Similarly, b(σi ,−1,m

σ
N)

and b(σi ,1,m
σ
N) should be respectively increasing and decreasing in their vari-

ables.
The next simplifying assumption is that the intensity a(σi ,ωi ,m

σ
N) is actu-

ally independent of m
σ
N , that is, of the form a(σi ,ωi). Although this assumption

amounts to a rather mild computational simplification, it allows to show that ag-
gregate behavior (phase transition, etc.) may occur even in absence of a direct
interaction between rating indicators.

Although a model of this generality could be fully analyzed, we make the fol-
lowing choice of the intensities, inspired by spin-glass systems, to make the model
depend on only a few parameters:

σi '→ −σi with intensity e−βσiωi ,
(2)

ωi '→ −ωi with intensity e−γωi m
σ
N .

Here β and γ are positive parameters which indicate the strength of the cor-
responding interaction. Put differently, we are considering a continuous-time
Markov chain on {−1,1}2N with the following infinitesimal generator:

Lf (σ ,ω) =
N∑

i=1

e−βσiωi∇σi f (σ ,ω) +
N∑

j=1

e−γωjm
σ
N∇ωj f (σ ,ω),(3)

where ∇σi f (σ ,ω) = f (σ i ,ω)−f (σ ,ω) (analogously for ∇ωi ), and where the j th
component of σ i is

σ i
j =

{
σj , for j $= i,
−σi , for j = i.
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The rest of the paper is devoted to a detailed analysis of the above model. We
conclude this subsection with some general remarks on the model we have just
defined.

REMARK 2.1.

• We have viewed the variable σ as a rating class indicator. Contrary to the stan-
dard models for rating class transitions, our rating indicator σ is not Markov by
itself, but it is Markov only if paired with ω. This property is in line with em-
pirical data and with recent research in the field of credit migration models. It is
in fact well documented that real data of credit migration between rating classes
exhibit a “non-Markovian” behavior. For a discussion on this topic see, for ex-
ample, Christensen et al. [6]. In that paper the authors propose a hidden Markov
process to model credit migration. The basic criticism to Markovianity is the
fact that the probability of being downgraded is higher for firms that have been
just downgraded. In order to capture this issue, the authors consider an “excited”
rating state (e.g., B∗ from which there is a higher probability to be downgraded
compared to the standard state B). This point of view is not far from ours, even
though the mechanism of the transition is different. The downgrade to σ =−1
is higher when (σ = 1,ω=−1) compared to (σ = 1,ω= 1).

• In our model, unlike other rating class models, we do not introduce a de-
fault state for firms; it could be identified as a value for the pair (σ,ω) for
which the corresponding intensities are identically zero, that is, a(σ,ω,m

σ
N) =

b(σ,ω,m
σ
N) = 0 for all values of m

σ
N . This would have the effect of introducing

a “trap state” for the system, changing drastically the long-time behavior. Even
in case of defaultable firms, however, our model could be meaningful up to a
time-scale in which the fraction of defaulted firms is small.

• With a choice of the intensities as in (2) we introduce a form of symmetry in
our model, whereby the values σ =−1 and σ = +1 for the rating indicator turn
out to be equally likely. One could, however, modify the model in order to make
the value σ =−1 less (more) likely than the value σ = +1 and this could, for
example, be achieved by letting the intensity for ωi be of the form eωiφ(m

σ
N),

where φ is an increasing, nonlinear and noneven function. A possible “proto-
type” choice would be φ(x) = γ (x − K)+ + δ with γ , δ > 0 and K ∈ (0,1).
Note that with this latter choice we have φ ≥ 0 so that the value ωi = +1 (and
hence also σi = +1) becomes more likely. Such an asymmetric setup might be
more realistic in financial applications but, besides leading to more complicated
derivations, it depends also on the specific application at hand. Since, as already
mentioned, we want to study a model that is as simple as possible and yet capa-
ble of producing the basic features of interest, in this paper we concentrate on
the “symmetric choice” in (2). The large deviation approach to the Law of Large
Numbers developed in Sections 3.1 and 3.2 can be adapted to the asymmetric
setup (see Remark 3.5) with no essential difference. On the other hand, our proof
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of the Central Limit Theorem in Section 3.3 may require more regularity on the
function φ above. We leave this point for further investigation.

2.2. Invariant measures and nonreversibility. Mean-field models as the one
we propose in this paper have already appeared, mostly in the statistical mechan-
ics literature (see in particular [12] and [8], from which we borrow many of the
mathematical tools). However, unlike what happens for the models in the cited
references, we now show that our model is nonreversible. This implies that an ex-
plicit formula for the stationary distribution and its N →∞ asymptotics is not
available. It is thus appropriate to follow a more specifically dynamic approach to
understand the long-time behavior of the system. As already mentioned, we shall
thus first study the N →∞ limit of the dynamics of the system, obtaining limit
evolution equations. Then we study the equilibria of these equations. This is not
necessarily equivalent to studying the N →∞ properties of the stationary distrib-
ution µN . However, as we shall show later in this paper, this provides rather sharp
information on how the system behaves for t and N large.

The operator L given in (3) defines an irreducible, finite-state Markov chain.
It follows that the process admits a unique stationary distribution µN , that is, a
distribution such that, for each function f on the configuration space of (σ ,ω),

∑

σ ,ω

µN(σ ,ω)Lf (σ ,ω) = 0.(4)

This distribution reflects the long-time behavior of the system, in the sense that,
for each f and any initial distribution,

lim
t→+∞E[f (σ (t),ω(t))] =

∑

σ ,ω

µN(σ ,ω)f (σ ,ω).

The stationarity condition (4) is equivalent to

N∑

i=1

[µN(σ i ,ω)eβσiωi −µN(σ ,ω)e−βσiωi ]

(5)

+
N∑

i=1

[µN(σ ,ωi )eγωim
σ
N −µN(σ ,ω)e−γωim

σ
N ] = 0

for every σ ,ω ∈ {−1,1}N .
Simpler sufficient conditions for stationarity are the so-called detailed balance

conditions. We say that a probability ν on {−1,1}2N satisfies the detailed balance
condition for the generator L if

ν(σ i ,ω)eβσiωi = ν(σ ,ω)e−βσiωi and
(6)

ν(σ ,ωi )eγωim
σ
N = ν(σ ,ω)e−γωim

σ
N
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for every σ ,ω. When the detailed balance conditions (6) hold, we say the system
is reversible: the stationary Markov chain with generator L and marginal law ν
has a distribution which is left invariant by time-reversal. In the case (6) admits a
solution, they usually allow to derive the stationary distribution explicitly. This is
not the case in our model. We have in fact:

PROPOSITION 2.2. The detailed balance equations (6) admit no solution, ex-
cept at most for one specific value of N .

PROOF. By way of contradiction, assume a solution ν of (6) exists. Then one
easily obtains

∇σi logν(σ ,ω) =−2βσiωi ,

∇ωi logν(σ ,ω) =−2γωim
σ
N,

which implies

∇ωi ∇σi logν(σ ,ω) = 4βσiωi ,

∇σi ∇ωi logν(σ ,ω) = 4N−1γωiσi .

This is not possible since ∇ωi ∇σi logν(σ ,ω)≡∇σi ∇ωi logν(σ ,ω). !

3. Main results: law of large numbers and Central Limit Theorem.
In this section we state the results concerning the dynamics of the system
(σi[0, T ],ωi[0, T ])Ni=1 in the limit as N →∞. Note that for each value of N we
are considering a Markov process with generator (3). Thus, it would be more accu-
rate to denote by (σ

(N)
i [0, T ],ω(N)

i [0, T ]) the trajectories of the variables related
to the ith firm in the system with N firms. For convenience, we consider a fixed
probability space ((,F ,P ) where all D([0, T ])-valued processes σ (N)

i [0, T ],
ω

(N)
i [0, T ] are defined, and the following conditions are satisfied:

• for each N ≥ 1 the processes (σ
(N)
i [0, T ],ω(N)

i [0, T ])Ni=1 are Markov processes
with infinitesimal generator (3);

• for each N ≥ 1 the {−1,1}2-valued random variables (σ
(N)
i (0),ω

(N)
i (0))Ni=1 are

independent and identically distributed with an assigned law λ.

This last assumption on the initial distribution is stronger than what we actually
need to prove the results below; however, it allows to avoid some technical as-
pects in the proof, that we consider not essential for the purposes of the paper.
The other point, concerning the fact of realizing all processes in the same proba-
bility space, is not a restriction; we are not making any assumption on the depen-
dence of processes with different values of N , so this joint realization is always
possible. Its main purpose is to allow to state a strong law of large numbers.

Our approach proceeds according to the following three steps, to which corre-
spond the three subsections below, namely:
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(i) look for the limit dynamics of the system (N →∞);
(ii) study the equilibria of the limiting dynamics;

(iii) describe the “finite volume approximations” (for large but finite N ) via a
central limit-type result.

3.1. Deterministic limit: large deviations and law of large numbers. In what
follows D([0, T ]) denotes the space of right-continuous, piecewise constant func-
tions [0, T ] → {−1,1}, endowed with the Skorohod topology (see [17]). Let
(σi[0, T ],ωi[0, T ])Ni=1 ∈ D([0, T ])2N denote a path of the process in the time-
interval [0, T ] for a generic T > 0. If f (σi[0, T ],ωi[0, T ]) is a function of the
trajectory of the variables related to a single firm, one is interested in the asymp-
totic behavior of empirical averages of the form

1
N

N∑

i=1

f (σi[0, T ],ωi[0, T ]) =:
∫

f dρN,

where ρN is the sequence of empirical measures

ρN = 1
N

N∑

i=1

δ(σi [0,T ],ωi [0,T ]).

We may think of ρN as a (random) element of M1(D([0, T ])×D([0, T ])), the
space of probability measures on D([0, T ])×D([0, T ]) endowed with the weak
convergence topology.

Our first aim is to determine the limit of
∫

f dρN as N →∞, for f con-
tinuous and bounded; in other words we look for the weak limit limN ρN

in M1(D([0, T ]) × D([0, T ])). This corresponds to a law of large numbers
with the limit being a deterministic measure. This limit, being an element of
M1(D([0, T ]) ×D([0, T ])), can be viewed as a stochastic process, and repre-
sents the dynamics of the system in the limit N →∞. The fluctuations of ρN

around this deterministic limit will be studied in Section 3.3 below, and this turns
out to be particularly relevant in the risk analysis of a portfolio (Section 4).

