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1 Introduction

The influence of exogenous factors in stochastic frontier models has been modeled with
two alternative approaches. One assumes that the external factors influence the shape or
structure of the technology, i.e., how conventional inputs are converted to outputs, while
the other assumes that they directly influence the degree of technical inefficiency, i.e., the
efficiency with which inputs are converted into outputs (see, e.g., Coelli et al., 1999 or
Kumbhakar and Lovell, 2000). In the literature on productivity measurement, however, no
contribution explicitly considers the impact of exogenous factors on the technological change,
i.e., the shift of the technological possibilities over time.

In this paper we propose a model where external factors can affect the technological
change. To this end, we adapt the time trend model of technical change (Baltagi and Griffin,
1988), recently used by Kumbhakar (2004) to accommodate TFP into econometric models.
Following Battese and Coelli (1992; 1995), and extending the methodology presented in
Aiello et al. (2008), we employ a time varying inefficiency model. Using a stochastic frontier
approach, we propose a model for output growth decomposition to investigate the main
determinants of growth. This allows to distinguish whether exogenous factors have an impact
on the structure of the technology, on the technical efficiency (technological catch-up), or on
the technical change.

Being able to ascertain how external factors affect TFP growth can be important, for
instance, for the empirical applications of endogenous growth theories. In fact, recent contri-
butions emphasize the different roles that “appropriate” institutions and policies may play
in either backward or advanced economies, and the distinction between innovation activities
and adoption of existing technologies from the (world) technology frontier (Acemoglu et al.,
2006). In this context, low skilled human capital appears better suited to technology adop-
tion, while skilled human capital has a growth enhancing impact which increases with the
level of development, i.e., with the proximity to the frontier (Vandenbussche et al., 2006).
This seems to explain the negative impact that our measure of human capital (i.e., average
years of schooling in the labor force ) has on total factor productivity. Similar considerations
and those related to the appropriateness of institutional and policy choices can be extended
to consider the role of financial institutions, technological spillovers, and the like.

The contribution of this study is the investigation of the effects of exogenous factors
on the technological progress. Among the determinants of growth that we consider, we
specifically investigate the role of financial development, public infrastructure and R&D
spillovers using data at firm level. We find that the model with the external variables
affecting the technological structure best fits the data, meaning that the role of exports,
technological investments and spillovers, public infrastructures and banking efficiency all
have a positive effect on how inputs are converted into outputs. In the next section we
introduce the model, we then present the results of the estimation, and finally conclude with
some suggestions for future research.
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2 Model specification and empirical implementation

The product of a firm i at time t, Yit, is determined by the levels of labor input and private
capital, Lit and Kit. It is also affected by a set of variables that are external to individual
firms, Zit, while the level Hicks-neutral multi-factor productivity is given by the parameter
A. The production function is expressed as follows:

Yit = F (Ait, Lit, Kit, Zit). (1)

Ait can be influenced by the external variables Zit, so that equation (1) can be rewritten as:

Yit = Ait(Zit)F (Lit, Kit, Zit), (2)

where the level of total factor productivity, TFPit = Ait(Zit), depends on the (embodied and
disembodied) technological progress Ait (Barro and Sala-i-Martin, 2003) and on the external
variables Zit.

The most common approaches in the stochastic frontier literature model the impact of
different environmental conditions either into the structure of the technology or into the
technical efficiency (Coelli et al., 1999). In this study we suggest a third approach, which
assumes that external conditions may affect the shift of the technological frontier. We present
the three different cases, starting with our suggested approach and contribution.

• Model 1: environment affecting the technological progress.

