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Abstract

Novel periodic extensions of dynamic long memory regression models with autoregressive

conditional heteroskedastic errors are considered for the analysis of daily electricity spot

prices. The parameters of the model with mean and variance specifications are estimated

simultaneously by the method of approximate maximum likelihood. The methods are

implemented for time series of 1, 200 to 4, 400 daily price observations. Apart from persis-

tence, heteroskedasticity and extreme observations in prices, a novel empirical finding is

the importance of day-of-the-week periodicity in the autocovariance function of electricity

spot prices. In particular, daily log prices from the Nord Pool power exchange of Nor-

way are modeled effectively by our framework, which is also extended with explanatory

variables. For the daily log prices of three European emerging electricity markets (EEX

in Germany, Powernext in France, APX in The Netherlands), which are less persistent,

periodicity is also highly significant.

Keywords: Autoregressive fractionally integrated moving average model; Generalised

autoregressive conditional heteroskedasticity model; Long memory process; Periodic

autoregressive model; Volatility.
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1 Introduction

Electricity supply has been the responsibility of public-private companies in many OECD coun-

tries until recently. It is anticipated that the private trading of electricity will intensify further

in future and eventually move towards fully privatised electricity markets. In such markets large

volumes of electricity power will be traded for the short and long term together with future

contracts and options. Although similarities with financial markets exist with respect to its

operations, the price formation at electricity markets is more complex since it strongly depends

on the short-term characteristics of the energy supply function. The instantaneous nature of

electricity and the availability of different plant technologies lead to atypical supply functions.

On the other hand, electricity demand functions typically depend on weather variables, seasons

in the year, day-of-week effects and holidays. These characteristics of electricity supply and

demand functions determine the specific behaviour of electricity prices that is encountered in

empirical work. The dynamic behaviour of prices is important for derivative pricing and real

option analysis. Therefore, the empirical time series modeling of electricity prices is important

for financial traders and investors.

Following the standard practice of modeling volatility in financial returns, we are interested

in the conditional mean and variance of price innovations. For many efficient financial and

commodity markets, log prices are assumed to behave as a random walk and price innovations

are simply obtained by taking first differences of log prices. The mean process of electricity

log prices can not simply be described by a random walk because of its specific characteristics,

see Escribano, Peña, and Villaplana (2002) and Bunn and Karakatsani (2003) for reviews of

the salient features of electricity prices. The following characteristics are often considered:

(i) Seasonality in prices is due to the strong dependence of electricity demand on weather

conditions but also on social and economic activities leading to different holiday and seasonal

effects; (ii) Mean-reversion in electricity prices exists since weather is a dominant factor and

influences equilibrium prices through changes in demand; (iii) Jumps and spikes can be due to

the difficulty in storing large quantities of electricity so that supply and demand shocks cannot

easily be smoothed out; (iv) Volatility clustering is regarded as a typical feature in financial

markets where heavy trading takes place on underlying assets.

The literature on modeling and analyzing electricity prices is growing quickly, see the col-

lection of articles in Bunn (2004) where different linear and nonlinear time series techniques are

adopted in empirical work. Particular contributions of interest in the literature are by Lucia

and Schwartz (2002) and Knittel and Roberts (2005) who argue for a mean-reversion model

with deterministic seasonal mean functions and apply it to daily prices from the Nord Pool elec-

tricity power exchange and to Californian hourly electricity prices, respectively. Escribano et al.

(2002) focus on volatility aspects using generalized autoregressive conditional heteroskedastic-

ity (GARCH) models with possibly a jump-diffusion intensity parameter for daily spot prices
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from different electricity markets. Knittel and Roberts (2005) also include GARCH and jump

processes in their model specification for hourly electricity prices.

In this paper the importance of regression effects, periodicity, long memory and volatility

in electricity prices is highlighted and a simultaneous model for these features is proposed.

The parameters in this model are jointly estimated by the method of approximate maximum

likelihood using daily electricity spot prices from different exchange markets. The importance

of periodicity is acknowledged by Wilkinson and Winsen (2002) and Hernáez et al. (2004)

who point out that the pattern of prices varies across day-types. We go further and look at

periodicities for the deterministic yearly seasonal effect and for the day-of-week effects in the

mean, variance and autocovariance structures. Therefore, the parameters associated with the

dynamics in the model are different for different days of the week. Haldrup and Nielsen (2004)

estimate nonlinear nonperiodic long memory models for hourly Nord Pool prices. Periodic

seasonal long memory models have not been considered in electricity prices earlier. It will be

shown that seasonal long memory is an important feature in daily electricity prices. Although

volatility has been considered in most empirical studies on electricity prices, we argue that

volatility is not only a function of past squared price innovations. Seasonal factors and other

fixed effects in the variance equation are also important.

Equal attention is given to the modeling of the mean, variance and autocovariance func-

tions of the daily time series. The mean process includes deterministic effects, explanatory and

intervention variables. Most coefficients in the mean are allowed to vary with day of the week

(periodic). The variance process depends on day-of-week levels and yearly and half-yearly cosine

waves with deviations from these deterministic functions modeled by a GARCH process with

a Student-t density. The autocovariances are determined by seasonal long memory dynamics

and lagged dependent variables with periodic coefficients. The different sets of parameters are

treated simultaneously during the estimation process based on approximate maximum likeli-

hood. The likelihood function is constructed as follows. The time series is corrected for the

mean and the autocovariance features using the appropriate recursive filter for which the initial

observations are treated as fixed and known. The resulting innovations are used as input for

the conditional GARCH likelihood function for a t-distribution. The empirical study focuses

on Nord Pool daily electricity spot prices between 4 January 1993 and 10 April 2005, that

is more than 12 years of data (640 weeks) and equals 4,480 daily observations. To show the

robustness of the new modeling framework for daily electricity spot prices, we extend the model

with explanatory variables capturing significant and interpretable demand and supply effects

in the Nord Pool market. We also present and discuss the results for three emerging electricity

markets in Europe.

The paper is organised as follows. Section 2 describes the markets and data sets, and

provides the motivation for our modeling approach. Section 3 discusses the specification of
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the model and develops a simultaneous approach for estimation and inference regarding the

parameters of the model. Section 4 reviews the empirical results for the daily prices of the

Nord Pool market with and without nondeterministic explanatory variables. Section 5 shows

that the same modeling approach can be successfully applied to emerging electricity markets

in mainland Europe. Section 6 concludes.

2 European electricity markets and daily spot prices

2.1 Some facts about electricity markets

First, we examine the time series of daily spot electricity prices from the Nord Pool exchange

market in Norway. Subsequently, we analyse price data from three other European emerging

electricity markets: European Energy Exchange (EEX) in Germany, Powernext in France and

the Amsterdam Power Exchange (APX) in The Netherlands. These markets have started in

different years and therefore the four daily time series are of different length. The oldest market

is Nord Pool that started in 1991 for the trading of hydro electricity power generated in Norway.

In 1996 Sweden, in 1998 Finland and in 1999 Denmark joined. In this paper we only consider

the Norwegian electricity prices. Most of this electricity is generated in hydro electric power

stations and therefore supply depends heavily on weather conditions. The average production

capability of Norway’s hydro power plants is about 113 Terawatt hours (TWh=109 KWh) per

year. However, this production depends on precipitation levels. The EEX market is the largest

electricity market in mainland Europe and the volume traded was 60 TWh in 2004. Powernext

in France started in November 2001 and the volume traded in 2004 reached 14.1 TWh, 3%

of France’s electricity consumption. The spot market APX has been operational since May

1999 and in 2004 a total of 13.4 TWh was traded on this market. All four markets operate as

“day-ahead” markets that concentrate on daily trade for electricity delivered on the next day.