The result we actually prove is a large deviation principle, which is much
stronger than a law of large numbers. We start with some preliminary notions
letting, in what follows, W ∈M1(D([0, T ])×D([0, T ])) denote the law of the
{−1,1}2-valued process (σ (t),ω(t)) such that (σ (0),ω(0)) has distribution λ, and
both σ (·) and ω(·) change sign with constant intensity 1. For Q ∈M1(D([0, T ])×
D([0, T ])) let

H(Q|W) :=





∫
dQ log

dQ

dW
, if Q-W and log

dQ

dW
∈ L1(Q),

+∞, otherwise,
denote the relative entropy between Q and W . Moreover, +tQ denotes the mar-
ginal law of Q at time t , and

γ
Q
t := γ

∫
σ+tQ(dσ, dτ ).
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For a given path (σ [0, T ],ω[0, T ]) ∈D([0, T ])×D([0, T ]), let Nσ
t (resp. Nω

t )
be the process counting the jumps of σ (·) [resp. ω(·)]. Define

F(Q) =
∫ [∫ T

0

(
1− e−βσ (t)ω(t))dt +

∫ T

0

(
1− e−ω(t)γ

Q
t
)
dt

(7)

+ β

∫ T

0
σ (t)ω(t−) dNσ

t +
∫ T

0
ω(t)γ

Q
t− dNω

t

]
dQ,

whenever
∫

(Nσ
T + Nω

T ) dQ < +∞,

and F(Q) = 0 otherwise. Finally let

I (Q) := H(Q|W)− F(Q).

We remark that, if
∫
(Nσ

T + Nω
T ) dQ = +∞, then H(Q|W) = +∞ (this will be

shown in Section 5, Lemma 5.4) and thus also I (Q) = +∞.

PROPOSITION 3.1. For each Q ∈ M1(D([0, T ]) × D([0, T ])), I (Q) ≥ 0,
and I (·) is a lower-semicontinuous function with compact level-sets [i.e., for each
k > 0 one has that {Q : I (Q) ≤ k} is compact in the weak topology]. Moreover,
for A,C ⊆M1(D([0, T ])×D([0, T ])) respectively open and closed for the weak
topology, we have

lim inf
N

1
N

logP(ρN ∈A)≥− inf
Q∈A

I (Q),(8)

lim sup
N

1
N

logP(ρN ∈ C)≤− inf
Q∈C

I (Q).(9)

This means that the distributions of ρN obey a large deviation principle (LDP) with
rate function I (·) (see, e.g., [15] for the definition and fundamental facts on LDP).

The proof of Proposition 3.1 is given in Section 5 and follows from arguments
similar to those in [12]. Various technical difficulties are due to unboundedness
and noncontinuity of F , which are related to the nonreversibility of the model.

The key step to derive a law of large numbers from Proposition 3.1 is given in
the following result, whose proof is also given in Section 5. In what follows, for
q ∈M1({−1,1}2) a probability on {−1,1}2, we define

mσ
q :=

∑

σ,ω=±1

σq(σ,ω),

that can be interpreted as the expected rating under q .
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PROPOSITION 3.2. The equation I (Q) = 0 has a unique solution Q∗. More-
over, if qt ∈M1({−1,1}2) denotes the marginal distribution of Q∗ at time t , then
qt is the unique solution of the nonlinear (McKean–Vlasov) equation

∂qt

∂t
= Lqt , t ∈ [0, T ],

(10)
q0 = λ,

where

Lq(σ,ω) =∇σ [e−βσωq(σ,ω)] +∇ω[e−γωmσ
q q(σ,ω)](11)

with (σ,ω) ∈ {−1,1}2.

From Propositions 3.1 and 3.2, it is easy to derive the following strong law of
large numbers.

THEOREM 3.3. Let Q∗ ∈ M1(D([0, T ]) × D([0, T ])) be the probability
given in Proposition 3.2. Then

ρN → Q∗ almost surely

in the weak topology.

PROOF. Let Q∗ be the unique zero of the rate function I (·) as given by Propo-
sition 3.2. Let BQ∗ be an arbitrary open neighborhood of Q∗ in the weak topology.
By the upper bound in Proposition 3.1, we have

lim sup
N

1
N

logP(ρN /∈ BQ∗)≤− inf
Q/∈BQ∗

I (Q) < 0,

where the last inequality comes from lower semicontinuity of I (·), compact-
ness of its level sets and the fact that I (Q) > 0 for every Q $= Q∗. In-
deed, if infQ/∈BQ∗ I (Q) = 0, then there exists a sequence Qn /∈ BQ∗ such that
I (Qn) → 0. By the compactness of the level sets there exists then a sub-
sequence Qnk → Q̄ /∈ BQ∗ . By lower semicontinuity it then follows I (Q̄) ≤
lim inf I (Qnk) = 0 which contradicts I (Q) > 0 for q $= Q∗. By the above in-
equality we thus have that P(ρN /∈ BQ∗) decays to 0 exponentially fast. By a
standard application of the Borel–Cantelli lemma, we obtain that ρn→Q∗ almost
surely. !

3.2. Equilibria of the limiting dynamics: phase transition. Equation (10) de-
scribes the dynamics of the system with generator (3) in the limit as N →+∞. In
this section we determine the equilibrium points, or stationary (in t) solutions of
(10), that is, solutions of Lqt = 0 and, more generally, the large time behavior of
its solutions. First of all, it is convenient to reparametrize the unknown qt in (10).
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Let q be a probability on {−1,1}2. Note that each f : {−1,1}2 → R can be
written in the form f (σ,ω) = aσ + bω+ cσω+ d . It follows that q is completely
identified by the expectations

mσ
µ :=

∑

σ,ω=±1

σq(σ,ω),

mω
µ :=

∑

σ,ω=±1

ωq(σ,ω),(12)

mσω
µ :=

∑

σ,ω=±1

σωq(σ,ω).

In particular, if q = qt , the marginal of Q∗ appearing in Proposition 3.2, then we
write mσ

t for mσ
qt

, and similarly for mω
t ,mσω

t . In order to rewrite (10) in terms of
the new variables mσ

t ,mω
t ,mσω

t , observe that

ṁσ =
∑

σ,ω=±1

σ q̇t (σ,ω) =
∑

σ,ω=±1

σLqt .

On the other hand, a straightforward computation shows that, for every probabil-
ity q ,

∑

σ,ω=±1

σLq = 2 sinh(β)mω
q − 2 cosh(β)mσ

q ,

giving

ṁσ
t = 2 sinh(β)mω

t − 2 cosh(β)mσ
t .

By making similar computations for mω
t ,mσω

t , it is shown that (10) can be rewrit-
ten in the following form:

ṁσ
t = 2 sinh(β)mω

t − 2 cosh(β)mσ
t ,

ṁω
t = 2 sinh(γmσ

t )− 2 cosh(γmσ
t )mω

t ,(13)

ṁσω
t = 2 sinh(β) + 2 sinh(γmσ

t )mσ
t − 2

(
cosh(β) + cosh(γmσ

t )
)
mσω

t ,

with initial condition mσ
0 = mσ

λ , mσω
0 = mσω

λ , mω
0 = mω

λ . Note that mσω
t does not

appear in the first and in the second equation in (13); this means that the differential
system (13) is essentially two-dimensional: first one solves the two-dimensional
system (on [−1,1]2)

(ṁσ
t , ṁω

t ) = V (mσ
t ,mω

t ),(14)

with V (x, y) = (2 sinh(β)y − 2 cosh(β)x,2 sinh(γ x) − 2y cosh(γ x)), and then
one solves the third equation in (13), which is linear in mσω

t . Note also that to
any (mσ

∗ ,m
ω
∗ ) satisfying V (mσ

∗ ,m
ω
∗ ) = 0, there corresponds a unique mσω

∗ :=
sinh(β)+mσ

∗ sinh(γmσ
∗ )

cosh(β)+cosh(γmσ∗ ) such that (mσ
∗ ,m

ω
∗ ,m

σω
∗ ) is an equilibrium (stable solution)
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of (13). Moreover, if mσ
t → mσ

∗ as t → +∞, then mσω
t → mσω

∗ . Thus, to dis-
cuss the equilibria of (13) and their stability, it is enough to analyze (14) and
for this we have the following proposition, where by “linearly stable equilib-
rium” we mean a pair (x̄, ȳ) such that V (x̄, ȳ) = 0, and the linearized system
(ẋ, ẏ) = DV (x̄, ȳ)(x − x̄, y − ȳ) is stable, that is, the eigenvalues of the Jacobian
matrix DV (x̄, ȳ) have all negative real parts.

THEOREM 3.4. (i) Suppose γ ≤ 1
tanh(β) . Then (14) has (0,0) as a unique equi-

librium solution, which is globally asymptotically stable, that is, for every initial
condition (mσ

0 ,mω
0 ), we have

lim
t→+∞(mσ

t ,mω
t ) = (0,0).

(ii) For γ < 1
tanh(β) the equilibrium (0,0) is linearly stable. For γ = 1

tanh(β)

the linearized system has a neutral direction, that is, DV (0,0) has one zero eigen-
value.

(iii) For γ > 1
tanh(β) the point (0,0) is still an equilibrium for (14), but it is a

saddle point for the linearized system, that is, the matrix DV (0,0) has two nonzero
real eigenvalues of opposite sign. Moreover (14) has two linearly stable solutions
(mσ
∗ ,m

ω
∗ ), (−mσ

∗ ,−mω
∗ ), where mσ

∗ is the unique strictly positive solution of the
equation

x = tanh(β) tanh(γ x),(15)

and

mω
∗ = 1

tanh(β)
mσ
∗ .(16)

(iv) For γ > 1
tanh(β) , the phase space [−1,1]2 is bipartitioned by a smooth

curve . containing (0,0) such that [−1,1]2 \ . is the union of two disjoint sets
.+,.− that are open in the induced topology of [−1,1]2. Moreover

lim
t→+∞(mσ

t ,mω
t ) =






(mσ
∗ ,m

ω
∗ ), if (mσ

0 ,mω
0 ) ∈ .+,

(−mσ
∗ ,−mω

∗ ), if (mσ
0 ,mω

0 ) ∈ .−,
(0,0), if (mσ

0 ,mω
0 ) ∈ ..

PROOF. See Section 5. !

REMARK 3.5. The results in this section are specific to our model with the
symmetry properties as induced by the specification of the intensities in (2). With
an asymmetric setup such as described in Remark 2.1, (15) becomes

x = tanh(β) tanh(φ(x))
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thus allowing more flexibility in the position of the equilibria. In particular, by
letting φ(x) = γ (x −K)+ + δ, while still having three equilibria, we may choose
their relative position by suitably choosing the values for γ ,K, δ. Notice that in
this way we also increase the number of parameters in our model.

3.3. Analysis of fluctuations: Central Limit Theorem. Having established a
law of large numbers ρN → Q∗, it is natural to analyze fluctuations around the
limit, that is, the rate at which ρN converges to Q∗ and the asymptotic distribution
of ρN −Q∗.

