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Abstract

We introduce a novel economic indicator, named excess idle time (EXIT),

measuring the extent of sluggishness in observed financial prices. Using a

complete limit theory and formal tests, we provide econometric support for

the fact that high-frequency transaction prices are, coherently with liquid-

ity and asymmetric information theories of price determination, generally

stickier than implied by the ubiquitous semimartingale assumption and its

noise-contaminated counterpart. EXIT provides, for every asset and each

trading day, an e↵ective proxy for the extent of illiquidity which is easily

implementable using transaction prices only. When applied to the mar-

ket, EXIT uncovers an economically-meaningful short-term and long-term

compensation for illiquidity risk in market returns.
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§Università di Siena, Piazza S.Francesco 7, 53100 Siena, Italy. E-mail: reno@unisi.it

1



1 Introduction

If financial prices are Ito semimartingales, high-frequency returns should be above

an appropriately-defined shrinking threshold with large probability. In other

words, a large incidence of small returns is in contradiction with semimartingale-

type behaviour.

Consistent with this intuition, we introduce a novel stochastic quantity, named

idle time. When computed over a trading day, idle time yields the fraction of a

day for which price adjustments are sluggish. Such a fraction converges to zero

if the price process is an Ito semimartingale, but tends to a number between 0

(not included) and 1 if the price dynamics are staler than implied by the ubiqui-

tous semimartingale assumption. Formally, define by pt0 , . . . , ptn the (logarithmic)

transaction prices over the time period [0, T ]. Let ⇠n be a vanishing real sequence.

Idle time is defined as

IT =
1

T

n
X

i=1

(ti � ti�1

)1{|pti�pti�1 |⇠n}. (1.1)

We derive the distributional limiting properties of idle time and its bias-corrected

counterpart, excess idle time or EXIT, using an asymptotic design which increases

the number of price observations over a trading period (n ! 1). Under the semi-

martingale null hypothesis and suitable assumptions on the threshold, we show

that the asymptotic distribution of EXIT is (stably, mixed) normal, centered at

zero, and with a limiting variance which depends inversely on the infinitesimal

(spot) variance of the return process. A more volatile return process would there-

fore lead to a more concentrated distribution around zero and stronger rejections

of the semimartingale null.

What leads to price staleness? Classical models of price formation postulate that

informed traders react to new information not yet reflected in the price of a se-

curity, and transact, only if the trade guarantees a profit net of transaction costs.

Consequently, due to lack of trading, a security with higher transaction costs

should experience less frequent price updates and a larger number of ”small” re-

turns than a security with a lower cost of transacting. The incidence of ”small

returns” can therefore be viewed as being correlated with the magnitude of trans-

action costs as well as with the probability of arrival of informed traders. Given a

certain probability of arrival of informed traders, the smaller the transaction cost,

the stronger their ability to exploit deviations between equilibrium prices and ob-
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served prices, the lower the number of ”small” price updates. Conversely, given a

certain size of transaction costs, the higher the probability of arrival of informed

traders, the higher - in general - the likelihood of sluggish price adjustments.

This logic, grounded in adverse selection models of price determination as in

Glosten and Milgrom (1985) and Kyle (1985) among others, clarifies that there ex-

ists an important interaction between liquidity and asymmetric information. Since

the size of transaction costs is correlated with liquidity, the number of stale price

adjustments (and, consequently, the magnitude of EXIT) will grow both with in-

creases in illiquidity and with increases in the probability of arrival of informed

traders. Di↵erently put, while under the null of an observed price process which

impounds all available information and behaves as an Ito semimartingale, EXIT is

zero (mixed) normally distributed in the limit, under a natural ”frictional” alter-

native rooted in market microstructure theory, our proposed measure may diverge

from zero at a rather fast speed. We study the behavior of EXIT (under the al-

ternative) for an increasing size of transaction costs and an increasing probability

of arrival of informed traders. We show significant statistical power in detecting

deviations from a world in which securities’ prices contain all available information

and evolve as implied by frictionless no-arbitrage theories of price formation, i.e.,

a world in which prices are Ito semimartingales (Du�e, 2008).

EXIT can be computed for every period (every day, say) in our sample. For every

period, it would measure the extent of price deviations from an ideal, frictionless

world. Under an assumption of time-invariant asymmetric information, EXIT can

be viewed as a liquidity proxy (the more illiquid an asset, the larger the transaction

costs, the more sluggish the price adjustments since informed traders may not be

able to profit from their knowledge). In light of our arguments above, it may

also be viewed, more broadly, as a friction proxy, capturing jointly the extent

of illiquidity (i.e., leading to larger transaction costs) as well as the extent of

asymmetric information. This paper takes the view that the level of asymmetric

information (as opposed to the probability of informed trading, which depends on

the magnitude of execution costs) is stable or slowly changing. In consequence,

we interpret EXIT as a liquidity measure. We will return to the assumption of

stable asymmetric information - a classical maintained assumption in the liquidity

literature - and will discuss it further in what follows.

Postulating a semimartingale null is natural, in that it is consistent with classical

continuous-time modelling in finance. We, however, show that a more internally-

consistent (given an accepted ”frictional” alternative) null hypothesis is a price
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formation process in which observed prices have short-memory deviations around

the equilibrium Ito semimartingale. These contaminations - justified economically

in our framework - are often called, in other literatures, ”microstructure noise”.

The addition of microstructure noise under the null does not modify the logic of

our test as laid out above. If anything, the addition makes the return process

more prone to large deviations. Hence, rejections of the null will provide stronger

evidence in favor of the frictional alternative. Assuming a noise-contaminated

semimartingale null hypothesis, we show that the asymptotic distribution of EXIT

is normal, centered at zero, and with a limiting variance which depends inversely

on the variance of the noise, rather than on the infinitesimal variance of the return

process as in the no-noise case. The rate of convergence is also faster than in the

case without noise.

We demonstrate that EXIT can be employed to test for asymmetric information

and, given a level of asymmetric information, to measure the extent of illiquid-

ity. Empirical work on US market returns (proxied here by S&P 500 futures

returns) shows that EXIT is larger than zero, and statistically significantly so,

for a large number of days corresponding to well-known crisis like the Asia crisis

and Lehman’s default, thereby providing econometric support for the presence of

asymmetric information - and informed trading - over time. The use of EXIT as

a liquidity proxy uncovers an economically-meaningful short- and long-run com-

pensation for illiquidity risk in market returns.

A successful empirical literature in finance uses the incidence of daily zero returns

(zeros) as an illiquidity measure (e.g., Lesmond, 2005, Bekaert et al., 2007, Naes

et al., 2011). It is argued that employing price data alone is an important advan-

tage of this approach over existing proxies particularly in markets, like emerging

markets, in which information other than that in transaction prices is hard to

come by (Bekaert et al., 2007). EXIT shares this useful feature. If setting ⇠n

= 0, one can indeed interpret the measure that we propose as the proportion of

intra-period zero returns over the time interval [0, T ]. More generally, however,

we capture the percentage of price adjustments below a (vanishing, in the limit)

threshold. While the applied literature on zeros provides empirical motivation for

aspects of our approach, we di↵er from it along a variety of dimensions.

First, di↵erently from the work on zeros, we provide a complete theory of inference

for the proposed measure under a null process cast in the tradition of classical

continuous-time finance theory. The alternative process allows for the presence

of execution costs (c) and asymmetries in information (I defines the likelihood of
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arrival of informed agents). The proposed theory justifies using the measure as

an illiquidity proxy (given a certain level of asymmetric information) as well as

the construction of two alternative tests: a test for the semimartingale null (under

c = I = 0) and a test for a noise-contaminated semimartingale null (under I =

0 and c 6= 0). Since execution costs are - even in very liquid markets - present,

the former test has largely a theoretical value. The latter has, however, both a

theoretical and an empirical significance. It allows us to answer the question: do

prices behave as semimartingales contaminated by noise, a popular specification in

other successful literatures? Equivalently, in our framework it allows us to test for

the presence of asymmetric information. We find that information-based trading

may lead to sluggish behavior that is, in terms of time-series modelling of the price

process, inconsistent with a noise-contaminated semimartingale.

Second, we show that the presence of a threshold, absent in the construction of

zeros, is both theoretically necessary and empirically important. It is theoreti-

cally necessary to develop an inferential theory under a null hypothesis in which

the underlying equilibrium process has continuous adjustments and the null dis-

tribution is not degenerate at zero. In discrete time, if logarithmic returns were

endowed with a continuous density and if ⇠n = 0 (as in the literature on zeros),

EXIT would be identically null for every sample size. The same would occur in

continuous time when working with an underlying Ito process, for instance. As

said, we operate in continuous time and evaluate the limiting and finite sample

properties of the proposed measure (with ⇠n > 0). In this context, we discuss

the important empirical role played by the sequence ⇠n in trading o↵ size and

power. We find that a larger threshold is needed for testing (for the presence of

asymmetric information, for example) while a smaller threshold is beneficial when

measuring illiquidity through EXIT. In sum, the use of a threshold allows us to

exploit the informational content of high-frequency prices for testing as well as for

estimation.

Third, guided by the proposed limit theory, we show that solely taking the percent-

age of ”small returns” below a threshold, however small, is sub-optimal in finite

samples. Since, even in the absence of illiquidity, there is a likelihood of small

returns below the assumed threshold, the expected percentage of these ”spurious”

small returns has to be subtracted for the measure itself to capture ”genuine”

small returns induced by illiquidity. EXIT (i.e., the bias-corrected version of IT)

accounts for this bias directly.