Daily series are constructed as the average of 24 price series for the different hours of the day.

The resulting prices are referred to as spot prices.

2.2 Time series descriptives of Nord Pool electricity spot prices

We consider spot prices from the Nord Pool electricity market in the period January 4, 1993

until April 10, 2005. Figure 1 plots the daily spot prices, denoted by Pt and computed as the

average of the 24 hourly prices, together with the daily first differences of pt = logPt. The spot

prices vary over the years and are subject to yearly cycles, weekly patterns, persistent level

changes and spikes. The first differences of log prices (returns) show clear patterns of volatility

clustering. It is tempting to conclude from these graphs that electricity spot prices exhibit the

typical features of daily prices from other financial markets. However, upon closer inspection,
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there is clear evidence that the dynamic properties of electricity spot prices are more intricate.

The upper panel of Table 1 presents summary statistics for the first differences of log-prices

for all data points (All) and for data points associated with a particular day of the week (Mon,

Tue, . . .). Notice that for Monday, the first difference is with respect to the Sunday spot price

and Tuesday’s first difference is with respect to the Monday price, etcetera. The reported

periodic autocorrelations are computed as described in McLeod (1994). For example, the third

column shows rMon(7) = corr(∆pt,∆pt−7) = 0.26. The large day-to-day differences in such

autocorrelations motivate a periodic time series modeling approach. Further, the persistence

of the periodic autocorrelations at the seasonal lags 7, 14, 21, 28 is pronounced and needs to be

modeled explicitly. The inclusion of long autoregressive polynomials in the model may capture

these dynamics. A parsimonious alternative is to model the persistence by a seasonal fractional

integration process. These findings of periodicity pertain both to the deterministic part and the

dynamic part as we will illustrate in the following sections. Due to space considerations, other

statistics are not presented here but the autocorrelations remain periodic when nonstationarities

due to other day-of-the-week effects and yearly weather cycles have been removed from the data

by regression or by seasonally differencing. This is also evident from model estimates presented

below.

2.3 Explanatory variables for Nord Pool prices

Although univariate time series modeling of electricity prices is important in its own right, it

is interesting to extend the analysis using publicly available data on the determinants of power

demand and supply. The two most relevant and closely watched variables for the hydropower

market of Nord Pool are daily data on Norwegian power consumption and weekly measurements

of the overall water reservoir levels in Norway. The first graph of Figure 2 shows a time series

plot of the water reservoir levels as a percentage of total Norwegian capacity for 1993-2005.

The second graph of Figure 2 presents daily aggregate power consumption data, which are only

available for 2001-2005. Both series are dominated by yearly cycles. In addition, the reservoir

levels seem to exhibit long memory and the power consumption clearly shows a varying weekly

pattern. These features might explain some of the dynamic characteristics of electricity prices

in a meaningful way. We expect a negative effect on prices of (unexpected) positive shocks in

water levels and a positive effect of (unexpected) positive shocks in consumption. In this paper

we do not attempt to model power consumption and water reservoir levels.

2.4 Time series descriptives of other electricity spot prices

Time series of the logarithms of spot prices (in Euros/MWh) from three European emerging

electricity markets are presented in Figure 3. The time series from EEX, Powernext and APX
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have different lengths and are shorter than the time series of Nord Pool. Further the dynamic

properties of the three time series are different from the behaviour of Nord Pool. This is most

probably due to the type of electricity traded on the different markets. Most of the electricity

traded on the Nord Pool market is produced by hydro power generation and therefore it depends

on long run weather conditions. In the APX, most of the electricity traded is thermal (via the

burning of coal and gas) while the EEX and Powernext markets trade electricity produced

mainly by nuclear power plants. These new markets are also strongly linked to each other by

high voltage power lines. This leads to clear comovements in prices, unrelated to the price

swings in the Nord Pool market. However, we do not model the three series simultaneously.

Table 2 contains periodic descriptive statistics for the EEX, Powernext and APX markets.

As these prices are less persistent than the Nord Pool prices, we present descriptive statistics

for log prices, rather than for returns. Table 2 shows that the mean and variance of these daily

electricity prices depend on the day of the week and so does the autocorrelation structure.

There are several similarities across the markets. For example, the mean is larger on Tuesdays

and smaller on Sundays while the correlation between Wednesdays and Tuesdays (0.78, 0.88

and 0.84 for EEX, Powernext and APX, respectively) is higher than the correlation between

Mondays and preceding Sundays (0.64, 0.60 and 0.46) as one would expect. Turning to periodic

long memory characteristics, the 4-week autocorrelations for Mondays (0.22, 0.22 and 0.06) are

considerably lower than for Saturdays (0.41, 0.44, 0.40).

3 The periodic seasonal Reg-ARFIMA-GARCH model

3.1 Model specification

Consider a time series of electricity prices yt for t = 1, . . . , T and with s periods or seasons.

Period j is a modulus function of the time index t, that is j = j(t) = 1 + t mod s. In the

empirical section, we analyse daily electricity spot prices where the seasonal variation is mainly

due to weekly patterns and therefore the seasonal length is s = 7. Seasonal variations due to

monthly and quarterly patterns can be captured by specific covariates in the model. We first

describe our model before relating it to the existing literature.

An effective model for capturing the salient features of electricity price series as discussed in

the previous section is the regression model with seasonal periodic autoregressive fractionally

integrated moving average (ARFIMA) disturbances, that is

Φj(L
s)(1 − Ls)Dj(yt − µt) = Θj(L

s)εt, εt|Ft−1 ∼ NID(0, σ2
t ), t = 1, . . . , T, (1)

with j = j(t) and where µt = E(yt|Ft−1) and σ2
t = V ar(yt|Ft−1) are, respectively, the condi-

tional mean and variance functions for an appropriate filtration Ft. The periodic polynomials

Φj(L
s) and Θj(L

s) are in the lag operator L that is defined by Lkyt = yt−k. These polynomials
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do not play a role in the empirical analysis of this paper and therefore we will not consider

these lag polynomials further and have Φj(L
s) = Θj(L

s) = 1. The scalar periodic coefficient

Dj determines the order of seasonal fractional integration for which the stationarity and invert-

ibility conditions apply, that is |Dj | < 0.5 for period j = 1, . . . , s. Using a binomial expansion

we formally define

(1 − Ls)Dj =

∞∑

i=1

Γ(i−Dj)

Γ(−Dj)Γ(i+ 1)
Lis, (2)

where Γ(·) is the gamma function. It follows from (2) that fractional integration implies an

infinite order lag polynomial.

The conditional mean function is given by

µt = φ1jyt−1 + . . .+ φpjyt−p +
K∑

k=1

(δk0jxkt + δk1jxk,t−1 + . . .+ δkrjxk,t−r) , (3)

for t = max(p, r)+1, . . . , T , where φij for i = 1, . . . , p and δkij for k = 1, . . . , K and i = 0, 1, . . . , r

are periodic regression coefficients for periods j = 1, . . . , s when yt or xkt are observed in period

j = j(t). The set of coefficients φij implies a periodic autoregressive polynomial for yt that is

assumed causal. In practice, we take p < s and r < s so that seasonal lags do not play a role in

the conditional mean equation. Seasonal lags only play a role in the ARFIMA specification. The

covariates xkt can either be assumed deterministic or weakly exogenous, e.g. E(xk,t−iεt) = 0

for k = 1, . . . , K and i = 0, 1, . . . , r. The mean function µt is referred to as conditional since

it is only properly defined when past values of yt and concurrent and past xkt’s are treated as

known. Therefore, µt is only properly defined for t = max(p, r) + 1, . . . , T .