To study the asymptotic distribution of ρN −Q∗ there are at least the following
two possible approaches:

(i) An approach based on a functional central limit theorem using a result in
[2] that relates large deviations with the Central Limit Theorem (see [35], Chap-
ter 3, for some results in this direction).

(ii) A weak convergence-type approach based on uniform convergence of the
generators (see [17]).

In this paper we shall follow an approach of the second type; more precisely we
shall provide a dynamical interpretation of the law of large numbers discussed in
Theorem 3.3. Let ψ : {−1,1}2 →R, and define ρN(t) by

∫
ψ dρN(t) := 1

N

N∑

i=1

ψ(σi (t),ωi(t)).

In other words, ρN(t) is the marginal of ρN at time t and we also have
m
σ
N(t) = mσ

ρN(t). Note that, for each fixed t , ρN(t) is a probability on {−1,1}2, and
so, by the considerations leading to (12), it can be viewed as a three-dimensional
object. Thus (ρN(t))t∈[0,T ] is a three-dimensional flow. A simple consequence of
Theorem 3.3 is the following convergence of flows:

(ρN(t))t∈[0,T ]→ (qt )t∈[0,T ] a.s.,(17)

where the convergence of flows is meant in the uniform topology. Since the flow
of marginals contains less information than the full measure of paths, the law of
large numbers in (17) is weaker than the one in Theorem 3.3. However, the corre-
sponding fluctuation flow

(√
N
(
ρN(t)− qt

))
t∈[0,T ]

is also a finite-dimensional flow, and it allows for a very explicit characterization
of the limiting distribution. The following theorem gives the asymptotic behavior
of this fluctuation flow; its proof is given in Section 5.
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THEOREM 3.6. Consider the following three-dimensional fluctuation process:

xN(t) :=
√

N
(
mσ
ρN(t) −mσ

t

)
,

yN(t) :=
√

N
(
mω
ρN(t) −mω

t

)
,

zN(t) :=
√

N
(
mσω
ρN(t) −mσω

t

)
.

Then (xN(t), yN(t), zN(t)) converges as N →∞, in the sense of weak conver-
gence of stochastic processes, to a limiting three-dimensional Gaussian process
(x(t), y(t), z(t)) which is the unique solution of the following linear stochastic
differential equation:




dx(t)
dy(t)
dz(t)



= A(t)




x(t)
y(t)
z(t)



 dt + D(t)




dB1(t)
dB2(t)
dB3(t)



(18)

where B1,B2,B3 are independent, standard Brownian motions,

A(t) = 2




− cosh(β)

−γmω
t sinh(γmσ

t ) + γ cosh(γmσ
t )

sinh(γmσ
t ) + γmσ

t cosh(γmσ
t )− γmσω

t sinh(γmσ
t )

sinh(β) 0
− cosh(γmσ

t ) 0
0 −(cosh(β) + cosh(γmσ

t )
)



 ,

D(t)D∗(t)
2

=



−mσω

t sinh(β) + cosh(β) 0
0 −mω

t sinh(γmσ
t ) + cosh(γmσ

t )

−mσ
t sinh(β) + mω

t cosh(β) mσ
t cosh(γmσ

t )−mσω
t sinh(γmσ

t )

−mσ
t sinh(β) + mω

t cosh(β)

mσ
t cosh(γmσ

t )−mσω
t sinh(γmσ

t )

−mσω
t sinh(β) + cosh(β)−mω sinh(γmσ

t ) + cosh(γmσ
t )



 ,

and (x(0), y(0), z(0)) have a centered Gaussian distribution with covariance ma-
trix




1− (mσ

λ )2 mσω
λ −mσ

λmω
λ mω

λ −mσ
λmσω

λ

mσω
λ −mσ

λmω
λ 1− (mω

λ )2 mσ
λ −mσω

λ mω
λ

mω
λ −mσ

λmσω
λ mσ

λ −mσω
λ mω

λ 1− (mσω
λ )2



 .(19)

Theorem 3.6 guarantees that, for each t > 0, the distribution of (xN(t), yN(t),
zN(t)) is asymptotically Gaussian, and provides a method to compute the limiting
covariance matrix. Indeed, denote by0t the covariance matrix of (x(t), y(t), z(t)).
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A simple application of Itô’s rule to (18) shows that 0t solves the Lyapunov equa-
tion

d0t

dt
= A(t)0t +0tA(t)∗ + D(t)D∗(t).(20)

In order to solve (20), it is convenient to interpret0 as a vector in R3×3 = R3⊗R3.
To avoid ambiguities, for a 3× 3 matrix C we write vec(C) whenever we interpret
it as a vector. It is easy to check that (20) can be rewritten as follows

d(vec(0t ))

dt
= (

A(t)⊗ I + I ⊗A(t)
)

vec(0t ) + vec(D(t)D∗(t)),(21)

where “⊗” denotes the tensor product of matrices. Equation (21) is linear, so its so-
lution can be given an explicit expression and can be computed after having solved
(13). More importantly, the behavior of 0t for large t can be obtained explicitly as
follows.

A. Case γ < 1
tanh(β) . In this case we have shown in Theorem 3.4 that the solution

(mσ
t ,mω

t ,mσω
t ) of (13) converges to (0,0, tanh(β)) as t →+∞. In particular,

one immediately obtains the limits

A := lim
t→+∞A(t), DD∗ := lim

t→+∞D(t)D∗(t).(22)

A direct inspection (see the Appendix) shows that A has three real strictly neg-
ative eigenvalues. Moreover, the eigenvalues of the matrix A× I + I ×A are
all of the form λi +λj where λi and λj are eigenvalues of A, and therefore they
are all strictly negative. It follows from (21) that limt→+∞0t =0 where

vec(0) =−(A⊗ I + I ⊗A)−1 vec(DD∗).(23)

B. Case γ > 1
tanh(β) . Also in this case, by Theorem 3.4, the limit

lim
t→+∞(mσ

t ,mω
t ,mσω

t )

exists. Disregarding the exceptional case in which the initial condition of (13)
belongs to the stable manifold . introduced in Theorem 3.4(iv), the limit above
equals either (mσ

∗ ,m
ω
∗ ,m

σω
∗ ), or (−mσ

∗ ,−mω
∗ ,m

σω
∗ ), depending on the initial

condition, where (mσ
∗ ,m

ω
∗ ,m

σω
∗ ) are obtained by Theorem 3.4(iii). In both

cases one obtains as in (22) the limits A and DD∗, and we show in the Ap-
pendix that also in this case the eigenvalues of A are real and strictly negative,
so that limt→+∞0t =0 is obtained as in (23).

C. Case γ = 1
tanh(β) . In this case, as shown in the Appendix, the limiting matrix

A is singular; it follows that the limit limt→+∞0t does not exist, as one eigen-
value of 0t grows polynomially in t . This means that, for critical values of
the parameters, the size of normal fluctuations around the deterministic limit
grows in time. Similarly to what is done in [8] for reversible models, it is possi-
ble to determine the critical long-time behavior of the fluctuation by a suitable
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space–time scaling in the model, giving rise to nonnormal fluctuations. More
precisely, one can show the following convergence in distribution:

N1/4(m·
ρN

(√
Nt

)−m·(√Nt
)) N→∞−→ Z

where Z is non-Gaussian. This result is contained in [32].

We now state an immediate corollary of Theorem 3.6 concerning the fluctua-
tions of the global health indicator; this will be used in the next section on large
portfolio losses.

COROLLARY 3.7. As N →∞ we have that
√

N
[
mσ
ρN(t) −mσ

t

]

converges in law to a centered Gaussian random variable Z with variance

V (t) =011(t),(24)

where 0(t) solves (20) and mσ
t solves (13).

We conclude this section with the following:

REMARK 3.8. The evolution equation (20) for the covariance matrix 0t is
coupled with the McKean–Vlasov equation (13), and their joint behavior exhibits
interesting aspects even before the system gets close to the stable fixed point. In
particular, in the case γ > 1

tanh(β) , if the initial condition is sufficiently close to
the stable manifold ., the system (13) spends some time close to the symmetric
equilibrium (0,0) before drifting to one of the stable equilibria. A closer look at
(20) shows that when the system is close to the neutral equilibrium, the covariance
matrix 0 grows exponentially fast in time, causing sharp peaks in the variances.
This is related to the credit crisis mentioned in the Introduction. A more detailed
discussion on this point is given in the next section, in relation with applications to
portfolio losses.

4. Portfolio losses. We address now the problem of computing losses in a
portfolio of positions issued by the N firms. A rather general modeling framework
is to consider the total loss that a bank may suffer due to a risky portfolio at time
t as a random variable defined by LN(t) = ∑

i Li(t). Different specifications for
the single (marginal) losses Li(t) can be chosen accounting for heterogeneity, time
dependence, interaction, macroeconomic factors and so on. A punctual treatment
of this general modeling framework can be found in the book by McNeil, Frey and
Embrechts [29]. For a comparison with the most widely used industry examples
of credit risk models see Frey and McNeil [21], Crouhy, Galai and Mark [11] or
Gordy [25]. The same modeling insights are also developed in the most recent
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literature on risk management and large portfolio losses analysis; see [14, 19, 23,
26] for different specifications.

In this paper we adopt the point of view of Giesecke and Weber [23]. The idea
is to compute the aggregate losses as a sum of marginal losses Li(t), of which
the distribution is supposed to depend on the realization of the variable σi , that is,
on the rating class. In particular, conditioned on the realization of σ, the marginal
losses will be assumed to be independent and identically distributed (the indepen-
dence condition can be weakened; see Example 4.4 below). More precisely, we
assume given a suitable conditional distribution function Gx, x ∈ {−1,1}, namely

Gx(u) := P
(
Li(t)≤ u|σi (t) = x

)
(25)

where the first and second moments are well defined, namely

l1 := E
(
Li(t)|σi (t) = 1

)
< E

(
Li(t)|σi (t) =−1

)=: l−1(26)

and

v1 := Var
(
Li(t)|σi (t) = 1

)
, v−1 := Var

(
Li(t)|σi (t) =−1

)
.(27)

The inequality in (26) specifies that we expect to lose more when in financial
distress.

The aggregate loss of a portfolio of volume N at time t is then defined as

LN(t) =
N∑

i=1

Li(t).

We recall the definition of the global health indicators m
σ
N(t) := 1

N

∑N
i=1 σi (t),

and mσ
t := ∫

σ dqt where qt solves the McKean–Vlasov equation [see (10)].
We also introduce a deterministic time function, which will be seen to represent

an “asymptotic” loss when the number of firms goes to infinity, namely

L(t) = (l1 − l−1)

2
mσ

t + (l1 + l−1)

2
.(28)

We state now the main result of this section.