We assume that the TFPit component can be decomposed into the level of technology
Ait, which depends on the variables Zit, an efficiency measure 0 < τit ≤ 1,1 and an error
term wit, which captures the stochastic nature of the frontier:

TFPit = Ait(Zit)τitwit. (3)

We model the effects of the external factors by using a time trend T and, by writing equation
(2) in translog form, we have:

yit = α + β1kit + β2lit + β3
k2

it

2
+ β4

l2it
2

+ β5litkit + Tit(zit)− uit + vit, (4)

where lower case letters indicate variables in natural logs [i.e., yit = ln(Yit)], while zit is the
(K × 1) vector of environmental variables, uit = − ln(τit) is a non-negative random variable,
and vit = ln(wit), distributed as N(0, σv). Then, we model the effects of the external factors
on Ait with a time trend (Baltagi and Griffin, 1988; Kumbhakar, 2004) which depends on
the these variables as follows:

Tit = γ0t+ γ1
t2

2
+ tz′itγ, (5)

1When τit = 1 the firm produces on the efficient frontier.
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where γ is a (K×1) parameter vector. From the production function (4) one can compute
technical change (TC), defined as the percentage change in the total production over time,
given by

TCit = γ0 + γ1t+ z′itγ. (6)

• Model 2: environment affecting the technological catch-up.

An alternative model following the efficient frontier literature (see, e.g., Färe et al., 1994),
recently used by Kumbhakar, 2004, considers that the TFPit component can be decomposed
into the level of technology Ait, a measurement error wit, and the efficiency measure τit which
now depends on the external variables Zit (for a thorough treatment of this model see, e.g.,
Coelli et al., 1999):

TFPit = Aitτit(Zit)wit. (7)

By writing equation (2) in translog form we have:

yit = α + β1kit + β2lit + β3
k2

it

2
+ β4

l2it
2

+ β5litkit + β6t+ β7
t2

2
− uit + vit. (8)

The expected inefficiency is specified as:

E(uit) = z′itδ, (9)

where uit are assumed to be independently but not identically distributed, and δ is the
(K × 1) vector of coefficients to be estimated.

• Model 3: environment affecting the structure of the technology.

An alternative model, quite standard in the literature on convergence, considers that the
variables external to individual firms, Zit, affect the production function, and therefore (1)
can be rewritten as:

Yit = AitF (Lit, Kit, Zit) (10)

where the TFPit component therefore can be decomposed into the level of technology Ait,
a white noise wit, and an efficiency measure τit, none of which now depends on the external
variables Zit. By writing equation (10) in translog form we thus have:

yit = α + β1kit + β2lit + β3
k2

it

2
+ β4

l2it
2

+ β5litkit + β6t+ β7
t2

2
+ z′it θ − uit + vit (11)

where uit = − ln(τit) is a non-negative random variable, and vit = ln(wit).
2

2Notice that in model 2 and 3, from the production function (8) and (11) respectively, technical change
is given by TCit = β6 + β7t.
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3 Estimation results

We use panel data for about 1,200 Italian manufacturing firms for the period of 1998 to 2003
(see Aiello et al., 2008 for details). Capital and labor are measured by the book value of total
assets and by the number of employees respectively. We control for labor quality using labor
as the product of the number of each firm’s workers and their average years of schooling (see,
e.g., Mastromarco and Woitek, 2006). The external variables Zit are defined as follows. We
have a dummy indicating whether a firm exports. Human capital is computed for each firm
as the average number of years of schooling and the regional rate of returns on education
(Ciccone, 2004). The technology spillovers for each firm are given by the weighted sum
of other firms’ R&D stock. The stock of internal technological capital needed to calculate
the R&D spillovers is determined by current and past investments in R&D.3 Yearly public
capital data at regional level includes economic infrastructures, with value determined using
the perpetual inventory method. To measure financial development we use a measure of
banks’ technical efficiency that takes into account credit quality aggregated at regional level,
provided by Zago and Dongili (2006). All variables in values are taken at constant 2000
prices.

To estimate the parameters of the production functions, together with the parameters
of the inefficiency models - Battese and Coelli (1992) for the 1st and 3rd specifications, and
Battese and Coelli (1995) for the second specification -, we use the single-stage maximum
likelihood procedure proposed by Kumbhakar et al. (1991) and Reifschneider and Stevenson
(1991), in the modified form suggested by Battese and Coellifor panel data with time-variant
technical efficiency.4 As discussed in Kumbhakar and Lovell (2000), this stochastic approach
allows the decomposition of output growth into its sources, namely input accumulation and
TFP growth, and the latter into technological change, efficiency change, and scale efficiency
change.