The conditional time-varying variance process for σ2
t = V ar(yt|Ft−1) is specified by the gen-

eralized autoregressive conditional heteroskedasticity (GARCH) model with regression effects

and scaled by seasonal factors, that is

σ2
t = exp(λj)ht, ht = α0 + α1ε

2
t−1 + β1ht−1 +

K∗∑

k=1

γkzkt, t = max(p, r) + 2, . . . , T, (4)

with j = j(t) and with unknown coefficients α0, α1, β1 and γ1, . . . , γK∗. The seasonal factors

λ1, . . . , λs are also unknown coefficients but not all can be identified and therefore we restrict

λ1 = 0. Higher order lags for ht and ε2
t in (4) can be considered as well, but do not play a role

in our empirical analysis. The covariates zkt are assumed deterministic for k = 1, . . . , K∗ and

typically consist of time-functions and dummy variables. The autoregressive process for ht is

initialized by its unconditional mean, which is replaced by the corresponding sample mean in

the estimation process, discussed below. We assume and impose 0 ≤ α1 + β1 ≤ 1.
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Initially, the distribution of εt in (1) is assumed Gaussian. Given the fact that time series

of electricity spot prices are usually fat-tailed, we consider the Student-t distribution for the

disturbances εt, that is

εt|Ft−1 ∼ tν(0, σ
2
t ), t = 1, . . . , T, (5)

with degrees of freedom ν, zero mean and time-varying variance σ2
t . The disturbances ε1, . . . , εT

are assumed to be serially uncorrelated. In the case of t-disturbances for model (1) with µt and

σ2
t given by (3) and (4), respectively, the time index t takes the values t = max(p, r)+2, . . . , T .

The periodic seasonal regression ARFIMA model with seasonal heteroskedasticity and

GARCH disturbances (the periodic seasonal Reg-ARFIMA-GARCH model) has a conditional

mean equation with periodic coefficients. This suggests that each day of the week can be

described by a different model. If all coefficients are periodic, including the ones of the con-

ditional variance function, we can isolate the periods from each other and estimate separate

time-invariant models for the different periods, see Tiao and Grupe (1980). However, we do

not pursue this approach since our focus will be on more subtle periodic formulations in which

only certain parameters are periodic. Before discussing estimation details, we shortly describe

the main origins of our model in the existing literature.

Our model combines ideas from different strands of the statistical, geophysical and econo-

metric literature. Periodic autoregressive models were first applied by Hannan (1955) and

Jones and Brelsford (1967). Gladysev (1961) first analysed the periodic correlation function

and multivariate representation, while Tiao and Grupe (1980) discussed the consequences for

traditional autoregressive moving average (ARMA) modeling if the underlying process really

follows a periodic ARMA model. Estimation methods and algorithms for periodic ARMA mod-

els are developed by Pagano (1978), Vecchia (1985) and Li and Hui (1988), amongst others.

McLeod (1994) discussed the empirical identification of periodic AR models. Further devel-

opments on likelihood evaluation and asymptotic theory for different estimators of periodic

ARMA models are discussed by Lund and Basawa (2000) and Basawa and Lund (2001).

The fractional differencing model introduced by Adenstedt (1974) has become a standard

model for long memory behaviour. The generalisation towards the ARFIMA model (1) with

s = 1, σ2
t = σ2 and no periodic coefficients was introduced by Granger and Joyeux (1980)

and Hosking (1981). Statistical properties and inference for ARFIMA and other long memory

processes are extensively discussed in the monograph by Beran (1994b), in the overview article

of Baillie (1996) and, more recently, in the edited volume of Robinson (2003). Carlin, Demp-

ster, and Jonas (1985) provided an early analysis of ARFIMA models with seasonal fractional

integration parameter D. As a final step Ooms and Franses (2001), let the seasonal fractional

D be periodic.

A novelty in this paper is the introduction of a GARCH process for the variance of a periodic

seasonal Reg-ARFIMA model. The GARCH model is developed by Engle (1982) and Bollerslev
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(1986). The statistical properties of GARCH processes are well established, see, for example,

Bollerslev, Engle, and Nelson (1994). Further, Bollerslev and Ghysels (1996) introduced a

periodic version of the GARCH model, which is slightly different from ours. The inclusion of

regression effects in the variance specification of a non-seasonal and non-periodic AR-GARCH

model in the context of modeling electricity prices is considered by Byström (2005).

Our paper extends ARFIMA-GARCH-t models with seasonal and periodic features. Baillie,

Chung, and Tieslau (1996) first applied nonperiodic ARFIMA-GARCH models to price indexes.

Ling and Li (1997) derived conditions for asymptotic normality of the approximate (Gaussian)

ML estimator in the ARFIMA-GARCH model.

3.2 Maximum likelihood estimation

The exact Gaussian loglikelihood function of the standard ARFIMA model (1) with µt = µ,

σ2
t = σ2 and s = 1 is given by

logL(y;ψ) = −T
2

log 2πσ2 − 1

2
log |Vy| −

1

2σ2
(y − µ)′V −1

y (y − µ), (6)

where the parameter vector ψ collects all unknown coefficients of the model (1) and

y = (y1, . . . , yT )′, σ2Vy = V ar(y),

with the variances and autocovariances in Vy for an ARFIMA process computed by efficient

methods such as the ones developed by Sowell (1992) and Doornik and Ooms (2003), who

also discuss efficient methods for the computation of logL(y;ψ) for the ARFIMA model using

Durbin-Levinson methods for the necessary Choleski decomposition of Vy. The generalisation

towards an ARFIMA model with s > 1, periodic coefficients and seasonal lags, can in principle

be implemented for the evaluation of the loglikelihood function, However, the computation of

Vy is intricate and not practical for large T as no analytical expressions for Vy exist in the case

of a periodic seasonal ARFIMA model.

The time-varying conditional mean function (3) for the model (1) does not lead to fur-

ther complexities if xkt for k = 1, . . . , K is completely deterministic. In the case any xkt is

correlated with εt, the likelihood approach requires a multivariate approach to appropriately

deal with the autocovariance structure in Vy. This is however beyond the scope of this paper.

Furthermore, when the time-varying conditional variance σ2
t is modeled as the GARCH process

(4), other complexities for a full-information maximum likelihood approach arise. Therefore,

we adopt the approximate likelihood approach of Beran (1994a) that effectively amounts to

removing the log determinant term log |Vy| from the loglikelihood function (6) and truncating

the infinite autoregressive representation (2). The resulting estimator belongs to a wider class

of M-estimators for which it can be shown that the estimator converges almost surely to its
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true value at the rate of
√
T , see Beran (1994a) for more details. In the empirical study of

the next section, the sample size is sufficiently large so that we can rely on these asymptotic

results.

3.3 Approximate maximum likelihood estimation and inference

In the case of model (1) with µt given by (3) and σ2
t = σ2, the estimation of ψ is carried out as

follows. For realisations y1, . . . , yT , with a given ψ and by truncating the infinite autoregressive

polynomial (2), we compute εt = εt(ψ) in a standard way as implied by the model (1) for

t = max(p, r) + 1, . . . , T . Since the truncated autoregressive polynomial is long, the earlier

disturbances εt for t = max(p, r) + 1,max(p, r) + 2, . . . are based on polynomials of varying

and lower dimensions. Finite sample modifications like those of Haslett and Raftery (1989) are

not implemented since T is large. However, the periodic nature of the coefficients is taken into

account. The estimation of ψ is then based on

ψ̂ = arg minψ S(ψ), S(ψ) =

T∑

t=max(p,r)+1

ε2
t , (7)

with εt = εt(ψ). This is an M-estimator discussed by Beran (1994a).