THEOREM 4.1. Assume Li(t) has a distribution of the form (25). Then for
t ∈ [0, T ] with generic T > 0 and for any value of the parameters β > 0 and
γ > 0, we have

√
N

(
LN(t)

N
−L(t)

)
→ Y ∼N(0, V̂ (t))

in distribution, where L(t) has been defined in (28) and

V̂ (t) = (l1 − l−1)
2V (t)

4
+ (1 + mσ

t )v1

2
+ (1−mσ

t )v−1

2
,(29)

with V (t) as defined in (24).
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PROOF. See Section 5. !

REMARK 4.2. The Gaussian approximation in Theorem 4.1 leads in particular
to

P
(
LN(t)≥ α)≈N

(
NL(t)− α
√

N

√
V̂ (t)

)
.(30)

By the symmetry of the model, the above Gaussian approximation for the losses
is appropriate for a wide (depending on N ) range of values of α. If we modify
the model to become asymmetric as discussed in Remark 2.1 and, more precisely,
we modify it so that σ = −1 becomes much less likely than σ = +1, then for a
“realistic” value of N , the number of firms with σi =−1 could be too small for the
Gaussian approximation to be sufficiently precise. One could then rather consider
a Poisson-type approximation instead.

We shall now provide examples illustrating possible specifications for the mar-
ginal loss distributions where, without loss of generality, we assume a unitary loss
(e.g., loss due to a corporate bond) when a firm is in the bad state.

We start with a very basic example where we assume that the marginal losses
(when conditioned on the value of σ ) are deterministic. This means that the riski-
ness of the loss portfolio is related only to the number of firms in financial distress
and so we can use directly the results of Section 3, in particular of Corollary 3.7.

EXAMPLE 4.3. Suppose that marginal losses are described as follows:

Li(t) =
{

1, if σi (t) =−1,
0, if σi (t) = 1.

On the other hand

LN(t) =
N∑

i=1

1− σi (t)

2
.

Recalling that m
σ
N(t) = 1

N

∑
i σi (t), by Corollary 3.7 [see also (30)], we can com-

pute various risk measures related to the portfolio losses such as the following
Var-type measure:

P
(
LN(t)≥ α)= P

(
N −Nm

σ
N(t)

2
≥ α

)
= P

(
m
σ
N(t)≤ N − 2α

N

)

(31)

≈N
(−2α+ (1−mσ

t )N√
N
√

V (t)

)
= N

(−2α + 2L∞(t)N√
N
√

V (t)

)
,

where L∞(t) := limN→∞ LN(t)
N = limN→∞

∑
i

1−σi (t)
2N = 1−mσ

t
2 .
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FIG. 1. Excess loss in a large portfolio (N = 10,000) for different values of the parameters γ and β
compared with the independence case.

Looking at a portfolio of N = 10,000 small firms, we compute the excess loss
probability for different values of the parameters β,γ comparing them with the
benchmark case where there is no interaction at all, that is, where β = γ = 0 (“in-
dependence case”). In Figure 1 we show the cumulative probability of having ex-
cess losses for the same portfolios. In this figure we see that, when the dependence
increases, variance and risk measures increase as well.

More general specifications are already suggested in the existing literature. For
example, one could consider the losses to depend also on a random exogenous
factor 2; more precisely, the marginal losses Li(t) are independent and identically
distributed conditionally to the realizations of the σi (t)’s and of2 . The conditional
distributions

Gx(u) := P
(
Li(t)≤ u|σi (t) = x,2

)

are random variables, as well as the corresponding moments l1, l−1, v1, v−1.
In particular in the following example we apply our approach to a very tractable

class of models, the “Bernoulli mixture models.” This kind of modeling has been
used in the context of cyclical correlations, that is in models where exogenous
factors are supposed to characterize the evolution of the indicator of defaults (the
classical factor models). In the context of contagion-based models this class was
first introduced by Giesecke and Weber in [23].
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EXAMPLE 4.4 (Bernoulli mixture models). Assume that the marginal losses
Li(t) are Bernoulli mixtures, that is,

Li(t) =
{

1, with probability P(σi (t),2),
0, with probability 1− P(σi (t),2),(32)

where the mixing derives not only from the rating class indicator σi (t) of firm i, but
also from an exogenous factor 2 ∈ Rp that represents macroeconomic variables
that reflect the business cycle and thus allow for both contagion and cyclical effects
on the rating probabilities.

Notice that, with the above specification, the quantities defined in (26) and (27)
now depend on the random factor 2 , that is,

l1 = P(1,2), v1 = P(1,2)
(
1− P(1,2)

)
and analogously for l−1, v−1.

Consequently, the asymptotic loss function L(t) as well as the variance of the
Gaussian approximation V̂ (t) defined in (28) and (29) are also functions of 2 .
With a slight abuse of notation we shall write Lψ (t) [respectively V̂ψ (t)] for the
asymptotic loss (variance) at time t given that 2 =ψ .

Next we give a possible expression for the mixing distribution for P(σ,2) that
is in line with existing models on contagion. Let a and bi, i = 1,2, be nonnegative
weight factors. Let us assume for simplicity that 2 ∈ R is a Gamma distributed
random variable. Define then

P(σ,2) = 1− exp
{
−a2 − b1

(1− σ
2

)
− b2

}
.

This specification follows the CreditRisk+ modeling structure, even though in
the standard industry examples direct contagion is not taken into account. Notice
that the factor 1−σ

2 increases the probability of default for the firms in the bad
rating class (σ =−1). Using (30) we have that

P
(
LN(t)≥ α)≈

∫
N
(

NLψ (t)− α
√

NV̂ψ (t)

)
df2(ψ),

where f2 is the density function of the Gamma random variable 2 .
In Figure 2 we plot the excess loss probability in the case where a = 0.1, b1 = 1,

b2 = 0.5 and β = 1.5 is supposed to be fixed. We compare different specifications
for 2 and γ . In particular we consider the following cases:

2 = 4.5, γ = 0.6; 2 = 4.5, γ = 1.1;
2 ∼ .(2.25,2), γ = 1.1.

The shape of the excess losses suggests that the loss may be sensibly higher in
the case of high uncertainty about the value of the macroeconomic factor [2 ∼
.(2.25;2)] and in the case of high level of contagion (γ = 1.1). Notice that in
all three situations we are in the subcritical case, since the critical value for γ is
γc = 1/ tanh(β)3 1.105. This also implies that the equilibrium value is the same
in the three situations and depends only on 2 .
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FIG. 2. Loss amount in a large portfolio (N = 10,000) in the case of marginal losses which (de-
pending on the rating class) are distributed as Bernoulli random variables for which the parameter
depends on 2 .

REMARK 4.5. Notice that the asymptotic loss distribution in the above
Bernoulli mixture model does not only depend on a mixing parameter as in stan-
dard Bernoulli mixture models but, via L(t), it depends also on the value mσ

t of
the asymptotic average global health indicator. Moreover, compared to Giesecke
and Weber [23], we are able to quantify the time-varying fluctuations of the global
indicator mσ

ρN(t). We shall see that this may sensibly influence the distribution of
losses in particular when looking at two different time horizons T1 and T2 before
and after a credit crisis.

REMARK 4.6. Further examples may be considered, in particular when the
distribution of the marginal losses Li(t) depends on the entire past trajectory of the
rating indicator σi , taking, for example, into account how long the firm has been in
the bad state. Instead of depending simply on σi (t), the distribution of Li(t) could
then be made dependent on Si(t) := I{∫ t

0 ((1−σi (s))/2) ds≥δt} with δ ∈ (0,1), which is
equal to 1 if firm i has spent a fraction δ of time in the bad state. Corresponding to
(32) we would then have

Li(t) =
{

1, with probability P(Si(t),2),
0, with probability 1− P(Si(t),2).

This model is not a straightforward extension of Example 4.4. In fact the theory
developed above, in particular the Central Limit Theorem result in Section 3.3,
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does not appear to be strong enough to handle it. For this purpose an approach
based on a functional central limit theorem that was alluded to at the beginning of
Section 3.3 would be more appropriate. This, however, goes beyond the scope of
the present paper.

Let us point out that in the examples above we have considered only the problem
of computing large portfolio losses which led to examples where we computed
(approximately) the quantiles P(LN(t) ≥ α) where α is a (large) integer. From
here, one could then compute the probability that the loss ratio LN(t)

N belongs to
a given interval and this would then allow to compute (approximately) for our
contagion model also other quantities in a risk-sensitive environment. In any case
notice that Theorem 4.1 provides the entire asymptotic distribution for the portfolio
losses.

In the previous examples we have described large portfolio losses at a prede-
termined time horizon T for different specifications of the conditional loss dis-
tribution. In what follows, we shall describe in more detail how the phenomenon
of a credit crisis may be explained in our setting and how this issue may influ-
ence the quantification of losses. This dynamic point of view on risk management
that accounts for the possibility of a credit crisis in the market, is one of the main
contributions of this work.

As one could expect, the possibility of having a credit crisis is related to the
existence of particular conditions on the market, more precisely to certain levels of
interaction between the obligors (i.e., the parameters β and γ ) and certain values
of the state variables describing the rating classes and the fundamentals (i.e., σ
and ω).

4.1. Simulation results. To illustrate the situation we shall now present some
simulation results. We shall proceed along two steps: the first one relates more
specifically to the particle system, the second to the portfolio losses.

Step 1 (Domains of attraction). In Section 3.2 we have characterized all the
equilibria of the system depending on the values of the parameters. In particular
we have shown that for supercritical values, by which we mean γ > 1

tanh(β) , there
are two asymmetric equilibrium configurations in the space (mσ ,mω) that, for our
symmetric model, are symmetric to one another and are defined as (mσ

∗ ,m
ω
∗ ) and

(−mσ
∗ ,−mω

∗ ).
In particular, Theorem 3.4 allows to characterize their domains of attraction,

that is, the sets of initial conditions that lead the trajectory to one of the equilibria,
and we shall denote them by .+ and .−. Numerical simulations provide diagrams
as in Figure 3.
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FIG. 3. Domains of attraction .+ for (mσ∗ ,mω∗ ) and .− for (−mσ∗ ,−mω∗ ) and their boundary .
for β = 1 and varying γ . Here the critical value for γ is γc := 1/ tanh(β)3 1.313.

Step 2 (Credit crises). We show results from numerical simulations that detect
the crises when the values of the parameters are supercritical and the initial condi-
tions are “near” the boundary of the domains of attraction, that is, near .. Given
the symmetry of our model, the behavior of the system will be perfectly symmetric
when starting in either .+ or .−, but the typical credit crisis corresponds to what
happens in .−, so that below we shall illustrate this latter case. The analysis in an
asymmetric model would be analogous.

In Figure 4 we have plotted a trajectory starting in (mσ
0 ,mω

0 ) ∈ .− but near the
boundary. It can be seen that the path moves toward (mσ ,mω) = (0,0) and then
leaves it decaying to the stable equilibrium.