Fourth, we show that the use of high-frequency prices in the calculation of EXIT
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translates into a considerably less noisy, and therefore more e�cient, illiquidity

proxy than is the case for zeros. This is analogous to improvements (over daily

estimates) in volatility estimation obtained by virtue of high-frequency measures

of variance, as in the realized variance tradition.

The paper proceeds as follows. Section 2 provides a motivating model of price

formation with transaction costs and asymmetric information. We evaluate the

properties of EXIT along both dimensions. Section 3 studies the relation between

EXIT and execution costs as a function of the sampling frequency and the choice

of threshold. We relate EXIT to zeros as well as to a suitable high-frequency

benchmark. In this context, we provide evidence for its promising performance

in correlating with both nominal and e↵ective costs of transacting. Section 4

discusses an asymptotic theory for EXIT estimates under a classical semimartin-

gale null as well as in a model in which the null allows for microstructure noise

contaminations, whose presence is justified structurally in our framework. These

results are then contrasted with a frictional alternative implying price sluggish-

ness. In Section 5 we study the finite sample properties of the proposed measure

by simulation, and provide information on the choice of the vanishing threshold

⇠n. Section 6 contains empirical work focusing on a test for asymmetric informa-

tion and the evaluation of short-term and long-term compensations for illiquidity

risk in market returns. Useful extensions of the proposed measure, and further

discussions, are provided in Section 7. Section 8 concludes. Technical details and

issues of implementation are presented in the Appendices.

2 A model of price formation with stale returns

We consider a simple model of price formation featuring transaction costs and

traders with di↵erent degrees of information. The model captures the e↵ect de-

scribed in the introduction: if the value of the information signal is larger than

the cost of trading, informed traders will act on it and trade. Otherwise, they will

choose not to trade, thereby leading to price staleness. For simplicity, the model

is written in discrete time. It can, however, be readily viewed as the discretized

version of an analogous continuous-time model driven by Brownian shocks.

The model has three components: an equilibrium price process, a midquote ad-

justment, and observed prices. The equilibrium price process follows (in the log-

arithm):

pet = pet�1

+ �
p
� ✏t, ✏t ⇠ N(0, 1) (2.1)
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where � is the time di↵erence between price adjustments. Hence, equilibrium

prices are random walks. The addition of a risk-premium (or a finite variation

component, in the language of continuous-time finance) is innocuous. In Section

4, the null hypothesis will, in fact, be stated for a semimartingale price process,

i.e., a martingale with drift.

Denote, now, by mt the (logarithmic) mid-quote of the bid and ask prices at time

t. The expected midpoint is assumed to coincide with the expected equilibrium

price, i.e., E(mt) = E(pet ). In addition, the midpoint adjusts to the equilibrium

price with speed given by the parameter �:

mt = mt�1

+ �(pet �mt�1

). (2.2)

The larger �, the faster the adjustment. If � = 1, mt = pet at all times.

Finally, the observed price depends on the trader type. Denote by I the probability

of arrival of an informed trader (PAIT), and by 1 � I the probability of arrival

of a noise trader. The informed trader knows the equilibrium price and makes

his/her decision (buy/sell/do nothing) by comparing the gap between midquote

and equilibrium price to the transaction cost c. One can think of c as the half

bid-ask spread. In reality, since a large number of transactions occur within the

spread, it can be viewed as a more realistic notion of execution cost than the half

bid-ask spread. If |pet�mt|  c the informed trader does not trade. If |pet�mt| > c,

the observed trading price is

pt = mt + c1{pet�mt>c} � c1{pet�mt<�c}. (2.3)

Noise traders just toss a coin, and when they trade the observed price is

pt = mt + ⌘tc, (2.4)

where ⌘t is a random variable taking the values ±1 with likelihood 50%. We

note that PAIT (the probability of arrival of informed traders) does not coincide

with PIN, Easley and O’Hara (1987)’s probability of informed trading. Given

the model, in fact, the informed traders may, or may not, trade depending on

convenience. While the latter (PIN) is certainly time-varying (given time-varying

execution costs), the former (PAIT) is generally assumed to be constant in the

literature. As said, we will return to this issue.

The model is a generalization of the data-generating process in Hasbrouck and Ho
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Figure 1: EXIT as a function of transaction cost and PAIT, the probability of
arrival of informed traders, computed under the model assumptions in Section 2,
with � = 0.46 and di↵erent values of �.

(1987). The generalization is in Eq. (2.3). Here, we give a role to asymmetric

information in leading to sluggishness in the price adjustments. This e↵ect is in

agreement with adverse selection models in the tradition of Glosten and Milgrom

(1985) and Kyle (1985), justifies formally the arguments (behind the LOT measure

and zeros) in Lesmond, Ogden and Trzcinka (1999) and Lesmond (2005), and is

consistent with the approach in Bandi, Lian and Russell (2011).

They key parameters for our purposes are c (the size of transaction costs) and

I (the probability of arrival of informed traders). In general, given c (or I), an
increase in I (or c) is expected to lead to a larger number of small returns and,

hence, higher values of EXIT. By increasing c and I, one can therefore evaluate

the statistical power of EXIT under a sensible ”frictional” alternative. Next, we

do so while setting � = 0.46 (the solution implied by Hasbrouck and Ho’s empirical

work) and varying �, the volatility of the return process.
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2.1 EXIT with illiquidity and asymmetric information

Figure 1 shows the mean value of

EXIT =
1

T

 

n
X

i=1

�n1{|pti�pti�1 |⇠n} �
r

2

⇡

⇠n
p
�n

�

!

(2.5)

for transaction costs in the range [0 � 0.7]%, where �n is the distance (assumed

constant, for the time being) between consecutive observations. When the price

is missing, we use the last available one. We note that EXIT in Eq. (2.5) is the

bias-corrected analogue of IT in Eq. (1.1). This bias correction is conceptually

important. Under a frictionless null, there is still a (vanishing, as n ! 1) proba-

bility of sluggish behavior. This adjustment (e↵ectively, the limiting expectation

of the indicator under the summation sign) is designed to remove this e↵ect and

capture genuine staleness. We refer the reader to Section 4 for details.

The value of ⇠n is 10�5, giving a ratio of transaction costs over ⇠n in the range

reported in the figures. Each panel corresponds to a di↵erent value of volatility,

increasing from � = 0.5% (top-left) to � = 10% (bottom-right).

For low values of volatility, we observe a one-to-one correspondence between mean

EXIT and the probability of arrival of informed traders. This is due to the fact

that, if volatility is close to zero, the informed traders never trade since they cannot

gain from themt�pet gap. For this reason, we observe a percentage of small returns

proportional to the probability of arrival of informed traders independently of the

magnitude of transaction costs. Of course, this is not the case for zero transaction

costs. In this case, we observe zero mean EXIT no matter the probability of

arrival of informed traders because the observed price essentially coincides with

the equilibrium price. Informed traders cannot exploit the mt � pet gap also in

the case when � approaches 1. For a large speed of adjustment �, the di↵erence

|mt � pet | is close to zero and, again, we observe a linear relationship between mean

EXIT and the probability of arrival of informed traders, no matter whether we

are in a low or in a high volatility regime.

For a realistic value of �, such as the one assumed in the figures, high values

of volatility enable the informed traders to take advantage of the mt � pet gap

depending, of course, on the value of transaction costs. In these cases, we observe

a non-linear relation between mean EXIT and the couple (c, I). This relation

is, again, strongly increasing in both arguments, as expected. Nonetheless, the

relation becomes progressively linear with the level of transaction costs and the
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probability of arrival of informed traders, due to an evident saturation e↵ect.

3 Understanding EXIT

This section illustrates the ability of EXIT to operate as an e↵ective liquidity

measure. We compare it to true nominal and e↵ective transaction costs as well

as to suitable benchmarks. We do so by conducting simulations in which the

data generating process is a time-varying modification of the model in Section 2.

Specifically, in agreement with known empirical regularities, we allow for changing

transaction costs across days and, in some cases, auto-correlated order flow, for

a given level of asymmetric information. We assume that the transaction cost c

varies with time according to

ct = ct�1

+ �c✏t,

where the ✏t are iid normal and �c = 10�4.

3.1 The relation between EXIT, nominal execution costs

and zeros

Liquidity is an elusive concept with various dimensions. Our focus, here, is on

execution costs (on ”tightness” in the language of Kyle, 1985) rather than on

price impacts (”depth” or ”resiliency”). Figure 2 shows, for a single trajectory,

the path of EXIT compared to the path of transaction costs for three di↵erent

values of the threshold ⇠n, where ⇠n is expressed in terms of the return volatility

� (see the discussion in section 5.2). EXIT is strongly correlated with transaction

costs, with the correlation increasing for smaller values of ⇠n.

When ⇠n is zero, EXIT coincides with the frequency of intra-daily zero returns

(zeros) and, under the Brownian semimartingale assumption, would be zero al-

most surely. The frequency of daily zeros has been employed very successfully in

empirical finance work as an illiquidity proxy (e.g., Lesmond, 2005, Bekaert et al.,

2007, Naes et al., 2011). We expect the use of intra-daily data, a defining feature

of the measure we propose, to lead to estimates that are less noisy and more in-

formative about true transaction costs. To this extent, we present an experiment

in which transaction costs vary on a monthly basis. For each month, we compute

EXIT using minute-by-minute, hour-by-hour, and day-by-day returns. We use
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Figure 2: Generated transaction cost and (rescaled) EXIT computed with di↵er-
ent values of the bandwidth ⇠n, expressed as a fraction of the volatility �. The
figure also reports the correlation between di↵erent measurements of EXIT and
transaction costs.