In the case that σ2
t is modeled by the GARCH specification (4), the disturbances εt(ψ) are

obtained in the same way and taken as input for the GARCH likelihood function that is given

by

ℓ(ψ) = −1

2

T∑

t=max(p,r)+1

(
log 2π + log σ2

t + σ−2
t ε2

t

)
, (8)

where σ2
t = σ2

t (ψ) is given by (4) for t = max(p, r) + 1, . . . , T . Since the process of ht in (4) is

defined by a recursion, their values for t = max(p, r) + 2, . . . , T can be computed conditionally

on the initial value hmax(p,r)+1 that is set equal to the estimated sample variance of εt =

εt(ψ) for t = max(p, r) + 1, . . . , T , as is common in the literature. Asymptotically the choice

of initialisation is negligible, see Francq and Zaköıan (2004). It should be noted that σ2
t is

computed recursively and also requires the input of εt = εt(ψ). The estimation of ψ in this

case is based on ψ̂ = arg maxψ ℓ(ψ).

Finally, we consider model (1) with disturbances εt modeled by the t-distribution with

variance σ2
t and number of degrees of freedom ν for t = max(p, r) + 1, . . . , T . The GARCH

likelihood function for t-disturbances is given by

ℓ∗(ψ) = {T − max(p, r)} log c(ν) − 1

2

T∑

t=max p,r+1

[
log dt(ν) + (ν + 1) log{1 + dt(ν)

−1 ε2
t}

]
, (9)

where

c(ν) =
Γ

(
ν
2

+ 1
2

)

Γ
(
ν
2

) , dt(ν) = (ν − 2) σ2
t , ν > 2,
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with j = j(t) for t = max(p, r)+ 1, . . . , T . The shape coefficient ν is also part of the parameter

vector ψ and can be estimated.

The actual ML estimation of ψ amounts to the maximisation of ℓ(ψ) or ℓ∗(ψ) with respect

to ψ using numerical optimisation methods such as the quasi-Newton method, see Fletcher

(1987). We employed the MaxBFGS() routine in Ox, see Doornik (1999). Starting values for

the optimisation can be obtained from the M-estimates for φij , δij and Dj based on (7) and on

QML estimates for the GARCH-parameter based on (8). Standard errors of the estimates and

Wald test statistics are obtained from numerical second order derivatives of (9).

We found interesting differences between the inefficient (Gaussian) M estimates and efficient

ML estimates, although our samples are large. The strong persistence in the volatility, measured

as α̂1 + β̂1 being close to unity, has a profound influence on the estimation of the autoregressive

parameters. As a consequence the efficiency of estimates and tests is increased. Boswijk

and Klaassen (2004) discussed the empirical relevance of this efficiency gain for AR-GARCH-t

models. Under the assumption that E|εt|4 exists, Jensen and Rahbek (2004) show that the

asymptotic behaviour of the QML estimator of the GARCH(1,1) parameters is continuous

around α1 + β1 = 1. The estimator is also asymptotically normal if α1 + β1 > 1. Francq and

Zaköıan (2004) derive asymptotic normality of QML estimators of stable ARMA-GARCH(p,q)

models under weak conditions. In our case, the innovations of electricity prices are fat tailed

and therefore we cannot use the QML estimator and the inference is directly based on the

Student-t likelihood. This approach is also applicable in stable GARCH models when E|εt|4
does not exist, and which is more efficient, see Berkes and Horvath (2004, example 2.4).

4 Empirical results for Nord Pool

In this section we present empirical results for the daily Nord Pool data, for which data char-

acteristics are summarised in section 2.2. It is hinted that a seasonal periodic heteroskedastic

long memory model may be adequate to capture the dynamics in the conditional mean of the

series. The Nord Pool series is sufficiently long which makes a parametric long memory analysis

using the approximate maximum likelihood method feasible.

4.1 Time Series Model for Nord Pool prices

The time series model (1)-(5) using deterministic functions of time for the xkt and zkt variables

is estimated using the method described in sections 3.2-3.3 with p = 3. A yearly cycle is part

of the xkts as in Lucia and Schwartz (2002). This cycle captures the smooth seasonal swings

in the supply and demand functions of electricity. The prices are subject to significant holiday

effects in demand that lead to low returns on holidays and high returns thereafter. The AR

parameters φij for holidays differ from normal weekend days. The degrees of freedom are not
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sufficient to estimate φij separately for each type of holiday. Instead, dummy variables for each

type of holiday are included and their effects on prices are measured, contemporaneously and

for a maximum of p lags. For a holiday that takes place on the same day-of-the-week each

year (e.g. Ascension day), we have p + 1 parameters in the model to measure its effect. For

other type of holidays we have (p+1)× s parameters in the model as these holiday effects may

depend on the day of the week. Finally, the conditional variance is explained by both a yearly

and a half-yearly cycle in zkt following Byström (2005).

The estimation results are presented in Table 3. To economize on the estimation output

we omit standard errors. Instead, we present Wald test statistics for the nullity and for the

nonperiodicity of sets of parameters. The seasonal integration parameters Dj are largest for

Monday and Saturday, as expected from the autocorrelations presented in Table 1. These

estimated parameters are significant, clearly periodic and smaller than 0.5. The AR parameters

φij are also clearly periodic. The third order lag is particularly important for the Monday. For

Thursday and Friday the AR polynomial of the model reduces to the difference operator as is

usual in models for returns in stock markets. The periodic AR polynomial of the model however

is stable. The largest inverse root of the characteristic polynomial equals 0.95, see Boswijk and

Franses (1996) for unit root tests in periodic AR models.

The yearly cycle and the holiday effects measured by δkij are significant. For example, the

electricity price on Ascension Day is approximately 18% lower than on a normal Thursday. This

effect is based on 12 Ascension Day observations. The periodic effect of a holiday with a fixed

calendar date (e.g. May 1) is more difficult to measure since it varies with the day of the week

and its estimate is sometimes based on only one or two observations. As far as the volatility

equation is concerned, significant periodicity is found for the log-variance scalar λj. Monday

and Saturday are more volatile than other days. Furthermore, the χ2 tests show that significant

yearly and half-yearly cycles in the volatility are detected in our analysis. The estimates of the

GARCH paramaters α1 and β1 are on the boundary of the admissable parameter space. As a

result we have high persistence in the conditional variance, a typical finding in many financial

applications. The t distribution of the errors is fat-tailed with estimated degrees of freedom

ν̂ = 3.98.

The last rows of Table 3 and Figure 4 present diagnostics for the standardised residuals

η̂t = ε̂t/σ̂t that are normalised by the transformation η̂∗t = F−1
G [Ft(η̂t)] , for t = 1, . . . , n,

where FG() and Ft() are the cumulative density functions of the standard normal and the t

distributions, respectively. Since the standard diagnostic statistics and graphs are designed for

residuals that are assumed normal and since the model disturbances are assumed to come from a

t density, this transformation for the residuals is justified. The Ljung-Box Q() test statistics for

serial correlation in the normalised scaled residuals do not exhibit significant serial correlation

while evidence of erratic behaviour in η̂∗t is limited and evidence of non-normal behaviour of η̂∗t is
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not apparent. The high number of zeros in the empirical histogram stems from holiday variables

that occur once and put associating residuals to zero. Strong evidence of serial correlation in

η̂∗2t is not present, especially in the short run.