Concerning the time evolution, we see in Figure 5 that, for an initial condition
in .− and near the boundary, the variable mσ

t (the same would happen also with
mω

t that for clarity is not plotted) is first attracted to the unstable value zero, around
which it spends a long time before moving to the stable equilibrium value mσ

∗ . This
can be explained, in financial terms, as follows:

Suppose that at the initial time the market conditions are such that (mσ ,mω)

are in .− but close to the curve .. Then for a while the system moves close to the
stable manifold . toward (0,0), until it gets “captured” by the unstable direction
of the equilibrium point (0,0). Since the system configuration belongs to .−, the
new stable equilibrium that the system is attracted to is given by (−mσ

∗ ,−mω
∗ ).
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FIG. 4. Domains of attraction .+ for (mσ∗ ,mω∗ ) and .− for (−mσ∗ ,−mω∗ ) and phase diagram
of (mσ

t ,mω
t ) with initial conditions (mσ

0 ,mω
0 ) = (0.6,−0.85) when β = 1 and γ = 2.3 [here

γc = 1/ tanh(β)3 1.313].

This situation represents (in a stylized manner) what we intend as a credit crisis:
the state (0,0) may be considered as a “credit bubble,” the decay toward the stable
equilibrium mimics a credit crisis (i.e., a crash in the credit market).

As soon as the system moves away from (0,0), the uncertainty (volatility) in-
creases quickly and the credit quality indicators move to the stable configuration
changing completely the picture of the market (the speed of the convergence de-
pends on the level of interaction).

This situation is also well illustrated by the loss probability computed before
and after the crisis (i.e., in certain time instants T1 and T2). In Figure 6 we see the
excess probability of suffering a loss larger than x for the case of Example 4.4 with
an exogenous parameter2 ∼ .(2.25;2). One can see that before the crisis both the
expected loss and the variance may be underestimated as well as the corresponding
risk measures. Put differently, a model that does not distinguish between stable and
unstable equilibria (does not take credit crises into account) may underestimate
the excess loss probability, since it does not recognize in the given situation the
possibility of a sudden crash.

Finally we mention the fact that for different levels of interaction we can dis-
tinguish between a smoothly varying business cycle and a crisis. When β and γ ,
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FIG. 5. Trajectory of mσ
t and V (t) with initial conditions mσ

0 =−0.5, mω
0 = 0.395 when β = 1.5

and γ = 2.1 [here γc = 1/ tanh(β)3 1.105]. We have marked by (∗) the time horizons T1 = 2 and
T2 = 10 before and after the crisis where in Figure 6 we shall compute the excess loss probabilities.

FIG. 6. Excess probability of losses in a portfolio of N = 10,000 obligors, β = 1.5 and γ = 2.1
computed in T1 = 2 and T2 = 10, namely before and after the crisis in the case of Example 4.4 with
2 ∼ .(2.25;2) [here γc = 1/ tanh(β)3 1.105].
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FIG. 7. Trajectories of mσ
t and V (t) for different levels of interaction, that is, letting β and γ

vary. In the case of higher values we really see a crisis and a corresponding peak in the uncertainty
in the market. In the case of smaller values the number of bad rated firms decreases smoothly to
a new equilibrium, that is, toward a bad business cycle. The critical values for γ are, respectively,
1/ tanh(1.5)3 1.105 and 1/ tanh(0.9)3 1.396.

the parameters describing the level of interaction, are sufficiently small, the busi-
ness cycle (described in our simple model by the proportion of firms in the rating
classes) evolves smoothly and the induced variance (level of uncertainty about the
number of bad rated firms) is lower compared to the crisis case. In Figure 7 we
show this fact for two levels of β and γ , both supercritical.

5. Proofs.

5.1. Proofs of Propositions 3.1 and 3.2. One of the main tools in this proof
is the Girsanov formula for Markov chains. Since a Markov chain is a functional
of the multivariate point process that counts the jumps between all pairs of states,
this formula can be derived from the corresponding Girsanov formula for point
processes (see, e.g., [3], Section 4.2). We state it here for completeness.

PROPOSITION 5.1. Let S be a finite set, and (X(t))t∈[0,T ], (Y (t))t∈[0,T ] two
S-valued Markov chains with infinitesimal generators, respectively,

Lf (x) =
∑

y $=x

Lx,y[f (y)− f (x)],

Mf (x) =
∑

y $=x

Mx,y[f (y)− f (x)].
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Assume X(0) and Y(0) have the same distribution, and denote by PX and PY the
law of the two processes on the appropriate set of trajectories in the time-interval
[0, T ]. Assume that whenever Mx,y = 0 also Lx,y = 0. Then PX - PY , and

dPX

dPY
(x([0, T ]))

= exp

[∫ T

0

∑

y $=x(t)

(
Mx(t),y −Lx(t),y

)
dt +

∫ T

0
log

Lx(t−),x(t)

Mx(t−),x(t)

dNt

]

,

where x(t−) := lims↑t x(s), log 0
0 = 1 and Nt is the counting process that counts

the jumps of the trajectory x([0, T ]).

In what follows we denote by PN the law on the path space of (σ [0, T ],
ω[0, T ]) ∈ (D([0, T ]))2N under the interacting dynamics, with initial condi-
tions such that (σ

(N)
i (0),ω

(N)
i (0))Ni=1 are independent and identically distributed

with an assigned law λ (see beginning of Section 3). As in Section 3.1 we let
W ∈M1(D([0, T ])×D([0, T ])) denote the law of the {−1,1}2-valued process
(σ (t),ω(t)) such that (σ (0),ω(0)) has distribution λ, and both σ (·) and ω(·)
change sign with constant rate 1. By W⊗N we mean the product of N copies
of W . We begin with some preliminary lemmas.

LEMMA 5.2.
dPN

dW ⊗N
(σ [0, T ], ω[0, T ]) = exp[NF(ρN(σ [0, T ], ω[0, T ]))],(33)

where F is the function defined in (7).

PROOF. Let (N
σ
t (i))Ni=1 be the multivariate counting process which counts the

jumps of σi for i = 1, . . . ,N , and (N
ω
t (i))Ni=1 be the multivariate counting process

which counts the jumps of ωi for i = 1, . . . ,N . Since each jump of the trajec-
tory (σ [0, T ], ω[0, T ]) is counted by exactly one of the above counting processes,
Proposition 5.1 applied to this case yields

dPN

dW ⊗N
(σ [0, T ], ω[0, T ])

= exp

[
N∑

i=1

∫ T

0

(
1− e−βσi (t)ωi (t)

)
dt +

N∑

i=1

∫ T

0
log e−βσi (t

−)ωi (t
−) dN

σ
t (i)

+
N∑

i=1

∫ T

0

(
1− e

−γωi (t)mσ
ρN (t)

)
dt

+
N∑

i=1

∫ T

0
log e

−γωi (t
−)mσ

ρN (t−) dN
ω
t (i)

]

.
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Since, with probability 1 with respect to W ⊗N , there are no simultaneous jumps,
we have

N∑

i=1

∫ T

0
log e−βσi (t

−)ωi (t
−) dN

σ
t (i)=

N∑

i=1

∫ T

0
−β (−σi (t))ωi (t) dN

σ
t (i)

and
N∑

i=1

∫ T

0
log e

−γωi (t
−)m

σ

ρN (t−) dN
ω
t (i)=

N∑

i=1

∫ T

0
−γ (−ωi (t))m

σ
ρN(t) dN

ω
t (i),

from which (33) follows easily after having observed that, W⊗N almost surely,
∫

(Nσ
T + Nω

T ) dρN < +∞,

and that simultaneous jumps of σ and ω do not occur under dW ⊗N . !

The main problem in the proof of Proposition 3.1 is related to the fact that
the function F in (7) is neither continuous nor bounded. The following technical
lemmas have the purpose of circumventing this problem. In what follows, we let

I :=
{
Q ∈M1(D[0, T ]2) :

∫
(Nσ

T + Nω
T ) dQ < +∞

}
.(34)

We first define, for r > 0 and Q ∈ I,

Fr(Q) =
∫ [∫ T

0

(
r − e−βσ (t)ω(t))dt +

∫ T

0

(
r − e−ω(t)γ

Q
t
)
dt

+
∫ T

0

(
βσ (t)ω(t−)− log r

)
dNσ

t(35)

+
∫ T

0

(
ω(t)γ

Q
t− − log r

)
dNω

t

]
dQ.

Note that F = F1. Moreover, Lemma 5.2 can be easily extended to show that

dPN

dW ⊗N
r

(σ [0, T ], ω[0, T ]) = exp[NFr(ρN(σ [0, T ], ω[0, T ]))],(36)

where Wr is the law of the {−1,1}2-valued process σ (t),ω(t) such that (σ (0),
ω(0)) has distribution λ, and both σ (·) and ω(·) change sign with constant rate r .

LEMMA 5.3. For 0 < r ≤ min(e−β , e−γ ), Fr is lower semicontinuous on I.
For r ≥max(eβ, eγ ), Fr is upper semicontinuous.

PROOF. By definition of weak topology the fact that the map

Q '→
∫ [∫ T

0

(
r − e−βσ (t)ω(t))dt +

∫ T

0

(
r − e−ω(t)γ

Q
t
)
dt

]
dQ
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is continuous is rather straightforward (since Q-expectations of bounded continu-
ous functions in D([0, T ]) are continuous in Q). Thus we only have to deal with
the term

∫ [∫ T

0

(
βσ (t)ω(t−)− log r

)
dNσ

t

]
dQ

(37)

+
∫ [∫ T

0

(
ω(t)γ

Q
t− − log r

)
dNω

t

]
dQ.

We show that for 0 < r ≤ min(e−β , e−γ ) the expression in (37) is lower semi-
continuous in Q ∈ I. This shows that Fr is lower semicontinuous. The case
r ≥max(eβ , eγ ) is treated similarly.

For ε > 0 consider the function ϕε :D[0, T ]→R defined by

ϕε(η) :=





1
ε
, if η(t) jumps for some t ∈ (0, ε],

0, otherwise.

Given η ∈ D([0, T ]) we define η(s) for s > T by letting η(s) ≡ η(T ). Then,
letting θt denote the shift operator, we have that, for t ∈ [0, T ], θtη is the el-
ement of D([0, T ]) given by θtη(s) := η(t + s). Consider now two functions
f,g : {−1,1}2 →R, and define fε, gε :D[0, T ]2 →R by

fε
(
σ[0,T ],ω[0,T ]

) := inf{f (σ (t),ω(t)) : t ∈ (0, ε)},
and similarly for gε . Then define

7ε
(
σ[0,T ],ω[0,T ]

) :=
∫ T

0
fε(θtσ, θtω)ϕε(θtσ ) dt +

∫ T

0
gε(θtσ, θtω)ϕε(θtω) dt.