⇠n = �/5, where � is the return standard deviation. Notwithstanding the use

of a threshold, which is irrelevant for the purposes of this comparison, the latter

measure based on daily returns is, as emphasized earlier, consistent with recent

approaches in the literature focusing on the incidence of zero returns. Figure 3

shows that, while all three measures are correlated with true transaction costs, the

correlation rapidly decreases along with the sampling frequency. The benefit of

using high-frequency information to extract a clearer signal in the measurement of

liquidity is, of course, analogous to what is found in the realized variance literature

(see, e.g., Andersen and Benzoni, 2009, for a recent review). Just like aggregates

of squared intra-daily returns represent more accurate estimates of daily variance

than squared daily returns, the frequency of intra-daily returns within a vanishing

threshold, i.e., EXIT, is found to be a superior illiquidity proxy than straight daily

zeros.
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Figure 3: Generated transaction cost and (rescaled) EXIT computed at di↵erent
frequencies. The figure also reports the correlation between di↵erent measure-
ments of EXIT and transaction costs.

3.2 The relation between EXIT, e↵ective execution costs,

and e↵ective spreads

The constant c may be interpreted as a nominal execution cost. Following the

intuition in Roll (1984), since a large number of trades occur within the bid/ask

spread, c is a more general notion of execution costs than the quoted half bid-ask

spread.

An alternative measure of execution costs, for a specific trade indexed by k during

the trading day, is the half-spread

Sk = Qk(pk � pek), (3.1)

where p and pe represent transaction logarithmic price and equilibrium logarithmic

price, as in Section 2, and Qk is an order indicator (+1 for a buy order, �1 for a

sell order). The corresponding average over the day, namely
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True e↵ective (half) spread = TES =
1

n of trades

n of trades

X

k=1

Sk

is directly comparable to c and represents an e↵ective execution cost. For a noise

trader, barring di↵erences between midpoint and equilibrium price, Sk should be

similar to c. For informed traders, however, we expect Sk to be negative (i.e.,

it is a gain, rather than a cost) since information leads to ”good” trades, net of

transaction costs. In the context of the model in Section 2, the informed traders

buy (sell) when pek > pk (pek < pk). Hence, for these traders, Sk < 0 always. In

conclusion, once the role of information is taken into account, we expect TES to

be smaller than c. In this sense, TES is an ”e↵ective” cost.

If the equilibrium price and the nature of the order (buy or sell) where known,

TES would, in principle, represent an ideal measure of (average) execution costs.

In what follows, we compare EXIT to TES (which is, of course, infeasible) and a

suitable, feasible estimate of TES. As illustrated, EXIT presents two fundamental

features: it is solely based on price information and, even though it could, in

principle, be computed using low-frequency data, it employs high-frequency prices

for e�ciency reasons (see the previous subsection). For a fair comparison, the

proposed feasible estimate of TES will also rely on high-frequency transaction

prices only.

TES estimation poses two well-known issues. Equilibrium prices are always un-

known to the econometrician. Similarly, the nature of the orders is only provided

by a handful of data sets like Rule 605 and TORQ. This has lead to proxies for

both objects. We begin with the first issue.

In the existing microstructure literature, the equilibrium price is often proxied by

the current midpoint of the bid/ask spread under the assumption that E(m) =

E(pe), a clear implication of the model in Section 2. Even though midpoint and

equilibrium price are the same in expectation, midpoints adjust to equilibrium

prices due to the learning of the market maker. It is therefore reasonable to

believe that Ek(mk+j � pek) < Ek(mk+j�1

� pek), thereby yielding lower biases for

execution cost estimation the larger j, which is another implication of the model

in Section 2. This observation has lead to the use of lagged midquotes mk+j for

the computation of Sk, with j varying between 5 minutes (Werner, 2003, among

others) and 30 minutes (Bessembinder and Kaufman, 1997, Bessembinder, 1999,

and Bacidore and Sofianos, 2002, among others) with other choices, like end-of-

the-day midquotes (Werner, 2003), being also possible. The use of a midquote
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very far out in the future is bound to reduce bias in the estimation of execution

costs, but will increase variance. The trade-o↵ between bias and variance can be

optimized. More generally, the choice of a future midquote can be based on a

suitable criterion, rather than being somewhat ad hoc (Bandi et al., 2011). In all

of these cases, the equilibrium price is proxied by the midquote. An alternative

procedure, also consistent with learning and price discovery, is to use a future

transaction price pk+j rather than a future midquote mk+j to approximate the

equilibrium price at the time of the trade (see, e.g., Huang and Stoll, 1996). Since

it seems appropriate to construct a benchmark that uses the same information

set (i.e., high-frequency transaction prices only) as EXIT, we employ pk+j as in

Huang and Stoll (1996), among others.

As for the signing of the trades (Qk), the typical algorithms are the tick test,

the quote test, and the Lee and Ready (1991) method. The tick test (Asquith

et al., 2010) classifies a trade as a buy (sell) if the price is higher (lower) than

the previous price. If the two prices are the same, the trade is classified based

on the previous price. The quote test and the Lee and Ready algorithm (1991)

use quotes as well as transaction prices. The Lee and Ready (1991) algorithm, in

particular, is thought to be slightly more accurate than the tick test at the cost

of using more information (midquotes) than that contained in transaction prices.

Using the TORQ data set, Finucane (2000) finds that the Lee-Ready algorithm

has a success rate of 84.4% while the tick test classifies correctly 83% of the trades

in the sample. Since it only uses transaction prices, we employ the tick method

to classify the trades for the purpose of estimating TES.

In sum, the feasible estimate of TES that we implement is:

dTES =
1

n of trades

n of trades

X

k=1

bSk =
1

n of trades

n of trades

X

k=1

Qk(pk � pk+j), (3.2)

where Qk = 1 if pk > pk�1

(or pk > pk�2

when pk = pk�1

, and so on) and

Qk = �1 if pk < pk�1

(or pk < pk�2

when pk = pk�1

and so on). As in Huang

and Stoll (1996) and, more recently, Goyenko et al. (2009), we set j = 5 and use

the price of trade five-minutes after the kth trade. We note that this measure is

entirely analogous to one of the three measures used as benchmarks to evaluate

the goodness of existing measures of transaction costs by Goyenko et al. (2009),

namely their realized spread measure in the Eq. (2). What di↵erentiates dTES

from the same measure in Goyenko et al. (2009) is the way in which the order

14



flow is signed.

We assume that the noise traders have a probability pr to repeat the previous

order. In the model in Section 2, we set pr = 0.5, representing uncorrelated

order flow. In this subsection, we also consider the case pr = 0.9 yielding order-

flow autocorrelation, a well-known stylized fact. As earlier, we use ⇠n = �/5.

Autocorrelation in order flow is known to be an important factor a↵ecting the

performance of execution cost measures relying, like EXIT and dTES, only on

price observations. Roll’s measure, for example, hinges on bid/ask bounce e↵ects.

In the absence of these a↵ects, and in the presence of price persistence on the

same side of the market, the measure is known to be considerably less e↵ective.

Figure 4, left panels, shows nominal transaction costs (ct), e↵ective transaction

costs (TESt), EXITt and dTESt over time, for two levels of the probability of

arrival of informed traders (0.2 and 0.6). Nominal and e↵ective transaction costs

are very highly correlated. As expected, increasing the probability of arrival of

informed traders translates into lower levels of TESt as compared to ct. In both

cases, EXITt and dTESt track execution costs e↵ectively. Increasing order flow

autocorrelation (right panels) impacts the performance of EXIT only marginally.

It does, however, a↵ect the performance of dTESt to a large degree. This outcome

is due to misclassifications of the nature of the orders caused by clustering in order

flow.

This discussion was purposely kept within the theoretical framework of a controlled

experiment in which true costs are known and simulated. While these results are

suggestive of EXIT’s potential, we leave an empirical comparison of EXIT with

alternative executions cost measures (which may or may not use high-frequency

price information only) for applied future work.

After having discussed the economic significance of EXIT, we now provide a treat-

ment of its statistical properties in continuous time.

4 EXcess Idle Time: asymptotic properties

We begin with conditions on the price process (Assumption 1) and on the sam-

pling process (Assumption 2). The conditions on the price process are classical in

continuous-time finance. The conditions on the sampling process allow for uneq-

uispaced sampling and involve the quadratic variation of time. We then introduce

the probability of flat trading (Assumption 3) as a tool to develop the mathemat-
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Figure 4: Generated nominal transaction cost, true e↵ective half-spread, rescaled
EXIT, and e↵ective half-spread for di↵erent values of PAIT (probability of arrival
of informed traders) and order flow correlation.

ical properties of idle time under an alternative hypothesis which implies price

stickiness. This is designed to capture the economic logic laid out in Section 2.

Assumption 1 (the price process under the null). The real-valued logarith-

mic e�cient price process {pet ; t � 0} is a Brownian semimartingale

dpet = µtdt+ �tdWt,

where Wt is a standard Brownian motion, µt is a predictable process, and �t is

cádlág. There exist strictly positive constants C
1

, C
2

so that

|�t|+ |µt|  C
1

,
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�t � C
2

.