4.2 Explanatory variables for Nord Pool prices

Prediction errors of the pure time series model can be taken as stemming from changes in the

electricity supply and demand functions. To verify this proposition, we extend the analysis for

Nord Pool prices by adding explanatory variables to the time series model. First, we consider

weekly data on Monday’s water reservoir levels, both in demeaned levels and in demeaned

weekly differences, as a proxy for supply. Levels and first differences are less correlated than

levels and lagged levels and associating test statistics are easier to interpret. Further, the

coefficients of first differences measure short run effects while those of levels capture long run

effects, see Johnston and Dinardo (1997, Ch. 8). Table 4 presents selected estimation results

from which we learn that, ceteris paribus, a change in the water levels has a significant negative

effect on electricity prices, except on Mondays when the measurements for the new week are

not yet publicly available. The parameter estimates of the pure time series model are not much

affected by the introduction of the water levels. The noticeable exception is the effect of the

deterministic yearly cycle in the conditional mean of prices, that is largely replaced by the effect

of the yearly cycle in changing water levels.

Second, we consider levels, daily differences and lagged daily differences of demeaned log

power consumption, that we take as a proxy for electricity demand. Periodic sample means

of this variable are reported in Table 1. Since power consumption is only available for a short

period, a separate analysis is carried out for the model with both water supply and power

consumption as explanatory variables. The estimation results are presented in Table 5. The

effect of water level changes on prices remains significantly negative for all days of the week

except Monday. Positive changes in log consumption have very significant positive effects on

electricity prices. Long run effects of water levels and consumption are not significant in this

basic model that does not allow for feedbacks from prices to consumption. The fractional

integration and AR parameters remain jointly significant and periodic.

These empirical results for the Nord Pool case show that the Reg-ARFIMA-GARCH model

describes the conditional mean and variance of the price process successfully. The estimation

results are easy to interpret and make economic sense. However, a more extensive analysis

should take account of the facts that aggregate demand and supply functions are nonlinear

and vary with the hour of each day. We should further note that historical data on aggregate

supply curves for the Nord Pool are not publicly available.
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5 Empirical results for other European markets

To investigate the robustness of the periodic seasonal Reg-ARFIMA-GARCH model, we repeat

the analysis for daily electricity spot prices from three younger mainland European markets:

the EEX in Germany, Powernext in France and the APX in the Netherlands. The countries

have six holidays in common. We take account of 12 French, 10 German and 8 Dutch holidays.

Table 6 reports selected parameter estimates for the models of these three new markets. The

estimates of the holiday effects are not reported but are significant despite the fact that they

are based on a relative small number of observations. For the APX and Powernext, extra

intervention dummies are introduced for the week of July 11-17, 2003 (in this week, a lack of

cooling water in rivers threatened the nuclear power production and prices were more than

e2.1 = 8.2 times higher than expected on July 11).

The estimated dynamic parameters and disturbance variances vary from day to day in all

three markets. For example, Mondays produce particularly low AR(1) coefficients. The periodic

patterns of the dynamic parameters vary significantly from market to market. Monday’s AR(3)

coefficients for Powernext deviate from the EEX and APX market. Sunday’s AR(3) coefficients

for the APX differ from the EEX and Powernext. Powernext and APX show long memory

behaviour for Saturdays, in concordance with the autocorrelations reported in Table 2, whereas

the EEX estimates indicate fractional integration for Sundays. Apparently, slowly evolving

changes in the weekly seasonal patterns occurred in these markets in the first years of their

existence. The AR parts of models for these new market models show stronger mean reversion

than in the Nord Pool. The largest inverse roots of the characteristic polynomial of the AR

component are 0.47, 0.36 and 0.20 for EEX, Powernext and APX, respectively. Finally, the

volatility persistence as measured by α1 +β1 is lower than unity for the EEX but the volatilities

for Powernext and APX are persistent.

Figure 5 presents graphs of the normalised scaled residuals η̂∗t together with the correlograms

of η̂∗t and η̂∗2t and the histogram of η̂∗t for the three markets. The last row of Table 6 presents

the Box-Ljung Q() statistics for η̂∗t and η̂∗2t . The residual diagnostics are satisfactory but not

perfect. Long run autocorrelations are still present for the EEX and Powernext markets. The

normalised APX residuals are skewed to the left and long run autocorrelations in the squared

residuals are apparent. The basic model specification can be improved by taking account of

market specific features.

6 Conclusions

This paper has presented an empirical analysis of daily spot prices for four European electricity

markets using periodic seasonal Reg-ARFIMA-GARCH models to explain the dynamics in the

conditional mean and variance of log prices. The day-of-the-week periodic autocovariances for
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short run dynamics are modeled by lagged dependent variables and for long run dynamics by

seasonal ARFIMA models. Regressors capture yearly cycles, holiday effects and possible inter-

ventions in mean and variance. The GARCH-t component takes account of volatility clustering

and extreme observations. The model parameters are estimated simultaneously by approxi-

mate maximum likelihood methods. Given the persistent changes in volatility, simultaneous

estimation of mean and variance parameters is preferred above two-step methods. Residual

diagnostics show a good fit of the model. The resulting time series models allow for dynamic

point forecasting and stochastic simulation. The Nord Pool market trades hydro power and it

is shown that a significant part of the short term price movement can be explained by weekly

water reservoir levels and daily electricity consumption. The inclusion of these explanatory vari-

ables in the model does not significantly change the estimated periodic heteroskedastic seasonal

autocovariance structure in Nord Pool prices. The basic modeling framework is successful for

Nord Pool prices while it can be somewhat improved for prices from other European markets.

Suggestions for future extensions are more flexible distributions for the error term, smoothly

time-varying (periodic) parameters and a more extensive specification of the conditional vari-

ance equation. More parsimonious periodic AR components can be estimated and tested. The

model can also be used for prices at a particular hour of the day. Finally, the strong interrela-

tionships between prices and consumption may lead to multivariate modeling approaches. The

empirical findings in this paper may have important consequences for the modeling and fore-

casting of mean and variance functions of spot prices for electricity and associated contingent

assets.
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Table 1: Descriptive statistics daily log-prices Nord Pool and explanatory variables

First difference of daily log-prices

All Mon Tue Wed Thu Fri Sat Sun

T 4466 638 638 638 638 638 638 638

Mean 0.0002 0.1124 0.0105 -0.0018 -0.0082 -0.0176 -0.0667 -0.0273

S.D. 0.102 0.127 0.095 0.079 0.067 0.073 0.100 0.057

r(1) -0.03 -0.26 -0.22 0.17 -0.06 -0.15 -0.03 0.15

r(2) -0.19 -0.54 -0.08 -0.14 0.04 0.03 0.13 0.14

r(7) 0.39 0.26 0.05 -0.08 -0.03 0.09 0.46 0.18

r(14) 0.34 0.21 -0.03 0.01 -0.06 0.05 0.31 0.07

r(21) 0.35 0.21 -0.03 0.01 -0.06 0.05 0.31 0.07

r(28) 0.33 0.15 0.07 -0.04 -0.07 0.04 0.25 0.05

Reservoir levels Daily Log power consumption

Weekly Mon Tue Wed Thu Fri Sat Sun

T 638 222 222 222 222 222 222 222

Mean 62.225 12.6714 12.6756 12.6718 12.6771 12.6636 12.6046 12.5891

S.D. 20.657 0.19890 0.19391 0.19372 0.19669 0.19895 0.20269 0.20683

T : Sample size. Mean: Sample means. S.D.: Sample standard deviations. r(τ): Periodic

autocorrelation of yt for a lag of τ days. Prices in NOK per MWh. Reservoir levels as a

percentage of total Norwegian capacity. Daily power consumption in MWh (around 300,000

MWh per day). Sample log prices and Reservoir levels: January 18, 1993- April 10, 2005.