The key to the continuation of the proof below are the following two properties of
7ε . These properties are essentially straightforward, and their proofs are omitted:

• 7ε is continuous and bounded on {(σ[0,T ],ω[0,T ]) :Nσ
T + Nω

T < +∞}.
• Suppose f,g ≥ 0. Then, assuming σ[0,T ],ω[0,T ] have a finite number of jumps,
7ε(σ[0,T ],ω[0,T ]) increases when ε ↓ 0 to

∫ T

0
f (σt−,ωt−) dNσ

t +
∫ T

0
g(σt−,ωt−) dNω

t .

Therefore by monotone convergence
∫ [∫ T

0
f (σt−,ωt−) dNσ

t +
∫ T

0
g(σt−,ωt−) dNω

t

]
dQ

= sup
ε>0

∫
7ε

(
σ[0,T ],ω[0,T ]

)
dQ.
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In particular, the map

Q '→
∫ [∫ T

0
f (σt−,ωt−) dNσ

t +
∫ T

0
g(σt−,ωt−) dNω

t

]
dQ

is lower semicontinuous on I.

Now, for r ≤min(e−β , e−γ ), the function f (σ,ω) =−βσω− log r is nonnegative.
As for the function g, that should be −ω(t)γ

Q
t − log r , we notice that it is not a

function of (σ,ω), but rather a function of (σ,+tQ), thus depending explicitly
on t and Q. However, due to its boundedness and the fact that γQ

t is continuous
in Q uniformly in t,σ , the argument above applies with minor modifications thus
leading to the conclusion of the proof. !

LEMMA 5.4. Let Q ∈M1(D([0, T ])2) be such that H(Q|W) < +∞. Then
Q ∈ I. The same result applies if Wr replaces W .

PROOF. By the entropy inequality (see (6.2.14) in [15])
∫

Nσ
T dQ≤ log

∫
eNσ

T dW + H(Q|W).

But Nσ
T has Poisson distribution under W , so

∫
eNσ

T dW < +∞. By applying the
same argument to Nω

T , the proof is completed. This proof extends with no modifi-
cations to the case r $= 1. !

LEMMA 5.5. The function

I (Q) := H(Q|W)− F(Q)

is lower semicontinuous on M1(D[0, T ]2).

PROOF. It is well known (see [15], Lemma 6.2.13) that the entropy H(Q|W)
is lower semicontinuous in Q in all of M1(D([0, T ])2). Moreover, by defini-
tion, F(Q) < +∞ for every Q, and so we have H(Q|W) = I (Q) whenever
H(Q|W) = +∞. Since, by Lemma 5.4, H(Q|W) = +∞ for Q /∈ I, we are left
to prove the following two statements:

(i) I (Q) is lower semicontinuous in I.
(ii) If H(Q|W) = +∞ and Qn→Q weakly, then I (Qn)→+∞.

The following key identity, which holds for r > 0, is a simple consequence of the
definition of relative entropy and of the Girsanov formula for Markov chains.

H(Q|Wr) = H(Q|W) +
∫

log
dW

dWr
dQ

(38)

= H(Q|W) + 2T (r − 1) + log r

∫
(Nσ

T + Nω
T ) dQ.



380 DAI PRA, RUNGGALDIER, SARTORI AND TOLOTTI

In particular, by Lemma 5.4, we have that H(Q|W) < +∞ ⇐⇒ H(Q|Wr) <
+∞. A simple consequence of (38) is then the following:

I (Q) = H(Q|Wr)− Fr(Q),(39)

where the difference in (39) is meant to be +∞ whenever H(Q|Wr) = +∞
[which is equivalent to H(Q|W) = +∞].

We are now ready to prove (i) and (ii). To prove (i) it is enough to choose
r ≥max(eβ , eγ ) and use Lemma 5.3. Moreover, for the same choice of r ,
the stochastic integrals in (35) are nonpositive, so Fr(Q) ≤ 2T r . Therefore, if
H(Q|W) = +∞ and Qn→Q,

lim inf I (Qn)≥ lim infH(Qn|Wr)− 2T r = +∞,

where the last equality follows from lower semicontinuity of H(·|Wr) and
H(Q|Wr) = +∞. Thus (ii) is proved. !

LEMMA 5.6. The function I (Q) has compact level sets, that is, for every
k > 0 the set {Q : I (Q)≤ k} is compact.

PROOF. Choosing, as above, r ≥max(eβ , eγ ), we have that Fr(Q)≤ 2T r for
every Q. Thus, by (39),

{Q : I (Q)≤ k}⊆{ Q :H(Q|Wr)≤ k + 2T r}.
Since (see [15], Lemma 6.2.13) the relative entropy has compact level sets,
{Q : I (Q) ≤ k} is contained in a compact set. Moreover, by lower semicontinu-
ity of I , {Q : I (Q)≤ k} is closed, and this completes the proof. !

LEMMA 5.7. For every r > 0 there exists δ > 1 such that

lim sup
N→+∞

1
N

log
∫

exp[δNFr(ρN)]dW⊗N
r < +∞.

PROOF. We give the proof for r = 1; the modifications for the general case are
obvious. The proof consists of rather simple manipulations. The idea can be sum-
marized as follows. If δ = 1, then by Lemma 5.2, exp[δNF(ρN)] is the Radon–
Nikodym derivative of PN with respect to W⊗N , and therefore has expectation 1.
For δ > 1, we write δF(ρN) = F1(ρN)+F2(ρN) in such a way that F2 is bounded
and exp[NF1(ρN)] is a Radon–Nikodym derivative of a probability with respect
to W⊗N . More specifically, observe that, using (7),

δNF(ρN) =
N∑

i=1

∫ T

0

(
δ − δe−βσi (t)ωi (t)

)
dt +

N∑

i=1

∫ T

0
δβσi (t)ωi (t

−) dN
σ
t (i)

+
N∑

i=1

∫ T

0

(
δ− δe−γωi (t)mσ

ρN (t)
)
dt
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+
N∑

i=1

∫ T

0
δγωi (t)mσ

ρN(t−) dN
ω
t (i)

=
N∑

i=1

∫ T

0

(
1− e−δβσi (t)ωi (t)

)
dt +

N∑

i=1

∫ T

0
δβσi (t)ωi (t) dN

σ
t (i)

+
N∑

i=1

∫ T

0

(
1− e

−δγωi (t)mσ
ρN (t)

)
dt +

N∑

i=1

∫ T

0
δγωi (t)m

σ
ρN(t) dN

ω
t (i)

+
N∑

i=1

∫ T

0

(
δ − δe−βσi (t)ωi (t) − (

1− e−δβσi (t)ωi (t)
))

dt

+
N∑

i=1

∫ T

0

(
δ − δe−γωi (t)mσ

ρN (t) − (
1− e

−δγωi (t)mσ
ρN (t)

))
dt

= NF1(ρN) + NF2(ρN),

where

NF1(ρN) :=
N∑

i=1

∫ T

0

(
1− e−δβσi (t)ωi (t)

)
dt +

N∑

i=1

∫ T

0
δβσi(t)ωi (t) dN

σ
t (i)

+
N∑

i=1

∫ T

0

(
1− e

−δγωi (t)mσ
ρN (t)

)
dt +

N∑

i=1

∫ T

0
δγωi (t)m

σ
ρN(t) dN

ω
t (i)

and

NF2(ρN) :=
N∑

i=1

∫ T

0

(
δ − δe−βσi (t)ωi (t) − (

1− e−δβσi (t)ωi (t)
))

dt

+
N∑

i=1

∫ T

0

(
δ− δe−γωi (t)mσ

ρN (t) − (
1− e

−δγωi (t)mσ
ρN (t)

))
dt.

Note that exp[NF1(ρN)] has the same form of exp[NF(ρN)] after having replaced
β by δβ . In particular,

∫
exp[NF1(ρN)]dW⊗N = 1. Moreover, it is easy to see that

F2(ρN)≤ T
(
2δ − δ(e−β + e−γ )− 2 + eδβ + eδγ

)
.

Putting all together, we obtain
∫

exp[δNF(ρN)]dW⊗N

≤ exp
[
NT

(
2δ − δ(e−β + e−γ )− 2 + eδβ + eδγ

)] ∫
exp[NF1(ρN)]dW⊗N

= exp
[
NT

(
2δ − δ(e−β + e−γ )− 2 + eδβ + eδγ

)]
,
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from which the conclusion follows easily. !

COMPLETING THE PROOF OF PROPOSITION 3.1. It remains to show the up-
per and the lower bounds (9) and (8). We prove them separately; our main tool is
the Varadhan Lemma in the version in [15], Lemmas 4.3.4 and 4.3.6.

We deal first with the upper bound (9). Take r ≥max(eβ , eγ ), so that the func-
tion Fr in (35) is upper semicontinuous. Denote by PN the distribution of ρN

under PN , and by WN its distribution under W⊗N
r . By (36)

dPN

dWN
(Q) = exp[NFr(Q)].(40)

By Sanov’s theorem (Theorem 6.2.10 in [15]), the sequence of probabilities WN

satisfies a large deviation principle with rate function H(Q|Wr). Since Fr is up-
per semicontinuous and satisfies the superexponential estimate in Lemma 5.7,
we can apply Lemma 4.3.6 in [15], together with identity (39), to obtain the
upper bound (9). The lower bound (8) is proved similarly, by taking 0 < r ≤
min(e−β , e−γ ), so that Fr becomes lower semicontinuous, using (40) again and
Lemma 4.3.4 in [15]. !

The remaining part of this section is devoted to the proof of Proposition 3.2. It
mainly consists in giving an alternative representation of the rate function I (Q).

Let now Q ∈M1(D([0, T ]) ×D([0, T ])). We associate with Q the law of a
time-inhomogeneous Markov process on {−1,1}2 which evolves according to the
following rules:

σ →−σ
with intensity e−βσω,

ω→−ω

with intensity exp

[

−γω
∑

σ,τ∈{−1,1}
σ+tQ(σ, τ )

]

= e
−γωmσ

+t Q = e−γ
Q
t ω,

and with initial distribution λ. We denote by P Q the law of this process. In other
words, P Q is the law of the Markov process on {−1,1}2 with initial distribution λ
and time-dependent generator

LQ
t f (σ,ω) = e−βσω∇σf (σ,ω) + e

−γωmσ
+t Q∇ωf (σ,ω).