The results of the estimations of the three models are presented in Table 1. Although the
translog form coefficients cannot be directly interpreted economically, it is interesting to note
that they are statistically significant in all models.5 To control for industry fixed effects, we
have augmented the production function by including dummies according to Pavitt (1993)
classification, which are all significant in model 2 and 3. In model 1, the high-technology
sector (Pavitt4) is not significant. The coefficients of the time trend (t and t2) are positive
and significant.6

3Data on R&D are from Aiello and Cardamone (2008).
4MLE takes into consideration the asymmetric distribution of the inefficiency term (Aigner et al., 1977),

using a truncated distribution function (van den Broeck et al., 1994).
5Due to the presence of zero values in the data, the variables used in the estimations are not normalized.

However, we standardized the coefficients, expressing them in terms of deviations from the mean. In model
2, for instance, we find that a standard deviation improvement in technology spillovers, bank efficiency and
public infrastructure would increase efficiency by about 1.2, 0.5 and 0.2 respectively. Further results are
available upon request.

6We also perform the Likelihood-Ratio (LR) test of the null hypothesis that the production function is
Cobb-Douglas. The tests results are 308.97 for model 1, 379.98 for model 2, and 395.18 for model 3. We
thus can reject the null in favor of the translog form in all models.
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We also report the estimated values of the output elasticities calculated at the average
value for each input. The results displayed are based on variable means for the whole panel.
As expected, all elasticities are positive and significant: output is elastic especially with
respect to labor (about 0.85 for all models), while output elasticity with respect to capital
is much lower (around 0.15).

We check for linear homogeneity by testing the null hypothesis that the sum of the
estimated elasticities is not statistically different from one. If we reject the null hypothesis,
then we can infer that technology has increasing (decreasing) returns to scale when the
sum of elasticities is above (below) unity. Results show that the hypothesis of constant
returns to scale can be rejected, in favor of (slightly) decreasing returns to scale. With the
translog functional form we can also estimate the degree of substitutability between capital
and labor.7 Results show that all elasticities are significantly greater than one, i.e., if the
marginal rate of substitution changes by one percent, then the induced change in the input
ratio will be more than one percent. This outcome confirms that the choice of a translog
production function is appropriate and that imposing an elasticity of substitution equal to
one, as in the Cobb-Douglas case, would bias the results.

Turning to the impact of external factors, in model 2, given its specification and the
way technical efficiency is modeled (see eq. 8 and 9), a negative sign stands for a positive
effect. The coefficient of the dummy for exporting firms has a positive sign, suggesting that
these firms appear more prone to TFP growth. Technological investments and technological
spillovers both have positive signs and are statistically significant: firms with high levels
of internal innovative activities and with a capacity to absorb external technology perform
better. Another factor influencing TFP growth is the regional public infrastructures, which
coefficient is positive and significant. We also find that the estimated parameter of regional
bank technical inefficiency (taking into account credit quality) is negative and significant.
Given the specification of bank inefficiency8, an increase in bank efficiency enhances firms’
TFP and output.

Regarding human capital, the coefficient is statistically significant but has a negative
sign, suggesting that a higher level of human capital leads to a lower TFP growth. The new
endogenous growth theories (Aghion and Howitt, 1992; Romer, 1990) describe human capital
as the engine of growth through innovation. Grossman and Helpman (1991) show that the
skill composition of the labor force matters for the amount of innovation in the economy.
In particular, they obtain that an increase in the stock of skilled labor is growth-enhancing
while an increase in the stock of unskilled labor can be growth-depressing. In this context,
low skilled human capital appears better suited to adoption, while skilled human capital
has a growth enhancing impact which increases with the level of development, i.e., with the
proximity to the frontier (Vandenbussche et al., 2006).