Sample log power consumption: February 26, 2001- April 10, 2005. Source: www.statnett.no.
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Table 2: Descriptive statistics for daily log prices new European Power Markets

Mon Tue Wed Thu Fri Sat Sun

EEX

Mean 3.362 3.428 3.412 3.390 3.328 3.084 2.821

S.D. 0.355 0.374 0.330 0.381 0.296 0.271 0.294

r(1) 0.64 0.62 0.78 0.74 0.77 0.73 0.87

r(2) 0.55 0.42 0.60 0.61 0.73 0.62 0.67

r(7) 0.37 0.23 0.44 0.29 0.45 0.46 0.71

r(14) 0.23 -0.13 0.19 0.16 0.25 0.42 0.63

r(21) 0.26 0.14 0.25 0.21 0.31 0.48 0.62

r(28) 0.22 0.25 0.28 0.20 0.29 0.41 0.59

Powernext

Mean 3.308 3.402 3.390 3.358 3.309 3.066 2.806

S.D. 0.411 0.333 0.359 0.343 0.314 0.305 0.382

r(1) 0.60 0.67 0.88 0.76 0.85 0.84 0.80

r(2) 0.65 0.58 0.64 0.72 0.70 0.71 0.69

r(7) 0.32 0.41 0.43 0.44 0.48 0.58 0.55

r(14) 0.22 0.18 0.17 0.23 0.27 0.42 0.44

r(21) 0.27 0.34 0.31 0.34 0.38 0.44 0.46

r(28) 0.22 0.40 0.33 0.34 0.34 0.44 0.50

APX

Mean 3.572 3.607 3.583 3.573 3.483 3.219 2.932

S.D. 0.506 0.504 0.481 0.438 0.368 0.293 0.325

r(1) 0.46 0.79 0.84 0.72 0.74 0.41 0.58

r(2) 0.39 0.33 0.74 0.64 0.62 0.41 0.34

r(7) 0.28 0.26 0.21 0.33 0.39 0.48 0.37

r(14) 0.13 0.06 0.06 0.22 0.20 0.43 0.32

r(21) 0.09 0.17 0.17 0.28 0.22 0.38 0.33

r(28) 0.06 0.14 0.19 0.32 0.22 0.40 0.28

r(τ): Periodic autocorrelation of yt for a lag of τ days. Samples: EEX: 182 weeks,

October 15/2002-April 10/2005, Powernext: 174 weeks, December 10/2002-

April 10/2005, APX: 222 weeks, January 08/2001-April 10/2005.

17



Table 3: ML estimates daily log-prices NordPool Jan 18, ’93-April 10, ’05, Deterministic xt.

Periodic parameters m χ2

m m χ2

m

j Mon,1 Tue, 2 Wed, 3 Thu, 4 Fri, 5 Sat, 6 Sun, 7 θ = 0 θ = ιθ0

Dj 0.146 0.005 -0.012 0.033 0.071 0.119 0.078 7 90.3 6 39.6
φ1,j 0.682 1.011 1.150 1.097 1.035 1.181 1.097 7 4765 6 19.7
φ2,j -0.097 0.043 -0.178 -0.080 0.028 0.048 0.016 7 19.7 6 16.0
φ3,j 0.381 -0.067 0.022 -0.016 -0.064 -0.214 -0.116 7 92.4 6 92.3

Constant δ1,0,j 0.202 0.065 0.030 -0.010 -0.006 -0.102 0.008 7 42.6 6 39.5
CosYear δ2,0,j -0.175 -0.010 -0.042 0.002 0.026 0.115 0.083 7 50.0 6 49.6
SinYear δ3,0,j -0.014 -0.074 -0.066 -0.027 -0.035 -0.059 -0.038 7 44.4 6 6.8
Maundy δ4,0,4 -0.025 1 14.7

Good Fri δ5,i,5 -0.033 0.062 -0.000 3 57.4
Easter δ6,i,1 -0.067 0.130 -0.013 0.002 4 173.5

Ascension δ7,i,4 -0.178 0.156 0.011 -0.008 4 188.5
Pentecost δ8,...,1 -0.112 0.145 -0.010 0.012 4 107.8

Dec 24 δ9,0,j -0.169 -0.050 -0.096 -0.079 -0.016 -0.031 -0.004 7 82.3
Dec 25 δ10,0,j -0.135 -0.040 0.015 0.006 -0.010 0.054 -0.032 7 26.7
Dec 26 δ11,0,j -0.005 0.033 0.024 -0.014 0.039 0.064 0.011 28 138.4

δ11,1,j−1 -0.003 0.026 0.111 0.095 0.033 0.094 0.010
δ11,2,j−2 0.038 0.006 -0.009 -0.035 -0.012 0.007 -0.014
δ11,3,j−3 0.051 -0.014 0.001 0.019 0.051 0.021 -0.055

Jan 1 δ12,0,j -0.116 -0.016 -0.053 0.012 0.033 0.042 0.001 28 1502
δ12,1,j−1 0.110 0.165 0.608 0.125 0.055 0.058 -0.002
δ12,2,j−2 0.062 0.010 -0.056 -0.404 0.047 0.014 -0.011
δ12,3,j−3 -0.005 -0.026 0.043 0.004 -0.019 -0.015 -0.026

May 1 δ13,0,j -0.166 -0.144 -0.102 -0.049 -0.171 -0.124 -0.166 28 424.8
δ13,1,j−1 0.312 0.134 0.193 0.078 0.130 0.222 0.099
δ13,2,j−2 0.086 0.030 -0.014 -0.038 0.038 0.043 -0.105
δ13,3,j−3 0.192 0.016 0.096 -0.159 0.004 -0.030 -0.030

May 17 δ14,0,j -0.043 0.019 -0.197 -0.013 -0.071 -0.124 -0.217 28 425.7
δ14,1,j−1 0.101 0.055 0.362 0.224 -0.023 0.061 -0.064
δ14,2,j−2 0.016 0.072 -0.071 0.005 -0.050 -0.118 -0.008
δ14,3,j−3 0.025 -0.016 0.071 -0.048 -0.011 -0.173 -0.049

logVar λj 0 -0.371 -0.611 -0.742 -0.671 -0.018 -0.730 6 131.7
Nonperiodic parameters:

CosY SinY CosHY SinHY
γ1 γ2 γ3 γ4 103α0 α1 β1 ν

-0.240 0.089 0.145 .0079 .504 0.406 0.594 3.98
χ2

1
8.00 4.47 6.35 0.00 15.5 154

LL: 7429.04 #pars: 205 T : 4466 AIC/T : -3.2351 ρ1: 0.951
AC: Q(28): 37.4 Q(91): 86.3 in var: Q∗(28): 55.3 Q∗(91): 151.5