LEMMA 5.8. For every Q ∈M1(D([0, T ])×D([0, T ])) such that I (Q) <

+∞, we have

I (Q) = H(Q|P Q).
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PROOF. We begin by observing that, since by assumption I (Q) <∞, we have
H(Q|W) < +∞ and so by Lemma 5.4 it follows that Q ∈ I, which implies that
the integrals below are well defined. Using again Girsanov’s formula for Markov
chains in Proposition 5.1, we obtain
∫

log
dP Q

dW
(σ [0, T ],ω[0, T ]) dQ

=
∫ [∫ T

0

(
1− e−βσ (t)ω(t))dt +

∫ T

0

(
1− e−γω(t)

∫
σ+tQ(dσ, dτ ))dt

+
∫ T

0

(−βσ (t−)ω(t−)
)
dNσ

t

+
∫ T

0
−γω(t−)

[∫
σ+t−Q(dσ, dτ )

]
dNω

t

]
dQ

=
∫ [∫ T

0

(
1− e−βσ (t)ω(t))dt +

∫ T

0

(
1− e−γω(t)

∫
σ+tQ(dσ,dτ ))dt

+ β

∫ T

0
σ (t)ω(t) dNσ

t + γ

∫ T

0
ω(t)

[∫
σ+tQ(dσ, dτ )

]
dNω

t

]
dQ

=
∫ [∫ T

0

(
1− e−βσ (t)ω(t))dt +

∫ T

0

(
1− e−ω(t)γ

Q
t
)
dt

+ β

∫ T

0
σ (t)ω(t) dNσ

t +
∫ T

0
ω(t)γ

Q
t− dNω

t

]
dQ

= F(Q).

Finally, just observe that

I (Q) =
∫

dQ log
dQ

dW
−
∫

dQ log
dP Q

dW

=
∫

dQ log
dQ

dP Q
= H(Q|P Q). !

COMPLETING THE PROOF OF PROPOSITION 3.2. By properness of the rela-
tive entropy [H(µ|ν) = 0⇒ µ = ν], from Lemma 5.8 we have that the equation
I (Q) = 0 is equivalent to Q = P Q. Suppose Q∗ is a solution of this last equation.
Then, in particular, qt :=+tQ

∗ =+tP
Q∗ . The marginals of a Markov process are

solutions of the corresponding forward equation that, in this case, leads to the fact
that qt is a solution of (10). This differential equation, being an equation in finite
dimension with locally Lipschitz coefficients, has at most one solution in [0, T ].
Since P Q∗ is totally determined by the flow qt , it follows that equation Q = P Q

has at most one solution. The existence of a solution follows from the fact that
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I (Q) is the rate function of a LDP, and therefore must have at least one zero, in-
deed, by (8) with A = M1(D[0, T ]×D[0, T ]), we get infQ I (Q) = 0. Since I is
lower semicontinuous, this inf is actually a minimum. !

5.2. Proof of Theorem 3.4. We first observe that the square [−1,1]2 is stable
for the flow of (14), since the vector field V (x, y) points inward at the bound-
ary of [−1,1]2. It is also immediately seen that the equation V (x, y) = 0 holds
if and only if x = tanh(β) tanh(γ x) and y = 1

tanh(β)x. Moreover a simple convex-
ity argument shows that x = tanh(β) tanh(γ x) has x = 0 as unique solution for
γ ≤ 1

tanh(β) , while for γ > 1
tanh(β) a strictly positive solution, and its opposite, bi-

furcate from the null solution. We have therefore found all equilibria of (14).
We now remark that (14) has no cycles (periodic solutions). Indeed, suppose

(xt , yt ) is a cycle of period T . Then by the Divergence Theorem

0≤
∫ T

0
[V1(xt , yt )ẋt + V2(xt , yt )ẏt ]dt =

∫

C
divV (x, y) dx dy,(41)

where V1,V2 are the components of V and C is the open set enclosed by the cycle.
But a simple direct computation shows that divV (x, y) < 0 in all of [−1,1]2, so
that (41) cannot hold.

It follows by the Poincaré–Bendixon theorem that every solution must converge
to an equilibrium as t →+∞. This completes the proof of (i). The matrix of the
linearized system is

DV (0,0) =
(−2 cosh(β) 2 sinh(β)

2γ −2

)

from which also (ii) and (iii) are readily shown. It remains to show (iv). For
γ > 1

tanh(β) , we let vs be an eigenvector of the negative eigenvalue of DV (0,0). By
the Stable Manifold Theorem (see Section 2.7 in [30]), the set of initial conditions
that are asymptotically driven to (0,0) form a one-dimensional manifold . that is
tangent to vs at (0,0). Since any solution converges to an equilibrium point, and
solutions starting in .c cannot cross . (otherwise uniqueness would be violated),
the remaining part of statement (iv) follows.

5.3. Proof of Theorem 3.6.

PROOF. One key remark is the fact that the stochastic process (mσ
ρN(t),m

ω
ρN(t),

mσω
ρN(t)) is a sufficient statistic for our model; in this context this means that its evo-

lution is Markovian. This can be proved by checking that if we apply the generator
L in (3) to a function of the form ϕ(mσ

ρN(t),m
ω
ρN(t),m

σω
ρN(t)), then we obtain again

a function of (mσ
ρN(t),m

ω
ρN(t),m

σω
ρN(t)). A long but straightforward computation ac-

tually gives

Lϕ
(
mσ
ρN(t),m

ω
ρN(t),m

σω
ρN(t)

)= [KNϕ](mσ
ρN(t),m

ω
ρN(t),m

σω
ρN(t)

)
,
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where

KNϕ(ξ,η, θ)

= N

4

∑

(j,k)∈{−1,1}2

[jξ + kη+ jkθ + 1]

(42)
×
{
e−βjk

[
ϕ

(
ξ − 2

N
j,η, θ − 2

N
jk

)
− ϕ(ξ,η, θ)

]

+ e−γ ξk
[
ϕ

(
ξ,η− 2

N
k, θ − 2

N
jk

)
− ϕ(ξ,η, θ)

]}
.

This implies that KN is the infinitesimal generator of the three-dimensional
Markov process (mσ

ρN(t),m
ω
ρN(t),m

σω
ρN(t)). Note now that (xN(t), yN(t), zN(t)) is

obtained from (mσ
ρN(t),m

ω
ρN(t),m

σω
ρN(t)) through a time dependent, linear invertible

transformation. We call Tt this transformation, that is,

Tt (ξ,η, θ) = (√
N(ξ −mσ

t ),
√

N(η−mω
t ),
√

N(θ −mσω
t )

)

(the dependence on N of Tt is omitted in the notation). Therefore (xN(t), yN(t),

zN(t)) is itself a (time-inhomogeneous) Markov process, whose infinitesimal gen-
erator HN,t can be obtained from (42) as follows:

HN,tf (x, y, z) = KN [f ◦ Tt ](T −1
t (x, y, z)) + ∂

∂t
[f ◦ Tt ](T −1

t (x, y, z)).

A simple computation gives then

HN,tf (x, y, z)

= N

4

∑

(j,k)∈ {−1,1}2

[
j

x√
N

+ k
y√
N

+ jk
z√
N

+ jmσ
t + kmω

t + jkmσω
t + 1

]

×
{
e−βj k

[
f

(
x − 2√

N
j,y, z− 2√

N
jk

)
− f (x, y, z)

]

(43)

+ e−γ (x/
√

N+mσ
t ) k

[
f

(
x, y − 2√

N
k, z− 2√

N
jk

)

−f (x, y, z)

]}

−
√

Nṁσ
t fx(x, y, z)−

√
Nṁω

t fy(x, y, z)−
√

Nṁσω
t fz(x, y, z),

where fx stands for ∂f
∂x , and similarly for the other derivatives. At this point we

compute the asymptotics of HN,tf (x, y, z) as N → +∞, assuming f : R3 → R
a C3 function with compact support. First of all we make a Taylor expansion of
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terms like

f

(
x − 2√

N
j ,y, z− 2√

N
jk

)
− f (x, y, z)

=− 2√
N

fx(x, y, z)− 2√
N

fz(x, y, z)(44)

+ 2
N

fxx(x, y, z) + 2
N

fzz(x, y, z) + 4
N

fxz(x, y, z) + o

( 1
N

)

and

e−γ (x/
√

N) = 1− γ
(

x√
N

)
+ o

( 1√
N

)
.(45)

Note that, since all derivatives of f are bounded, the remainder in (44) is o( 1
N )

uniformly in (x, y, z) ∈ R3. Moreover, the remainder in (45) is o( 1√
N

) uniformly
for x in a compact set. Therefore, since f has compact support, when we use (44)
and (45) to replace the corresponding terms in (43), we obtain remainders whose
bounds are uniform in R3. When (44) and (45) are plugged into (43), all terms of
order

√
N coming from the sum over (j, k) ∈ {−1,1}2 are canceled by the terms√

Nṁσ
t fx(x, y, z)−

√
Nṁω

t fy(x, y, z)−
√

Nṁσω
t fz(x, y, z). It follows then by a

straightforward computation that

lim
N→∞

sup
t∈[0,T ]

sup
x,y,z∈R3

|HN,tf (x, y, z)−Ht f (x, y, z)| = 0,

where

Ht f (x, y, z) = 2
{
fx[−x cosh(β) + y sinh(β)]
+ fy[−γ xmω

t sinh(γmσ
t ) + γ x cosh(γmσ

t )− y cosh(γmσ
t )]

+ fz[x sinh(γmσ
t ) + γ xmσ

t cosh(γmσ
t )

− γ xmσω
t sinh(γmσ

t )− z cosh(β)− z cosh(γmσ
t )]

+ fxx[−mσω
t sinh(β) + cosh(β)]

(46)
+ fyy[−mω

t sinh(γmσ
t ) + cosh(γmσ

t )]
+ fzz[−mσω

t sinh(β) + cosh(β)

−mω
t sinh(γmσ

t ) + cosh(γmσ
t )]

+ 2fxz[−mσ
t sinh(β) + mω

t cosh(β)]
+ 2fyz[mσ

t cosh(γmσ
t )−mσω

t sinh(γmσ
t )]}

is the infinitesimal generator of the linear diffusion process (18). Using Theo-
rem 1.6.1 in [17], the proof is completed if we show that (xN(0), yN(0), zN(0))
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converges as N → +∞, in distribution to (x(0), y(0), z(0)). This last statement
follows by the standard Central Limit Theorem for i.i.d. random variables; indeed,
by assumption, (σi (0),ωi(0)) are independent with law λ, and (19) is just the co-
variance matrix under λ of (σ (0),ω(0),σ (0)ω(0)). It should be pointed out that
Theorem 1.6.1 in [17] does not deal explicitly with time-dependent generators, as
is the case here. To fix this point it is enough to introduce an additional variable,
τ (t) := t , and consider the process α(t) := (x(t), y(t), z(t), τ (t)), whose generator
is time-homogeneous. This argument, together with the fact that the convergence
of HN,tf (x, y, z) to Ht f (x, y, z) is uniform in both (x, y, z) and t , completes the
proof. !