Further, there exists � > 0 and C
3

> 0 so that

E[(µs � µt)
2 + (�s � �t)

2]  C
3

(s� t)�

for all s, t 2 [0, T ] and for s� t small enough.

Assumption 2 (sampling). The process {pt; t � 0} is observed at n + 1 times

over [0, T ], namely 0 = t
0

< t
1

< ... < tn = T . For n su�ciently large, we have

C
4

n
 min

1in
(ti � ti�1

)  max
1in

(ti � ti�1

)  C
5

n

for suitable constants C
4

and C
5

. Further, for � = 1

2

, 3
2

, and for all t 2 [0, T ], there

exists the limit

H�(t) = lim
n!1

⇣n

T

⌘��1

X

tit

(�n,i)
�,

where �n,i = ti � ti�1

. Finally, H�(t) is everywhere di↵erentiable with bounded

first derivative and, for some C
6

> 0 not depending on i,

sup
ti�1sti

�

�

�

�

�

H
0

�(s)�
✓

T

n

◆

1��

(�n,i)
��1

�

�

�

�

�

 C
6

n�",

for some " > 0.

Assumption 2 contains technical conditions to deal with unequally-spaced obser-

vations. When observations are equally-spaced, we have �n,i = T
n , H�(t) = t

and H 0
� = 1, and Assumption 2 is straightforwardly satisfied. When observations

are not equally-spaced, the first condition guarantees that all the �n,i vanish at

rate 1/n, the second that the limit appearing in the asymptotic variance of EXIT

exists, and the third that the derivative of H� converges uniformly over i. When

� = 2, H�(t) has been introduced by Mykland and Zhang (2006) as the quadratic

variation of time.

Assumption 3 (the price process under the alternative). The observed

price process {pt; t � 0} is such that pt0 = pet0 and, for i = 2, . . . , n,

pti = peti(1� Bi,n) + Bi,npti�1 , (4.1)
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where Bi,n is a triangular array of Bernoulli variates such that

1

T

n
X

i=1

(ti � ti�1

)Bi,n
p�! pF , (4.2)

where pF 2]0, 1]. Moreover, denoting by Kn the supremum of the number of

consecutive flat trades, we have,

Kn

n
p�! 0. (4.3)

Assumption 3 allows for the possibility of no trade and is in line with the behavior

of informed traders in the model in Section 2, as described in Eq. (2.3). Informed

traders might decide not to trade if it is not convenient for them to do so.

When the Bernoulli variates are iid with probability of no-trading given by pF ,

barring unequally-spaced sampling (handled in the proof of Theorem 1), Eq. (4.2)

is a classical law of large number for iid sequences and Kn = Op(log n) (Schilling,

1990), so that Eq. (4.3) is readily satisfied.

This said, Eqs. (4.2) and (4.3) allow the Bernoulli variates to be correlated with the

e�cient price, auto-correlated and non identically distributed. In the non identical

distribution case, pF is the (asymptotic) average probability of flat trading. In

this more general case, Eq. (4.2) could be replaced by a classical summability

condition on the Bernoulli variances and covariances leading to the same law of

large numbers. Eq. (4.3) continues to imply that the number of consecutive flat

trades diverges at a lower rate than the number of observations. The impact of

flat trading on realized volatility measures has been studied by Phillips and Yu

(2009).

In what follows, we will denote by H
0

the null hypothesis, described by Assump-

tions 1 and 2 with pt = pet , and by H
1

the alternative hypothesis in which we add

the possibility of flat trading as specified in Assumption 3. We note that H
0

is

nested in H
1

and can be obtained by setting pF = 0.

Theorem 1. Let Assumptions 1, 2, 3 be satisfied.

(Consistency) As n ! 1, let ⇠n ! 0 in such a way that ⇠n
p
n ! 0. Then,

IT =
1

T

n
X

i=1

(ti � ti�1

)1{|pti�pti�1 |⇠n}
p!
(

0 under H
0

pF under H
1
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(Stable convergence) As n ! 1, let ⇠n ! 0 in such a way that n7/10⇠n ! 0 and

⇠nn3/2 ! 1.

Under H
0

:

n1/4

⇠1/2n

EXIT =
n1/4

⇠1/2n

1

T

n
X

i=1

 

(ti � ti�1

)1{|pti�pti�1 |⇠n} �
r

2

⇡

⇠n
p
�i

�i�1

!

stably) N

 

0,

r

2

⇡
T� 3

2

Z T

0

1

�s
H

0

3/2(s)ds

!

.

Under H
1

:

n1/4

⇠1/2n

EXIT
p! +1.

Under the Ito semimartingale null (pF = 0), EXIT converges (stably) to a zero-

mean normal distribution whose variability is inversely proportional to the stan-

dard deviation of the return process. The rate of convergence is
⇣p

n
⇠n

⌘

1/2

, where n

is the (increasing) number of intradaily, possibly unequispaced, observations and

⇠n is the (vanishing) threshold used in the definition of the estimator. Such a

threshold only has to satisfy the condition ⇠n ⇠ n�↵ with ↵ 2 ( 7

10

, 3
2

) for a central

limit theorem to be derived. In essence, updates to an Ito semimartingale price

process are too volatile to be contained in a vanishing threshold. Thus, when

pF = 0, 1{|pti�pti�1 |⇠n}
p! 0, as ⇠n

p
n ! 0, and so does EXIT.

When instead pF > 0 (under the alternative), EXIT converges to pF and, thus,

standardized EXIT diverges at the rate n1/4

⇠
1/2
n

.

Remark 1 (Jumps). Addition of Poisson jumps to the Ito semimartingale in

Assumption 1 would not change the convergence in probability to zero of idle time

under the null. This can be easily shown using results in Mancini (2009). Since

the bandwidth employed in Theorem 1 has to satisfy ⇠n
p
n ! 0 for consistency,

these jumps will always be above the bandwidth asymptotically. In this respect,

idle time is robust to jumps. Empirically, the presence of jumps would decrease

the value of EXIT.

Remark 2 (Testing the semimartingale hypothesis). If one were to con-

sider the model in Section 2 and set c = I = 0 (with � = 1), then pt = pet and

observed prices would be semimartingales. Thus, the asymptotic theory in Theo-

rem 1 could, in principle, be used to test the semimartingale null against a price

formation model in which c 6= 0 and I 6= 0 jointly, that is in which pF > 0.
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Since, economically and in the data, c > 0, however small, this test has solely a

theoretical relevance. The next subsection discusses an analogous test with broad

empirical implications.

4.1 Asymptotics with noise

The addition of market microstructure noise contaminations is consistent with

the economic model in Section 2 (see Remark 5 below for further discussions).

This addition only makes the logic of our assumed approach more compelling.

A noise-contaminated Ito martingale price process moves outside of a vanishing

threshold more frequently than in the no-noise case, thereby leading to a faster

rate of convergence to zero. Assumption 10 introduces the assumed contaminated

process. Theorem 2 gives the limiting distribution of EXIT in the noise case under

the null (Assumption 10) and the alternative (Assumption 30).

Assumption 10 (the price process under the null with microstructure

noise). Let the equilibrium logarithmic price process be distorted as epti = peti+⌘ti ,

where ⌘ti is IID in discrete time, independent of pet , and such that ⌘ ⇠ N(0, �2

⌘).

Assumption 30 (the price process under the alternative with microstruc-

ture noise). Assumption 3 continues to hold with pt0 = ept0 and Eq. (4.1) replaced

by

pti = epti(1� Bi,n) + Bi,npti�1 . (4.4)

Theorem 2. Let Assumptions 1

0
, 2, 3

0
be satisfied.

(Consistency) As n ! 1, let ⇠n ! 0. Then,

IT =
1

T

n
X

i=1

(ti � ti�1

)1{|epti�epti�1 |⇠n}
p!
(

0 under H
0

pF under H
1

(Weak convergence) As n ! 1, let ⇠n ! 0 in such a way that n⇠5n ! 0 and

⇠nn ! 1.

Under H
0

:

n1/2

⇠1/2n

EXIT =
n1/2

⇠1/2n

1

T

n
X

i=1

 

(ti � ti�1

)1{|epti�epti�1 |⇠n} �
r

2

⇡

⇠n�i

�"

!

) N

 

0,

r

2

⇡
T�1

1

�"
H

2

(T )

!

, (4.5)
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where �" =
p

2�⌘.

Under H
1

:

n1/2

⇠1/2n

EXIT
p! +1.

Under the noise-contaminated Ito semimartingale null (pF = 0), EXIT converges

to a zero-mean normal distribution whose variability is now inversely proportional

to the standard deviation of the dominating component in the return process, i.e.,

microstructure noise. The bias vanishes at a faster rate than in the no-noise case

(⇠n/n versus ⇠n/
p
n). The rate of convergence to the limiting normal distribution

is, similarly, faster (n
1/2

⇠
1/2
n

versus n1/4

⇠
1/2
n

).