Our measure of human capital has a direct positive effect as labor force-enhancing on

7We calculate the elasticity of substitution, which represents the percentage change in input ratio induced
by a one percent change in the marginal rate of substitution. In the two-variables translog case, this elasticity
is a non-linear function and its variance is obtained with the delta method.

8With the directional distance function employed by Zago and Dongili (2006), the higher the score the
lower is bank’s efficiency.
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firms’ total production but, differently, the indirect effect on TFP is negative. This result is
unexpected, and it might be related to the measure of human capital used in the estimations,
based on the average level of workers education and, thus, on a proxy of general more than
specific human capital (Becker, 1975). However, it may also be in line with the findings that
education is strongly associated with growth only for the countries with the lowest level of
education (e.g., Krueger and Lindahl, 2001).

We also run a series of statistical tests to ascertain which model best fist the data when
the external factors are jointly considered. We perform the information criteria tests and
the modified likelihood-ratio tests suggested by Vuong (1989) to compare non-nested models
(Table 3).9 The results show that model 3 best fits the data, a finding consistent across
all tests. Therefore, taken together the external variables considered in this study have a
significant effect on the technological relationships, that is, on how inputs are converted into
outputs.

As a last piece of evidence, we show the results of the technological change as they emerge
from the different models (Figure 1). In model 1, the technological progress is about 0.5%
each year, starting from about 0.2% in 1998 to about 0.7% in 2003. A similar trend, at lower
levels, appears in model 2: it is overall below 0.1% per year, starting from about 0.04% in
1998 and ending at about 0.13% in 2003. Quite different are the results for model 3, where
the levels are lower and the trend slightly decreasing over time, from 0.06% to 0.04%.

4 Concluding remarks

In this study we combine growth accounting with efficient frontier techniques to empirically
investigate the determinants of output growth using data for Italian manufacturing firms.
By applying stochastic frontier techniques, we introduce some methodological improvements
to the existing empirical literature by modeling the effects of external factors on techno-
logical progress. While some of the external variables used in this study might suffer from
endogeneity bias, those we are mostly interested in (e.g., R&D spillovers, infrastructures,
and regional bank efficiency) are defined at a more aggregate level and our results show that
they are all statistically significant and economically relevant.

Employing our specific dataset we reject our proposed model in favor of a more tradi-
tional one, from which technological progress emerges as being quite modest and, contrary
to the other two models, decreasing over time. Moreover, all the determinants of growth
that we consider have similar effects across all the models confirming the important role of
these determinants. Although it would be desirable to lengthen the time series available, in
our application to Italian manufacturing firms we find that part of the recent productivity
slowdown observed in the late 1990s and early 2000s can be related to an under-investment
in public infrastructures, to the modest efficiency of the Italian banking sector, and to the
low level of innovative efforts.

9The specifications are non-nested because we assume different models for the inefficiency terms, namely
Battese and Coelli (1992) for the 1st and 3rd specifications, and Battese and Coelli (1995) for the second
specification.
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We believe that the methodology suggested, when it helps identifying the determinants
of firm efficiency, may also be useful in suggesting specific policy implications. Future work
may employ this methodology to empirically test the recent developments in growth theory,
where much emphasis is placed on the role that appropriate institutions and policies may
play at different stages of economic development.
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Table 2: Model Selection: Akaike & Schwartz Information Criteria

Model Likelihood Akaike I.C. Schwartz I.C.
1 -3403.300 1.007 1.025
2 -3528.200 1.044 1.062
3 -3447.100 1.020 1.038

Table 3: Model Selection: Vuong’s Test

Model Vuong S.E. Z 95% C.I.
1 vs 2 81.100 0.968 0.952 -0.976 2.881
1 vs 3 -43.800 0.282 -0.150 -1.192 0.891
2 vs 3 -124.900 2.296 -3.479 -6.449 -0.509

Figure 1: Technological change over time with the different models
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