5.4. Proof of Theorem 4.1. We start with a technical lemma.

LEMMA 5.9. For t ∈ [0, T ] we have the convergence in distribution

√
N

(∑
j lσj (t)

N
−L(t)

)
→X ∼N

(
0,

(l1 − l−1)
2V (t)

4

)
,

where L(t) is defined in (28) and V (t) in (24).

PROOF. Define, for x ∈ {−1,1}, the quantity AN
x (t) as the number of σi that,

at a given time t , are equal to x. We may then write 1+m
σ
N(t)

2 = AN
1 (t)

N and 1−m
σ
N(t)

2 =
AN
−1(t)

N . Recall moreover that for N →∞, m
σ
N(t)→mσ

t . We then have

√
N

(∑
j lσj (t)

N
−L(t)

)

=
√

N

(
l1A

N
1 (t) + l−1A

N
−1(t)

N
−L(t)

)

=
√

N

(
l1

1 + m
σ
N(t)

2
+ l−1

1−m
σ
N(t)

2
−L(t)

)

=
√

N

(
(l1 + l−1)

2
+ (l1 − l−1)

2
m
σ
N(t)− (l1 − l−1)

2
mσ

t −
(l1 + l−1)

2

)

=
√

N

(
(l1 − l−1)

2
(
m
σ
N(t)−mσ

t

))→X ∼N

(
0,

(l1 − l−1)
2V (t)

4

)
,

where the last convergence follows from Corollary 3.7 noticing that m
σ
N(t) =

mσ
ρN(t). !

PROOF OF THEOREM 4.1. We have to check that
√

N

(
LN(t)

N
−L(t)

)
→ Y ∼N(0, V̂ (t)),



388 DAI PRA, RUNGGALDIER, SARTORI AND TOLOTTI

where V̂ (t) is defined in (29).
Separating the firms according to whether their σj (t) is +1 or −1,

√
N

(∑
j Lj (t)

N
−L(t)

)
=
√

N

(∑
j :σj (t)=1 Lj(t) +∑

j :σj (t)=−1 Lj(t)

N
−L(t)

)
.

We then add and subtract
∑

j lσj (t) to obtain

√
N

(∑
j :σj (t)=1(Lj (t)− l1)

N
(47)

+
∑

j :σj (t)=−1(Lj (t)− l−1)

N
+
∑

j lσj (t)

N
−L(t)

)
.

Since we have only independence conditionally on σ (t), we need to check whether
the CLT still applies. Let us show the convergence of the corresponding character-
istic functions:

E

[
exp

{
ir

LN(t)−NL(t)√
N

}]

= E

[
E

[
exp

{
ir

(∑
j :σj (t)=1(Lj (t)− l1)√

N
(48)

+
∑

j :σj (t)=−1(Lj (t)− l−1)√
N

+
∑

j lσj (t) −NL(t)√
N

)}∣∣∣σ (t)

]]
.

The last of the three terms is measurable with respect to the sigma algebra gen-
erated by σ (t) so that we can take it out from the inner expectation. Because of
the conditional independence we can separate the remaining terms in the product
of conditional expectations:

E

[
exp

{
ir

∑
j :σj (t)=1(Lj (t)− l1)√

N

}∣∣∣σ (t)

]

×E

[
exp

{
ir

∑
j :σj (t)=−1(Lj (t)− l−1)√

N

}∣∣∣σ (t)

]
.

By conditional independence,

E

[
exp

{
ir

∑
j :σj (t)=1(Lj (t)− l1)√

N

}∣∣∣σ (t)

]

=
AN

1 (t)∏

j=1

E

[
exp

{
ir

Lj (t)− l1√
N

}∣∣∣σ (t)

]
=
[
1− v1

2
r2

N
+ o

( 1
N

)]AN
1 (t)

,
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where the last equality follows because l1 and v1 are the first two conditional mo-
ments of Lj(t).

Recalling that AN
1 (t)

N = 1+m
σ
N(t)

2 converges almost surely to 1+mσ
t

2 we have that

lim
N→∞

[
1− v1

2
r2

N
+ o

( 1
N

)]AN
1 (t)

= lim
N→∞

[
1− v1

2
r2

AN
1 (t)

AN
1 (t)

N
+ o

( 1
N

)]AN
1 (t)

= exp
[
−r2

2
1 + mσ

t

2
v1

]
.

The same argument holds for the terms where σj (t) =−1. Since
AN
−1(t)

N → 1−mσ
t

2 ,
we have

lim
N→∞

[
1− v−1

2
r2

AN
−1(t)

AN
−1(t)

N
+ o

( 1
N

)]AN
−1(t)

= exp
[
−r2

2
1−mσ

t

2
v−1

]
.

Finally, recall from Lemma 5.9 that
∑

j lσj (t)−NL(t)
√

N
converges to X ∼ N(0,

(l1−l−1)
2V (t)

4 ), so that

lim
N→∞

E

[
exp

{
ir

∑
j lσj (t) −NL(t)√

N

}]
= exp

[
−r2

2
(l1 − l−1)

2V (t)

4

]
.

Thus, denoting by E[· · · |σ (t)] the inner conditional expectation in (48), we have
shown that

lim
N→∞

E[· · · |σ (t)] = exp
[
−r2

2
(l1 − l−1)

2V (t)

4

]
exp

[
−r2

2
1 + mσ

t

2
v1

]

× exp
[
−r2

2
1−mσ

t

2
v−1

]

= exp
[
−r2

2
V̂ (t)

]
.

By the Dominated Convergence Theorem, taking the limit as N → +∞ in
(48), we can interchange the limit with the outer expectation, and the proof is
completed. !

6. Conclusions and possible extensions. In this paper we have described
propagation of financial distress in a network of firms linked by business rela-
tionships.

We have proposed a model for credit contagion, based on interacting particle
systems, and we have quantified the impact of contagion on the losses suffered
by a financial institution holding a large portfolio with positions issued by the
firms.
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Compared to the existing literature on credit contagion, we have proposed a
dynamic model where it is possible to describe the evolution of the indicators of
financial distress. In this way we are able to compute the distribution of the losses
in a large portfolio for any time horizon T , via a suitable version of the central
limit theorem.

The peculiarity of our model is the fact that the changes in rating class (the
σ variables) are related to the degree of health of the system (the global indi-
cator mσ ). There is a further characteristic of the firms that is summarized by a
second variable ω (a liquidity indicator) and that describes the ability of the firm
to act as a buffer against adverse news coming from the market. The evolution of
the pair (σ,ω) depends on two parameters β and γ , which indicate the strength of
the interaction.

The fact that our model leads to endogenous financial indicators that describe
the general health of the systems has allowed us to view a credit crisis as a mi-
croeconomic phenomenon. This has also been exemplified through simulation re-
sults.

The model we have proposed in this paper exhibits some phenomena having
interesting financial interpretation. There are many extensions that could make
the model more flexible and realistic, allowing also calibration to real data. One
of them, concerning the symmetry of the model, has already been mentioned in
Remark 2.1. Other more substantial extensions are the following:

• In real applications, the variable σ denoting the rating class is not binary; one
could extend the model by taking σ to be valued in a finite, totally ordered set.

• One could assume the fundamental values ωi to be R+-valued, and evolving
according to the stochastic differential equation

dωi (t) = ωi(t)[f (m
σ
N(t)) dt + g(m

σ
N(t)) dBi(t)] + dJi(t),

where f and g are given functions, the Bi(·) are independent Brownian mo-
tions, and Ji(·) is a pure jump process whose intensity is a function of ωi (t) and
m
σ
N(t).

• An interesting extension of the above model consists in letting the functions
a(·, ·, ·) and b(·, ·, ·) in (1) be random rather than deterministic; in particular
they may depend on (possibly time-dependent) exogenous macroeconomic vari-
ables.

• The mean-field assumption may be weakened by assuming that the rate at
which ωi changes depends on an i-dependent weighted global health of the
form

m
σ
N,i := 1

N

N∑

j=1

J

(
i

N
,

j

N

)
σj ,

where J : [0,1]2 → R is a function describing the interaction between pairs of
firms. In other words, the ith firm “feels” the information given by the rating of
the other firms in a nonuniform way.
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Other generalizations could be useful, in particular to introduce inhomogeneity in
the model. In principle, the extensions listed above could be treated by the same
techniques used in this paper.

APPENDIX: THE EIGENVALUES OF THE MATRIX A IN THEOREM 3.6

We begin by writing down explicitly the limit matrix A:

A = 2





− cosh(β)

−γ sinh(γmσ
∗ )

cosh(γmσ∗ )
sinh(γmσ

∗ ) + γ cosh(γmσ
∗ )

sinh(γmσ
∗ ) + γmσ

∗ cosh(γmσ
∗ ) + γ

sinh(β) + mσ
∗ sinh(γmσ

∗ )
cosh(β) + cosh(γmσ∗ )

sinh(γmσ
∗ )

sinh(β) 0
− cosh(γmσ

∗ ) 0
0 −(cosh(β) + cosh(γmσ

∗ )
)





where for the first term in the second row we have used (16). By direct computa-
tion, one shows that the eigenvalues of A are given by the following expressions:

λ1 =−2
(
cosh(β) + cosh(γmσ

∗ )
)
,

λ2 =−
{

cosh(β) + cosh(γmσ
∗ )

+
√
(
cosh(β)− cosh(γmσ∗ )

)2 + 4γ
sinh(β)

cosh(γmσ∗ )

}

,(49)

λ3 =−
{

cosh(β) + cosh(γmσ
∗ )

−
√
(
cosh(β)− cosh(γmσ∗ )

)2 + 4γ
sinh(β)

cosh(γmσ∗ )

}

.

Note that these eigenvalues are all real, and that clearly λ1,λ2 < 0. Moreover,
λ3 < 0 if and only if

γ

γc
< cosh2(γmσ

∗ )(50)

where γc = 1
tanh(β) .

(a) If γ < γc, then by part (i) in Theorem 3.4 we have mσ
∗ = 0. In this case

(50) holds, because
γ

γc
< 1 = cosh2(γ · 0).
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In this case the matrix A has three different real eigenvalues, all strictly negative.
(b) If γ = γc, we still have mσ

∗ = 0, but it is immediately seen that λ3 = 0.
(c) Finally, if γ > γc, set y = γmσ

∗ ; by (15) we have

mσ
∗ = 1

γc
tanh(γmσ

∗ ) ⇔ y = γ

γc
tanh(y).(51)

Then (50) is equivalent to showing that
γ

γc
< cosh2(y)(52)

and from (51) we obtain
γ

γc
= y

tanh(y)
= y

sinh(y)
cosh(y) < cosh(y) < cosh2(y)

because y/ sinh(y) < 1 and cosh(y) < cosh2(y), since y = γmσ
∗ > 0 if γ > γc.

Then, in this case too, the matrix A has three different real eigenvalues, all strictly
negative.
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