Remark 3. (Endogenous noise) Classical forms of endogeneity (correlation

between the noise and the equilibrium price process) can be introduced without

e↵ecting the outcome of Theorem 2. Consider, for example, the specification in

Nolte and Voev (2012) where

epti = pti�1 + �rti + ⌘ti (4.6)

with rti = pti � pti�1 . Then, of course,

epti � epti�1 = pti � pti�1 + "ti ,

where "ti = (� � 1)(rti � rti�1) + ⌘ti � ⌘ti�1 . If � = 1, we recover Assumption

3. If � < 1, the covariance between pti � pti�1 and "ti is negative, an empirical

possibility and a theoretical finding discussed by many authors. This model can

also be viewed as a more general specification of that in Kalnina and Linton

(2008), where rti in Eq. (4.6) is replaced by the di↵erence of the driving Brownian

motions (Wti � Wti�1). In both cases, as we show in proof of the remark, the

limiting distribution in Theorem 2 holds. Hence, the derived limiting distribution

is robust to current specifications for endogeneity in the noise.

Remark 4 (Dependent noise). Dependence in order flow and, as a result,

dependence in market microstructure noise can be easily accommodated. Here,

we employ an AR(1) model for the price contaminations. A more general ARMA
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structure can be assumed along identical lines. If ⌘i = ⇢⌘i�1

+ ui, then

n1/2

⇠1/2n

EXIT =
n1/2

⇠1/2n

1

T

n
X

i=1

0

@(ti � ti�1

)1{|epti�epti�1 |⇠n} �
1p
⇡

p

1� ⇢2
q

1� 1

2

⇢2

⇠n�i

�u

1

A

) N

0

@0,
1p
⇡

p

1� ⇢2
q

1� 1

2

⇢2
T�1

1

�u
H

2

(T )

1

A

under the same conditions as in Theorem 2, when pF = 0.

Remark 5 (On the importance of noise contaminations under the null).

One can derive a natural null hypothesis by setting to 0 the probability of arrival

of informed traders in the ”frictional” alternative in Section 2, see Eq. (2.4).

This would give rise to short-memory deviations (due to the adjustments of the

midpoint as well as noise trading) around the underlying semimartingale and,

hence, short-range dependent market microstructure noise. Said di↵erently, an

internally-consistent (with the alternative in Section 2) null hypothesis should -

in agreement with the approach in this subsection - contain short-memory noise.

Remark 6 (Testing the noise-contaminated semimartingale hypothesis).

As shown formally in Theorem 2, the presence of noise leads, in our framework, to

a more powerful test. In addition, the distribution in Theorem 2 can be employed

to test a noise-contaminated semimartingale null against a frictional alternative

induced by asymmetric information. Equivalently, it can be used to test for ab-

sence of asymmetric information (I = 0 and c 6= 0, leading to pF = 0) against

presence of asymmetric information (I 6= 0 and c 6= 0, leading to pF > 0) un-

der the maintained assumption of presence of execution costs, something which is

empirically warranted. We do so in Section 6.

5 EXcess Idle Time: finite sample properties

This section evaluates finite sample performance of the proposed measure and

corresponding tests. We accommodate stochastic volatility, intraday e↵ects, mi-

crostructure noise and rounding of the simulated prices. We study how the

behavior of EXIT depends on the choice of the threshold ⇠n under the noise-

contaminated semimartingale null. Importantly, we also provide practical guid-

ance on the implementation of EXIT on data and, in particular, on the choice of

the threshold ⇠n.
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5.1 Monte Carlo experiments

We simulate a one-factor di↵usion model with stochastic volatility. The model is

described by the pair of stochastic di↵erential equations

dpet = µ dt+ �t,⌧c��tdWp,t

d log �2

t = (↵� � log �2

t ) dt+ ⌘dW�,t,
(5.1)

where Wp and W� are standard Brownian motions with corr (dWp, dW�) = ⇢

and �t is a stochastic volatility factor. We use the model parameters estimated

by Andersen et al. (2002) on S&P500 prices: µ = 0.0304, ↵ = �0.012, � =

0.0145, ⌘ = 0.1153, ⇢ = �0.6127, where the parameters are expressed in daily

units and returns are in percentage. We further set c� = 2, which calibrates the

daily volatility to nearly 20% in annual terms. In addition, we add a multiplicative

intraday e↵ect

�t,⌧ =
1

0.1033
(0.1271⌧ 2 � 0.1260⌧ + 0.1239),

where ⌧ is the fraction of a day elapsed from opening (⌧ = 0 at the beginning

of the day and ⌧ = 1 at the end of the day), and the parameters in �t,⌧ have

been calibrated on S&P500 intraday returns with the constraint
R

1

0

�t,⌧d⌧ = 1.

The numerical integration of the system (5.1) is performed with the Euler scheme,

using a discretization step of� = 1 second. Each day, we simulate 7⇥60⇥60 steps,

that is we simulate second-by-second data for seven hours. At every transaction

price, we add a microstructure noise shock to every transaction price leading to

p̃t = pet + ⌘t

with ⌘t IID normally distributed with zero mean and variance �2

⌘. We set �2

⌘ =

c2�e
↵/�/(7 ⇥ 60 ⇥ 60) = 6.94 ⇥ 10�5 so that, at the frequency of one second, the

ratio of the average �2

t� with the microstructure noise variance (the signal-to-noise

ratio) is equal to one.

We compute EXIT using one-minute returns, that is with n = 420. The imple-

mentation requires a preliminary estimate of spot volatility and of the variance of

market microstructure noise. We detail estimation of both quantities in Appendix

B. To verify the size properties of the test, we focus on the statistics

z =
EXITp
V
EXIT

,
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Figure 5: Monte Carlo results: the case with no rounding. Left panel: we use
the generated (infeasible) spot volatility. Right panel: we estimate spot volatility
with Eq. (B.1).

as given by Eq. (B.2) and (B.3), which, asymptotically, is standard normal (c.f.

Theorem 2). We generate 1, 000 replications.

In the first set of simulations, prices are not rounded. In this case, the correct scale

of ⇠n is the price volatility and, for this reason, Figure 5 reports the di↵erent values

of ⇠n not in absolute terms but relative to the average volatility of one-minute

returns, denoted by �. The left panel refers to the infeasible case in which we use

the true unobservable volatility. The right panel refers to the feasible case in which

we estimate minute-by-minute volatility. We see agreement with the asymptotic

standard normal for values of ⇠n up to three times the local standard deviation.

Size distortions appear due to noise in the estimates of the spot volatility but they

are small for all of the considered threshold values.

In the second set of simulations, we round prices to $0.01 (one penny), in order to

mimic the actual behavior of US stocks. Rounding may be an important source

of finite sample size distortions, especially for low prices. Indeed, rounding a↵ects

prices instead of the logarithmic prices involved in the estimation of EXIT, making

it more ”aggressive” on returns when the price is relatively lower. For this reason,

we consider two starting points for our simulations: P
0

= 5 and P
0

= 50. We also

report di↵erent values of ⇠n not only relative to �, but also relative to min� tick,

which is defined as

min� tick =
(�P )MIN

< P >
,
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Figure 6: Monte Carlo results: the case with rounding. Left panels: we use the
generated (infeasible) spot volatility. Right panels: we estimate spot volatility
with Eq. (B.1).

where (�P )MIN = 0.01 is the price discreteness and < P > is the average price

in the daily replications. The quantity min � tick is e↵ectively the ”minimum”

logarithmic price di↵erence. Figure 6 shows the results. As before, the panels on

the left refer to the infeasible case in which we use the true unobservable volatility.

The panels on the right refer to the feasible case in which we estimate minute-

by-minute volatility. The top panels refer to the case P
0

= 5; the bottom panels

refer to the case P
0

= 50. If ⇠n is too low, rounding induces an unnecessary size

distortion. Such a distortion disappears if ⇠n is large enough with respect to the

assumed price discreteness.

Summarizing, our Monte Carlo study shows that, in a realistic market setting,
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EXIT’s asymptotic distribution has satisfactory small-sample size properties if ⇠n

is big enough with respect to the price discreteness induced by rounding. We also

show that the return volatility has a negligible impact on size.

5.2 Threshold selection

We now discuss the choice of the bandwidth ⇠n. Assume we observe n equally

spaced intraday returns, and denote by �d the daily return volatility. It is conve-

nient to express (as we do in Section 3) ⇠n in terms of the return volatility, that

is,

⇠n = ↵ · �dp
n
= ↵ · �, (5.2)

where � = �d/
p
n is the average volatility of intradaily returns. The simulated

experiments in Section 3 suggest that equation (5.2) should be used with a small

value of ↵ (see Figure 2) to maximize the power of EXIT in measuring liquidity,

that is to maximize the correlation between EXIT and transaction costs. Coher-

ently, setting a small ↵ is what we do in Section 6 to investigate the presence of a

liquidity premium in market returns.

However, if we are interested in testing, correct sizing is important. The Monte

Carlo experiments in Subsection 5.1 show that, in this case, a small value of ↵ is

not advisable. When testing, as in Subsection 6.1, we use Eq. (5.2) with ↵ = 1.

Notice, however, that when n is too large, setting ↵ = 1 may not translate into a

large enough threshold, i.e., a threshold which satisfies:

⇠n = n⇠ · (�P )MIN

< P >
, (5.3)

where (�P )MIN is the price discreteness ($0.01 for US stocks), < P > is the average

daily price, and n⇠ at least larger than 1. In order to satisfy both Eq. (5.2), with

↵ = 1, and Eq. (5.3) we derive ⇠n from Eq. (5.3) and suitably select the sampling

frequency so that n = �2

d/⇠
2

n. In essence, since �d/
p
n might not deliver - when

multiplied by ↵ = 1 - a large enough threshold, one may not be able to use the

full sample of high-frequency observations. Given ⇠n set as a function of price

discreteness, for testing we recommend choosing n so as to guarantee ↵ = 1. This

procedure is used in the empirical work, to which we now turn.
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6 Staleness in market returns

This section tests for asymmetric information at the market level. Given a likeli-

hood of informed-based trading, we evaluate short-term and long-term compensa-

tions for illiquidity risk in market returns through EXIT. We use S&P 500 futures

prices from April 28, 1982 to February 5, 2009, for a total of 6,669 days.