NOTES: Model (1)-(5), §3.1. δj(L)′xt: Periodic effects in conditional mean. Deterministic Regressors xt:
Constant term, Yearly cycle ·10−1 and 11 holidays with nonoverlapping daily lags. δk,i,j : coefficients for
lags 0, 1, 2 or 0, 1, 2, 3 of day-of-the-week j. δk,i,j−i: coefficients for lag i of day-of-the-week j − i, where
j follows modulo 7 arithmetic. λj : periodicity parameters conditional variances. γ′zt: Nonperiodic
effects conditional variance. Deterministic regressors zt: Yearly cycle ·10−3 and HalfYearly cycle ·10−3.
m: degrees of freedom of asymptotic χ2

m Wald-test statistics, θ = 0: test for nullity of parameter set.
θ = ιθ0: test for equality of parameters in corresponding row. Asymptotic critical values at 95% and
99% for m = 7: 14.1 and 18.5, for m = 6: 12.6 and 16.8. α1, β1: GARCH parameters. ν: parameter
t-distribution. LL: approximate log likelihood. T : number of observations. AIC: (−2·LL + 2#par). ρ1:
largest inverse root of characteristic polynomial of periodic AR part. AC: Q(): Ljung-Box statistics on
normalised residuals. Q∗(): idem for squared normalised residuals.
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Table 4: Effect Water Reservoir Levels Nord Pool Jan 18, ’93-April 10, ’05

Periodic parameters m χ2
m m χ2

m

j Mon,1 Tue, 2 Wed, 3 Thu, 4 Fri, 5 Sat, 6 Sun, 7 θ = 0 θ = ιθ0

Dj 0.154 0.011 -0.022 0.037 0.050 0.110 0.073 7 86.7 6 41.8
φ1,j 0.687 1.021 1.144 1.079 1.011 1.151 1.095 7 4635 6 47
φ2,j -0.101 0.032 -0.157 -0.073 0.028 0.048 0.011 7 16.0 6 12.6
φ3,j 0.364 -0.073 0.009 -0.012 -0.049 -0.193 -0.107 7 79.2 6 79.2

Constant δ1,0,j 0.280 0.096 0.019 0.026 0.041 -0.059 -0.003 7 33.7 6 25.8
CosYear δ2,0,j -0.013 -0.003 -0.011 -0.006 -0.003 0.001 0.004 7 24.8 6 15.0
SinYear δ3,0,j -0.019 -0.015 -0.007 -0.012 -0.017 -0.018 -0.002 7 33.2 6 6.9

... ...
∆7Water δ15,...,1 0.046 -0.171 -0.321 -0.328 -0.351 -0.564 -0.185 7 56.1 6 11.1

Water δ16,...,1 -0.077 -0.032 0.008 -0.034 -0.050 -0.038 0.012 7 15.3 6 9.3
logVar λj 0 -0.374 -0.630 -0.759 -0.702 -0.037 -0.721 6 132.2

Nonperiodic parameters:

CosY SinY CosHY SinHY
γ1 γ2 γ3 γ4 103α0 α1 β1 ν

-0.274 0.086 0.137 0.016 0.484 0.436 0.564 3.946
χ2

1 7.77 4.35 7.01 0.14 15.10 187.8

LL: 7466.57 #pars: 219 T : 4466 AIC/T : -3.2457
AC: Q(28): 29.2 Q(91): 79.9 in var: Q∗(28): 50.3 Q∗(91): 144.3 ρ1: 0.906

NOTES: See also notes Table 3. Coefficients δ4,i,j , . . . , δ14,i,j of holiday effects not reported. Water: Water
reservoir levels for Norway as a fraction of total capacity, Water: Water levels in Nord Pool area as a fraction of
total capacity minus 0.6245: the sample mean over 1993-2004 as reported on Mondays for the Nord Pool area.
reported for Mondays. Source: www.statnett.no. ∆7Water: change with respect to previous week.
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Table 5: Effect Reservoir Levels and Power Consumption Nord Pool, Feb 26, ’01-Apr 10, ’05.

Periodic parameters m χ2

m m χ2

m

j Mon,1 Tue, 2 Wed, 3 Thu, 4 Fri, 5 Sat, 6 Sun, 7 θ = 0 θ = ιθ0

Dj 0.125 0.053 -0.124 0.006 -0.118 0.062 0.052 7 25.9 6 25.4
φ1,j 0.460 0.892 0.995 0.983 0.790 0.966 1.056 7 1153 6 52.2
φ2,j 0.094 0.076 0.018 0.138 -0.003 0.149 -0.142 7 6.79 6 5.41
φ3,j 0.398 0.003 -0.014 -0.136 0.198 -0.097 0.112 7 37.1 6 36.3

Constant δ1,0,j 0.295 0.158 0.000 0.072 0.056 -0.131 -0.162 7 19.3 6 17.5
CosYear δ2,0,j -0.016 -0.014 -0.016 0.005 -0.034 -0.010 -0.027 7 44.4 6 15.0
SinYear δ3,j -0.012 -0.013 -0.003 -0.016 -0.014 -0.013 -0.004 7 13.0 6 3.0

... ...
∆7Water δ15,.,j 0.365 -0.292 -0.391 -0.302 -0.549 -0.628 -0.478 7 60.6 6 15.7

Water δ16,.,j -0.057 -0.050 0.012 -0.072 -0.009 -0.003 0.038 7 9.3 6 7.8
∆Consu δ17,0,j 0.423 0.468 0.395 0.324 0.425 0.372 0.240 28 221.1

δ17,1,j−1 0.231 0.172 0.045 0.221 -0.049 0.058 -0.007
δ17,2,j−2 0.333 0.175 -0.051 0.025 0.082 0.086 0.202
δ17,3,j−3 0.100 0.043 -0.094 -0.055 -0.021 -0.229 -0.068

Consu δ18,0,j 0.071 0.035 0.028 -0.046 0.083 0.025 0.069 7 19.7
logVar λj 0 -0.410 -0.737 -0.654 -0.715 -0.054 -0.406 6 36.3

Nonperiodic parameters:

CosY SinY CosHY SinHY
γ1 γ2 γ3 γ4 103α0 α1 β1 ν

-0.274 -0.015 0.136 0.035 0.403 0.501 0.499 3.216
χ2

1
2.38 0.07 2.0 0.2 3.57 20.1

LL: 3060.38 #pars: 200 T : 1505 AIC/T : -3.8012
AC: Q(28): 39.1 Q(91): 119.2 in var: Q∗(28): 40.3 Q∗(91): 93.9 ρ1: 0.923

NOTES: See also notes Table 3 and 4. Coefficients δ4,i,j, . . . , δ14,i,j of holiday effects not reported. Number of
coefficients for the ’fixed date’ holidays is lower than in 3 due to the smaller sample. Consu: Log daily Norwegian
Power consumption in MWh, corrected for day-of-the-week means over period 2002-2005, reported in Table 1.
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Table 6: ML estimates for daily log-prices EEX, Powernext and APX.

Periodic parameters m χ2

m m χ2

m

j Mon,1 Tue, 2 Wed, 3 Thu, 4 Fri, 5 Sat, 6 Sun, 7 θ = 0 θ = ιθ0

EEX

Dj 0.078 -0.047 -0.055 -0.015 0.178 0.101 0.372 7 57.1 6 43.0
φ1,j 0.389 0.860 0.633 0.752 0.652 0.625 0.729 7 431 6 19.7
φ2,j -0.092 -0.086 0.259 0.024 0.263 0.049 -0.032 7 18.9 6 16.7
φ3,j 0.511 0.053 0.016 0.149 -0.061 0.078 0.127 7 101 6 61.0

Constant δ1,0,j 0.830 0.596 0.334 0.271 0.457 0.598 0.265 7 68.8 6 10.3
... ...

logVar λj 0 0.242 0.093 -0.056 -0.076 0.462 -0.274 6 21.2
Powernext

Dj -0.003 0.205 -0.089 -0.105 0.087 0.358 -0.255 7 54.8 6 52.7
φ1,j 0.109 0.519 0.720 0.769 0.784 0.693 1.059 7 453 6 114
φ2,j 0.578 -0.049 0.241 0.168 0.036 0.008 0.492 7 56.8 6 41.6
φ3,j 0.151 0.187 -0.045 0.019 0.097 -0.032 -0.436 7 22.2 6 22.1

Constant δ1,0,j 0.733 1.200 0.263 0.137 0.245 0.931 -0.608 7 96.4 6 71.6
... ...