6.1 Testing for asymmetric information

Under the frictional alternative in Section 2, a necessary condition for EXIT to

be asymptotically large is the presence of asymmetries in information leading to

lack of trading (for large enough execution costs). Absent informed traders, EXIT

is expected to be small irrespective of the magnitude of execution costs (unless

large transaction costs induce lack of trading on the part of the noise traders, an

empirical possibility which - albeit formally outside of the model in Section 2 -

provides further economic justification for using EXIT as an illiquidity proxy).

This observation o↵ers a natural conceptual framework to test - using the limiting

results in Section 4 and the finite sample considerations in Section 5 - for the

presence of asymmetric information in the determination of market prices.

To this extent, we compute EXIT for every day in the sample as described in

Appendix B. The threshold ⇠n is selected using Eq. (5.3) with n⇠ = 5 and a

sampling frequency n chosen to fulfill Eq. (5.2) with ↵ = 1. To estimate �d, we

use the square root of the threshold bipower variation of Corsi et al. (2010). Thus,

prices are equispaced. If a price is missing, we use the previous tick.

Figure 7 provides a graphical representation of the outcome of the test (imple-

mented for each day in the sample). We plot daily EXIT standardized by its

standard error, derived in Theorem 2 and estimated in Appendix B, over time.

We also plot (with dotted lines) 95% confidence bands to facilitate the analysis.

T-ratios constructed using EXIT spike in correspondence with well-known crisis

(labelled in the figure). We do not interpret these results as being symptomatic

of time-varying asymmetric information (although, as discussed in Section 7, this

possibility cannot be excluded). Rather, we emphasize that the proposed test

has more power in times of crisis corresponding to low values of EXIT’s variance.

Asymptotic considerations (made explicit in Theorem 2) imply that this variance

is an inverse function of the noise variance �2

" (see Eq. 4.5). Finite sample consid-

erations (derived from the proof of Theorem 2 and accounted for in Appendix B
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Figure 7: Daily time series of EXIT’s asymptotic t-ratios.

for the sake of superior finite sample performance) indicate that this variance is

also an inverse function of the variance of the underlying equilibrium price �2 (see

Eq. B.3). In addition, as shown in other literatures, �2

" and �2 are correlated.

In essence, should EXIT remain large, thereby implying sluggishness in the price

adjustments, this e↵ect would be - as compared to tranquil times of low volatility

and low noise - relatively more indicative of information-induced lack of trading.

High volatility/high noise events like the Asian crisis, the dot-com crash and, more

recently, Lehman’s default are, therefore, bound to be more informative about the

presence of asymmetric information than more normal times. Given econometric

support for information-based trading, we now turn to illiquidity.

6.2 Illiquidity premia

In Section 3 we argued that EXIT may be used e↵ectively (for any given level

of asymmetric information) as a liquidity proxy, one which is more robust to

clustering in order flow than suitable benchmarks. We now ask the question: does

the use of EXIT as a liquidity proxy (under an assumption of slowly time-varying

asymmetric information) lead to an illiquidity premium in market returns? More

broadly, should asymmetric information be highly volatile, does the use of EXIT

as a friction proxy lead to a risk compensation? We approach this issue in two

ways. First, we focus on short-term compensation for illiquidity risk. The logic

of the procedure is in the spirit of Amihud (2002). We model the time series

evolution of EXIT, forecast it over a specific (short-term) horizon, and regress
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Figure 8: Daily time series of EXIT on S&P500 futures. In the inset, we report
the autocorrelation function for the first two months.

excess market returns on the resulting forecasts. If a risk compensation exists,

the resulting slope estimates should be positive and statistically significant. Our

findings are consistent with this logic. Next, we turn to low-frequency dynamics

and employ the backward/forward regressions recently introduced by Bandi and

Perron (2008) and justified formally by Bandi et al. (2012). This procedure views

economic time series as a sum of components or details with di↵erent levels of

periodicity and persistence. Very little structure is imposed on the short-run

dynamics and, in particular, no assumptions are made on the transition between

high- and low-frequency time-series evolution, something which would be required

by the previous, more traditional, approach. Forward aggregation of excess market

returns and backward aggregation of the liquidity proxy provides a way to identify

the layer (or frequency) in the cascade of shocks a↵ecting the economy over which

an illiquidity compensation may exist. We show that there might be low-frequency

components of EXIT with decade-long cycles which are autoregressive and have

predictive power for low-frequency components of excess market returns, i.e., a

low-frequency compensation for illiquidity risk. These components are hidden by

short-term noise. The use of two-way aggregation is e↵ective in extracting their

signal.

Because - in this section - we aim to maximize the statistical power of our proposed

measure, we compute daily time series of EXIT from intraday one-minute returns

using Eq. (5.2) with ↵ = 1/20. The use of ↵ = 1/5 leaves all of the following

results unchanged.
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6.2.1 The short run

The time series evolution of EXIT is displayed in Figure 8, along with the auto-

correlation function. The memory of the process is considerable. To reproduce

this feature, we employ an heterogeneous autoregressive specification (HAR) as in

Corsi (2009). Denote by EXITt the value of EXIT on day t and write

EXITt:t+h�1

= ↵h+�(d)
h EXITt�1:t�1

+�(w)

h EXITt�5:t�1

+�(m)

h EXITt�22:t�1

+"t+h�1

,

(6.1)

where the "0s are forecast errors and

EXITt1:t2 =
1

t
2

� t
1

+ 1

t2
X

t=t1

EXITt

is a generic average of EXIT values (between days t
2

and t
1

, included). Hence, the

parameters �(d)
h , �(w)

h and �(m)

h correspond to daily, weekly, and monthly averages

(used here as predictors) over a forecasting horizon h. The horizon h varies between

one day (h = 1) and one month (h = 22). The dependence between the daily,

weekly, and monthly parameters and the forecast horizon is represented in Figure

9. All estimated coe�cients are very significant (for all h values between one day

and one month) with R2 values comfortably high.

HAR specifications have been used successfully to model variance dynamics. To

this extent, in order to facilitate interpretation, the graphs in Figure 9 provide

analogous representations for the parameters of an identical HAR model for log-

arithmic variance.1 As in the case of variance, the relative magnitude of the

individual parameters (and, in consequence, the relative impact of individual re-

gressors) tends to reach a peak for forecasts conducted over analogous horizons.

For example, the weekly averages have more of an impact on prediction for h in

a neighborhood of 5 than for h close to a month. The larger monthly coe�cients

relative to the daily and weekly coe�cients (for all h) in the case of EXIT point

to the superior memory of EXIT as compared to logarithmic variance.

Denote, now, by Rt:t+h the excess return, with respect to the three-month T-bill

rate, of the S&P 500 futures returns from t to t + h. We estimate the simple

specification

Rt:t+h = ah + bhÊXITt+1:t+h + ⇠t+h, (6.2)

1We use realized variance estimates constructed using 5-minutes returns.
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Figure 9: Estimates and adjusted R2 of the HAR model applied to logRV and
EXIT (with ⇠ = 1

20

�), respectively.

where the ⇠0s are forecast errors and ÊXITt+1:t+h is an EXIT forecast obtained

using the model in Eq. (6.1). To run the regressions, we use least-squares with

overlapping observations and Newey-West standard errors with 2(h�1) lags. The

estimated slope coe�cients bbh are displayed in Figure 10 for di↵erent forecasting

horizons (the red dashed line is the upper bound of a two-sided confidence band

under the null of no relation). The estimates reveal a positive, albeit statistically

mildly significant, compensation for illiquidity risk. The estimated slopes are

increasing, and become relatively more significant, with the horizon.

In order to evaluate robustness to a potential variance risk premium, we estimate

the specification:

Rt:t+h = ah + bhÊXITt+1:t+h + chgRV t+1,t+h + ⇠t+h, (6.3)

wheregRV t+1,t+h is a variance forecast obtained from Eq. (6.1) applied to logarith-

mic variance (the logarithmic forecasts are then exponentiated). The estimated

slope coe�cients bbh and bch are reported, again for di↵erent h values, in Figure 11

(top and bottom panel, respectively). While a variance risk premium cannot be

detected in this sample, a mildly significant short-term illiquidity risk premium is

confirmed.
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Figure 10: Illiquidity premium for S&P 500 futures returns, measured with Eqs.
(6.2)-(6.1).
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Figure 11: Illiquidity (left panel) and variance (right panel) premium for S&P 500
futures returns, measured with Eqs. (6.3) and (6.1) applied both to EXIT and to
logarithmic variance.

The existence of short-term compensations for variance risk is well-known to be

elusive. Long-run variance risk premia have, however, been detected both with

market variance (Bandi and Perron, 2008) and with consumption variance (Ta-

moni, 2011). In what follows, we turn to low frequencies and use a low-pass filter

(the two-way aggregation method suggested by Bandi and Perron, 2008) to pro-

vide evidence of a similar illiquidity risk premium in long-run market returns. We

do so without making strong assumptions on short-run dynamics (for EXIT and

market returns) and, in particular, without either assuming that suitable long-run

forecasts can be implied from a specific short-run model or modeling low-frequency

dynamics by virtue of assumed low-frequency specifications.
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6.2.2 The long run

Consider the model

Rt:t+h = ah + bhEXITt�h+1:t + ⇠t+h

with h ranging from 252 (one year) to 8⇥ 252 (eight years). Future returns over

h are regressed onto backward aggregates of EXIT. The theoretical justification

for two-way aggregation has been spelled out in Bandi et al. (2012) using a multi-

resolution view of observed time series. If slow-moving components of the illiq-

uidity proxy predict themselves, as well as slow-moving components of the price

process, backward-forward aggregation will work as an e↵ective signal extraction

mechanism. In particular, the significance of the slope estimates will reach a peak

in correspondence with the periodicity of the (illiquidity and market return) com-

ponents (or details) which are connected by a predictive relation. Said di↵erently,

we view the long-run predictive relation between market returns and illiquidity

as being a property of components which may be hidden by short-term contam-

inations. Two-way aggregation is e↵ective in reducing these (possibly unrelated)

short-term contaminations while revealing (i) whether slow-moving components

are linked by a relation at all and (ii) what their periodicity is.

The slope estimates have a clear increasing pattern with the horizon (Figure 12,

left panel). In particular, they start being significant around 5 to 6 years, pointing

to the existence of components of the market return and illiquidity process - whose

periodicity is lower than the business cycle - which are likely linked by a predic-

tive relation. As shown by Bandi et al. (2012), these details can be extracted

directly. Thus, predictability may be verified on the details themselves rather on

low-pass (aggregation) filters as in our current approach. Being the paper’s focus

on EXIT, on its theoretical justification, and on its empirical potential, rather

than on illiquidity pricing per se, we leave the latter approach for future work.

Aggregation does not lead to spurious increasing patterns. Bandi et al. (2012)

show that, in the absence of low-frequency predictive relations at the level of

individual details of the regressand and regressor, no increasing pattern would

be found. Similarly, if aggregation had a mechanical impact leading to increasing

patterns, contemporaneous aggregation would lead to similar outcomes, and it fails

to do so. In Figure 12, right panel, we regress long-run returns pt+h � pt on EXIT

aggregates over the same horizon, EXITt+1:t+h. The increasing pattern is now

hardly statistically significant. Over the long run, forward/backward aggregation
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Figure 12: Left panel: we regress forward aggregated returns on backward aggre-
gated values of EXIT, over horizons longer than one year. Right panel: we regress
forward aggregated returns on forward aggregated values of EXIT.

yields slope estimates whose magnitude is two to four times that obtained when

aggregating contemporaneously.

7 Further discussion

7.1 EXITs (standardized EXIT)

EXIT is designed to capture an important aspect of the price formation process

under illiquidity (when there is a role for asymmetries in information), namely

sluggishness in the price adjustments. In this sense, its reliance on transaction

prices alone makes it an easy measure to implement.

There is, however, a second aspect of the assumed frictional alternative in Section

2 which EXIT - as defined above - does not capture: lack of trading. As illustrated,

when transaction costs are high, the informed agents may not find it convenient

to trade. In the no-trade area, prices do not move, thereby leading to repetitions

of the same price when sampling is conducted by imputing the previous tick in the

absence of an actual price update. Stale recorded prices are, therefore, associated

with a small number of transactions.

To account for both of the implications of the price formation model in Section

2 (i.e. price staleness as well as lack of trades), EXIT may be re-defined as the

proposed measure standardized by the number of transactions (EXITs):

EXITs =

1

T

Pn
i=1

⇣

�n1{|epti�epti�1 |⇠n} �
q

2

⇡
⇠n�n

�"

⌘

# of transactions over [0, T ]
.
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Figure 13: Left panel: we regress forward aggregated returns on backward aggre-
gated values of EXITs (standardized EXIT), over horizons longer than one year.
Right panel: we regress forward aggregated returns on forward aggregated values
of EXITs.

EXITs is higher, the slower the price adjustments and the smaller the number

of transactions for each period, thereby capturing two important aspects of the

assumed alternative. Empirically, the measure captures the fact that slow price

adjustments in the presence of a large number of trades may be less informative

about lack of liquidity than slow price adjustments in the presence of a small

number of trades. This is, of course, done at the cost of additional information

being brought into the formulation of the original measure (the number of trades).

While this information is often readily available, it does add an extra layer to a

measure (like EXIT) whose reliance on transaction prices only is appealing.

The bias adjustment in the numerator (
q

2

⇡
⇠n�n

�"
) is consistent with that in Eq.

(2.5). There, the bias adjustment was derived under a null hypothesis in which

observed prices are Ito semimartingales. Here, the adjustment is derived under

a null hypothesis in which there is a role for recorded price deviations around

the underlying equilibrium Ito semimartingale. The latter approach is, as dis-

cussed throughout, consistent with the alternative in Section 2 when setting the

probability of arrival of informed traders I equal to zero.

For the S&P 500 futures data used in the previous section, we find that the

dynamic properties of EXIT and EXITs are very similar. For illustration, Figure

13 evaluates long-run liquidity premia using EXITs yielding outcomes that are

analogous to those presented in the previous section.

35



7.2 The role of asymmetric information

This paper provides a formal econometric test for the presence of asymmetric infor-

mation which was applied earlier to market returns. Being asymmetric information

a fundamental feature of modern market microstructure theory, a statistical take

on this issue appears warranted.

The presence of asymmetric information, leading to information-based trading or

lack thereof, justifies using EXIT as an illiquidity proxy. Lack of trading, due to

high execution costs, on the part of noise traders (something which is outside of the

model in Section 2) would also yield similar e↵ects (and add to lack of information-

based trading), thereby providing an even stronger empirical motivation for using

EXIT as a measure of illiquidity.

Time-variation in asymmetric information, in addition to the presence of asym-

metric information, should however lead to a broader interpretation of the mea-

sure. Should asymmetric information be time-varying, rather than stable or slow-

varying as assumed throughout, EXIT could be more broadly interpreted as a

friction (illiquidity and asymmetric information) proxy, rather than solely as an

illiquidity proxy correlated with execution costs. As shown in Section 2, EXIT

would in fact increase both with increases in c and with increases in I.
The link between illiquidity and asymmetric information - fundamentally con-

nected phenomena with many facets and hard-to-pin-down features - is, impor-

tantly, not specific to our approach. Rather, being information a basic aspect of

modern market microstructure theory, it is something that impacts a large num-

ber of illiquidity measures. Consider the high-frequency benchmark in Eq. (3.2)

of this paper or, equivalently, in Eq. (2) of Goyenko et al. (2009), as an example.

In this case, the presence of information asymmetries forces to the choice of a

future trade (pk+j) to measure execution costs correcly. Time-variation in these

information asymmetries should lead to a choice of j (the time lag) that is also

time-varying, something which is generally unaccounted for.

In sum, contrary to information-based trading (which ought to be time-varying

and correlated with the size of execution costs), the extent of asymmetries in

information or, somewhat equivalently, the size of the pool of informed traders

is typically assumed to be constant, or slow-moving, over time. Whether this

maintained assumption in the liquidity literature is a valid approximation is an

issue for future work. The framework that we propose is one way to make the

connection between illiquidity and asymmetric information explicit and could shed
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light on aspects of the former (or of its measurements) should the latter be found

to also be time-varying.

8 Conclusions

We introduce a novel stochastic quantity, named excess idle time or EXIT, mea-

suring sluggishness in the updates to transaction prices. Staleness in the price

adjustments leads to large values of our proposed measure, small values being

coherent with erratic price behaviour. We show that price sluggishness is readily

delivered by models in which a role is given to asymmetries in information, as well

as to the magnitude of execution costs, in determining asset prices. This is a nat-

ural alternative hypothesis in our framework, yielding stickier transaction prices

- due to lack of informed-based trading - when execution costs are higher (for

any positive level of asymmetric information). A coherent (with this alternative)

null hypothesis is one in which erratic price behaviour is induced by noise trading

and the learning of market makers about an unpredictable semimartingale e�-

cient price process. This natural null hypothesis assumes that the observed price

process is driven by a noise-contaminated semimartingale, an assumption under

which a complete asymptotic theory is derived and EXIT is justified formally.

EXIT is easily-computable based on high-frequency transaction prices only. Eco-

nomically, its magnitude provides information about the extent of frictions (illiq-

uidity and asymmetric information) in the determination of observed prices. We

show that, for any given level of asymmetric information, EXIT has the potential

to be more correlated with (nominal and e↵ective) execution costs than well-known

benchmarks, particularly in the presence of clustering in order flow, an important

empirical regularity.