2003/07/11 δ16,0,j 2.154 -0.964 -0.482 -0.306 0.020 0.385 0.725 7 338 6 256
logVar λj 0 -0.340 -0.847 -0.613 -0.786 -0.650 0.518 6 70.5

APX

Dj 0.078 0.121 0.044 0.090 0.045 0.354 0.052 7 90.0 6 41.0
φ1,j 0.350 0.520 0.689 0.692 0.541 0.286 0.785 7 438 6 36.4
φ2,j 0.181 0.036 0.134 0.038 0.127 0.026 0.075 7 13.0 6 3.6
φ3,j 0.318 0.262 0.011 0.078 0.113 -0.057 -0.014 7 34.3 6 26.3

Constant δ1,0,j 0.693 0.678 0.573 0.657 0.721 2.312 0.259 7 237 6 76.0
... ...

2003/7 δ12,0,j 2.735 0.738 0.924 -1.988 -1.005 0.171 -0.021 7 408 6 403
logVar λj 0 -0.713 -1.127 -1.009 -0.832 -1.047 -0.486 6 36.6

Nonperiodic parameters: Nonperiodic diagnostics:

103α0 α1 β1 ν LL #pars Q(28) Q(91) T Q∗(28) Q∗(91) ρ1

EEX 8.26 0.332 0.409 3.516 753.29 142 65.0 132.8 1274 38.5 132.4 0.468
Powernext 1.083 0.149 0.851 3.257 806.23 190 52.6 120.0 1218 23.2 87.7 0.364

APX 16.68 0.422 0.578 3.065 335.80 137 49.0 111.8 1554 39.5 140.5 0.196
NOTES: See also notes Table 3, Coefficients δ2,0,j , . . . , δ3,0,j for periodic yearly cycle in mean and γ1, . . . , γ4 for
nonperiodic cycle in variance not reported. Other unreported coefficients: δ4,i,j , . . . , δ13,i,j for EEX (10 holidays),
δ4,i,j , . . . , δ15,i,j for Powernext (12 holidays), δ4,i,j , . . . , δ11,i,j for APX (8 holidays). Common holidays for Germany
(EEX) , France (Powernext) and the Netherlands (APX): Good Friday, Easter, Ascencion Day, Pentecost, Dec 25,
Jan 1. EEX: November 1, May 1, October 3, December 24, December 26. Powernext: May 1, May 8, July 14,
August 15, November 1, November 11. December 2003/7: dummy for week 11-17 July 2003.
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Figure 1: Daily spot prices for the Nord Pool
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NOTES: (a): Prices. (b): Daily returns: changes in log prices.
Sample: January 4, 1993- April 10, 2005. Prices in Norwegian Kroner (NOK) Mwh. 1 Euro is
approximately 8 NOK.
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Figure 2: Weekly water reservoir levels and daily consumption for the Nord Pool
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NOTES: (a): Reservoir levels as a percentage of total Norwegian capacity. Sample: January 4, 1993-
April 10, 2005. (b): Daily Norwegian Power Consumption in GWh/day Sample: February 26, 2001-
April 10, 2005. Source: www.statnett.no.

Figure 3: Log daily spot prices for three new European electricity markets
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NOTES: Prices in Euros/MWh. Samples: EEX: October, 1, 2001 - April 10, 2005,
Powernext: December, 3, 2001 - April 10, 2005, APX: January, 1, 2001 - April 10, 2005. Sources:
www.eex.de, www.powernext.fr, www.apx.nl.
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Figure 4: Diagnostics for Nord Pool Model with Deterministic xt
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NOTES: Model estimates presented in Table 3. (a): Daily Normalised scaled residuals against time.
(b): Autocorrelations function normalised scaled residuals against lag in days. (c): Histogram and
nonparametric density estimate of normalised scaled residuals. Thick line gives reference for normal
distribution. (d): Autocorrelations function squared normalised scaled residuals against lag in days.
Sample: Jan 18, 1993- April 10, 2005.
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Figure 5: Residual Diagnostics for New Markets
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NOTES: Model estimates presented in Table 6. First column: Daily normalised residuals against time
in weeks. (1993.1 = 1). Second column: Autocorrelation function normalised residuals against lag in
days. Third column: Autocorrelation function normalised squared residuals against lag in days. Fourth
column: Histogram and nonparametric density estimate normalised residuals. Thick line gives reference
for normal distribution. First row: results for EEX. Second row: results for Powernext. Third row:
results for APX.
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A.M. González, and A.M. Calmarza (2004). Competitors’ response representation for market
simulation in the Spanish daily market. See Bunn (2004).

Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68, 165–176.

Jensen, S. T. and A. Rahbek (2004). Asymptotic inference for nonstationary GARCH. Econometric
Theory , 20, 1203–1226.

Johnston, J. and J. Dinardo (1997). Econometric Methods, fourth edition. McGraw-Hill, New York.

Jones, R. H. and W. M. Brelsford (1967). Time series with periodic structure. Biometrika, 54,
403–408.

Knittel, C. R. and M. R. Roberts (2005). An empirical examination of restructured electricity prices.
Energy Economics, 27, 791–817.

Li, W. K. and Y. V. Hui (1988). An algorithm for the exact likelihood of periodic autoregressive
moving average models. Communications in Statistics, Simulations and Computation, 17, 1483–
1494.

Ling, S. and W. K. Li (1997). On Fractionally Integrated Autoregressive Moving-Average models
with Conditional Heteroskedasticity. Journal of the American Statistical Association, 92, 1184–
1194.

Lucia, J.J. and E.S. Schwartz (2002). Electricity Prices and Power Derivatives: Evidence from the
Nordic Power Exchange. Review of Derivatives Research, 5, 5–50.

Lund, R. and I.V. Basawa (2000). Recursive prediction and likelihood evaluation for periodic ARMA
models. Journal of Time Series Analysis, 21, 75–93.

McLeod, A.I. (1994). Diagnostic Checking of Periodic Autoregression Models with Application.
Journal of Time Series Analysis, 15, 221–233.

Ooms, M. and P.H. Franses (2001). A Seasonal Periodic Long Memory Model for Monthly River
Flows. Environmental Modelling & Software, 16, 559–569.

Pagano, M. (1978). Periodic and multiple autoregressions. Annals of Statistics, 6, 1310–1317.

27



Robinson, P. M. (Ed.) (2003). Time Series with Long Memory, Oxford, UK. Oxford University
Press.

Sowell, F. (1992). Maximum likelihood estimation of stationary univariate fractionally integrated
time series models. Journal of Econometrics, 53, 165–188.

Tiao, G.C. and M.R. Grupe (1980). Hidden Periodic Autoregressive Moving Average Models in
Time Series Data. Biometrika, 67, 365–373.

Vecchia, A. V. (1985). Maximum likelihood estimation for periodic autoregressive moving average
models. Technometrics, 27, 375–384.

Wilkinson, L. and J. Winsen (2002). What can we learn from a statistical analysis of electricity
prices in New South Wales. The Electricity Journal, 15, 60–69.

28