Consistent with this observation, using EXIT has an illiquidity proxy, we provide

evidence for short-term and long-term compensations for illiquidity risk in excess

market returns. This latter study should solely be viewed as being illustrative

of the potential of the new measure. Such a study will be broadened in scope

to evaluate, among other issues, compensation for cross-sectional (systematic and

idiosyncratic) illiquidity risk.
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Bandi, F. and R. Renò (2013). A local approximation for stochastic integrals. Working paper.
Bandi, F. and J. Russell (2006). Separating microstructure noise from volatility. Journal of

Financial Economics 79 (3), 655–92.
Bekaert, G., C. Harvey, and C. Lundblad (2007). Liquidity and expected returns: Lessons from

emerging markets. Review of Financial Studies 20 (6), 1783–1831.
Bessembinder, H. (1999). Trade execution costs on Nasdaq and the NYSE: A post-reform

comparison. Journal of Financial and Quantitative Analysis 34 (3), 387–407.
Bessembinder, H. and H. M. Kaufman (1997). A cross-exchange comparison of execution costs

and information flow for NYSE-listed stocks. Journal of Financial Economics 46 (3), 293–319.
Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of

Financial Econometrics 7, 174–196.
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A Appendix: Proofs

Lemma 1. Write
Y� � Y0 = X� �X0 + ⌘� � ⌘0

| {z }

"�

,

where the ⌘s are iid mean zero normal shocks (independent of the Xs) with variance �2
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where �µ,�2(x) is the normal density with mean µ and variance �2 and c is some constant.

Proof of Lemma 1. Assume, without loss of generality, Y0 = 0 = X0. Define the standardized
quantity
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which proves the stated result.

Lemma 2. For � > 0, and for a càdlàg process gt > 0, we have
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Proof of Lemma 2. The proof follows the same line as Lemma A.1 of Mancini et al. (2012).

Lemma 3. Let � > 0. For an IID process X and a measurable function f(.) such that f(X)
has finite variance, we have, as n ! 1,
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using Chebyshev’s inequality and the bound on the variance of f(X).

Proof of Theorem 1 and Theorem 2. Denote by Xt = pet and Yt = ept, so that Y� � Y0 =
X� �X0 + "� where "� = ⌘� � ⌘0. The proof is divided into three parts.
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Now, the last term is negligible since Rn,k is at most proportional to (2k + 1)!/(k � 1)!(k + 1)!.
Thus, the summation containing it converges and is asymptotically negligible with respect to
the other terms. Finally, if �⌘ 6= 0, we have (�0
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If, instead, �⌘ = 0 we have �(�) = 1 which implies, from Eq. (A.1),
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Part 2: the proof under the null.
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In what follows, for conciseness, we write �n,i as �i. Set pF = 0. We start with the sum of the
first conditional moments. Write, in the case ⌘i = 0 and using Eq. (A.4),
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where Lemma 2 was used. In the case ⌘i 6= 0, we use Eq. (A.3), Lemma 3 and write
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We now turn to the limiting distribution. Write
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Using Lemma 3,
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We now turn to stable convergence. Denote by Y (n)
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i�1 the discretized process without drift.
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If p ! 1, the bound goes to n1/4⇠1/2n but n1/4⇠1/2n ! 0 since n7/10⇠n ! 0. Now consider an
orthogonal martingale Nt. Write
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), which is an an L2�function, it is

clear that the term is zero since [W,N ] = 0. Hence, stable convergence holds for the discretized
process without drift (under P ⇤

n). We show that it is also true for the non-discretized process
without drift (i.e., the stochastic integral) by applying Theorem 2 of Mykland and Zhang (2009).
To this extent, consider the martingale
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where h(.) is a third order Hermite polynomial and kti�1 is measurable with respect to ti�1
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⇣

p

n
⇠n

⌘1/2 n
X

i=1

e�n,i and Mn(0) and

write

A1,2 =
1

12

✓p
n

⇠n

◆1/2 n
X

i=1

Ei�1



e�n,i

✓

(ti � ti�1)
1/2kti�1h

✓

Wti �Wti�1

(ti � ti�1)1/2

◆◆�

=
1

12

✓p
n

⇠n

◆1/2 n
X

i=1

(ti � ti�1)
3/2kti�1Ei�1



1n
Y (n)
i �Y (n)

i�1⇠n
o

✓

h

✓

Wti �Wti�1

(ti � ti�1)1/2

◆◆�

=
1

12

✓p
n

⇠n

◆1/2 n
X

i=1

(ti � ti�1)
3/2kti�1Ei�1

"

1n
Y (n)
i �Y (n)

i�1⇠n
o

 

✓

Wti �Wti�1

(ti � ti�1)1/2

◆3
!#

� 1

12

✓p
n

⇠n

◆1/2 n
X

i=1

(ti � ti�1)
3/2kti�1Ei�1



1n
Y (n)
i �Y (n)

i�1⇠n
o

✓

Wti �Wti�1

(ti � ti�1)1/2

◆�

.

Now, write

1

12

✓p
n

⇠n

◆1/2 n
X

i=1

(ti � ti�1)
3/2kti�1Ei�1

"

1n
Y (n)
i �Y (n)

i�1⇠n
o

 

✓

Wti �Wti�1

(ti � ti�1)1/2

◆k
!#


✓p

n

⇠n

◆1/2
1

T

n
X

i=1

(ti � ti�1)
3/2�k/2

✓

Ei�1



1n�

�

�

Y (n)
i �Y (n)

i�1

�

�

�

⇠n
o

�◆1/p
⇣

Ei�1

h

(Wti �Wti�1)
k p

p�1

i⌘

p�1
p

 Cp

✓p
n

⇠n

◆1/2
1

T

n
X

i=1

(ti � ti�1)
3/2�k/2

✓

Ei�1



1n�

�

�

Y (n)
i �Y (n)

i�1

�

�

�

⇠n
o

�◆1/p
⇣h

�i

kp
2(p�1)

i⌘(p�1)/p

= Op(n
1/4⇠�1/2

n nn�3/2+k/2⇠1/pn n1/(2p)n�k/2)

= Op(n
1/4⇠�1/2

n nn�3/2⇠1/pn n1/(2p))

= Op(n
5/4�3/2+1/(2p)⇠1/p�1/2

n )

= Op(n
1/(2p)�1/4⇠1/p�1/2

n ),

with k = 1, 2. If p ! 1, the bound goes to n1/4⇠1/2n but n1/4⇠1/2n ! 0 since n7/10⇠n ! 0. This
proves that A1,2

p! 0 implying that stable convergence holds also for the non-discretized process
without drift (under P ⇤). By Theorem 1 in Mykland and Zhang (2009), the drift can now be
put back in and the convergence is stable under the original measure P .

Part 3: the proof under the alternative.
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Using Eq. (4.4), we have
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so that we can write
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The first part of IT converges, in probability, to pF by Eq. (4.2). For IT1, we have
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where IT2 is a positive quantity. In order to prove its convergence to zero in probability, it
is enough to establish the convergence to zero of its expected value. To do so, denote by
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This implies IT1 = op(1). Now, write
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where we used IT1 = op(1), Eq. (4.2) and the fact that the bias is vanishing. This completes
the proof.

Proof of Remark 3. Since
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Thus,  Y�(t) can be factorized as follows
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where eµ0 = (�µ0 � (�� 1)µ
�1). Now, using Bandi and Renò (2013), write
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and we can proceed as earlier.

Proof of Remark 4. Assume the noise process is stationary in transaction time with ⌘i =
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B Appendix: practical implementation

Our implementation of EXIT and its confidence bands relies on Theorem 2. However, we intro-
duce a finite sample correction, justified by Theorem 1, which has no asymptotic impact.

In this paper, we always have T = 1 day (both on simulations and on data) and use evenly
sampled returns to compute EXIT, so that H 0

3/2 = 1 and H2(T ) = T . Denote these returns by
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r1, . . . , rn, so that n is the number of returns in one day, and � = 1/n. Define the error function
as

erf(x) =
2p
⇡

Z x

0
e�t2dt.

We first need estimates of the spot volatilities. In the spirit of Fan and Wang (2008), we use the
kernel estimator

b�2
j =

⇡

2

Xn�1

i=1
K
⇣

i�j
hn

⌘

|ri||ri+1|I
{r2i✓i}I{r2i+1✓i+1}

�
Xn�1

i=1
K
⇣

i�j
hn

⌘

I
{r2i✓i}I{r2i+1✓i+1}

, j = 1, . . . , n (B.1)

where the threshold ✓i, i = 1, . . . , n is obtained as in Corsi et al. (2010) with c✓ = 5. We set
hn = 25 and the function K(·) is a double-exponential kernel

K(x) =
1

2
e�|x|.

As in Corsi et al. (2010), the bipower variation term |ri||ri+1| combined with the threshold
provides a jump-robust volatility estimator with satisfactory finite sample properties.

To estimate the variance of microstructure noise �2
" = 2�2

⌘, we use all available transaction prices.
Denote by p1, . . . , pN the logarithmic prices observed in one day, so that N is the total number
of transactions (typically N >> n). The microstructure noise variance estimator is (Bandi and
Russell, 2006; Zhang et al., 2005)

b�2
" =

1

N � 1

N�1
X

i=1

(pi+1 � pi)
2 �

Pn
i=1 r

2
i

N � 1
,

where the second term is a small-sample correction.

Now, write

Pi = erf

 

⇠n
p

2 (�b�2
i + b�

2
")

!

,

where �b�2
i is an asymptotically-vanishing finite-sample correction justified by Theorem 1. EXIT

is then computed as

EXIT =
1

n

n
X

i=1

�

1
{|ri|⇠n} � Pi

�

, (B.2)

while its variance VEXIT is computed as

VEXIT =
1

n2

n
X

i=1

�Pi � P2
i

�

. (B.3)

Notice that in these expressions we use the erf function instead of its asymptotic equivalent in
Theorem 1 and Theorem 2. The logic of (B.2) and (B.3) is immediate once it is recognized that
the indicators amount to approximate Bernoulli random variables. The use of the term P2

i is
asymptotically irrelevant but empirically important in a finite sample.
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