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Abstract: This paper formulates a number of new portfolio optimization
models by adopting the sample median instead of the sample mean as the
efficiency measure. The reasoning behind this is that the median is a robust
statistic, which is less affected by outliers than the mean. In portfolio models
this is particularly relevant as data is often characterized by attributes such
as skewness, fat tails and jumps that are incompatible with the normality
assumption. Here, we demonstrate that median portfolio models have a
greater level of diversification than mean portfolios, and that, when tested
on real financial data, they give better results in terms of risk calculation
and concrete profits.
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1 Introduction

The Markovitz model is founded on the assumption that when making
financial decisions, investors should always seek to balance return and risk.
And it is the need to translate this premise into an operational tool that has
led to the classic mean variance optimization model that is the milestone
of current portfolio theory. The mean variance model assumes that returns
follow a multivariate normal distribution and, if an investor is fully aware of
the mean variance and co-variance parameters, then he or she can select a
point on the efficient frontier, [34]. Of course, we can never be completely
sure of market parameters, as they have to be estimated from available data.
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The standard approach is to use maximum likelihood estimators (the sample
mean and the sample variance and covariance), and then to formulate a
quadratic optimization problem, see chapter 8 in [17].

Any assumption of normality, however, is decidedly questionable, as there
are many examples of market data that do not follow a normal distribution
pattern, as they are subject to fat tails, abnormal jumps, skewness and so
on, that are incompatible with normality, [41]. This poses the inevitable
question of whether maximum likelihood estimators really are the best way
of approaching this problem. Without doubt, they are the most efficient
approach in situations where data is normal, but what happens when data
is not normal? And at a more detailed level, is it safe, when dealing with
financial data, to consider efficiency, e.g. the property that an estimator has
minimum variance, as the estimator’s most prominent feature?

One way to address the question of data non-normality is to use ro-
bust statistics for the means and variances, or as is more generally stated,
for what are called the distribution location and scale parameters. Robust
statistics were developed almost 50 years ago to deal with the problem of
making correct estimations when data is only approximately normal. Ini-
tially, non-normality was described in terms of contaminated distributions,
e.g. a mixture of a two normal distributions, where one is responsible for
most of the data, but the other disturbs the process by adding a a number
of outliers. Surprisingly, this decreases the efficiency of maximum likelihood
considerably and just 5% of contaminated data is enough to turn robust esti-
mators, as trimmed means and the median, as efficient as the sample mean,
[44].

Contaminated random variables are a compelling hypothesis for portfolio
optimization. After all, on many trading days data is regular, and so no
one feels the need to question normality. Non-normality is evident, how-
ever, when outliers, or jumps appear, but this happens rarely and we don’t
have enough data to ascertain their proper distribution. So, robust statistics
may well be the most appropriate tools, as they don’t assume that data are
given by any peculiar random variable. Rather, the remarkable property of
robust statistics is that they work reasonably well under any circumstances
whatsoever.

If we accept that all the considerations made so far in this paper make
sense, then there is clearly room for exploring the possibility of using the
median in place of the mean as the estimator of portfolio efficiency. And, if
this is true, it follows that this estimator can then be used to formulate a new
portfolio optimization model that continues to adopt Markovitz’s risk return
approach. Our approach is, therefore, really quite straightforward, we have
simply replaced the mean in this model with the median. At first, this may



look as if we have done very little beyond discarding a linear function (the
easiest to optimize), and replacing it with a difficult order statistic to create
an APX-complete problem, [10], but let’s see what the advantages are.

In terms of asset location, the most important of the two Markovitz mea-
sures, mean and variance, is the mean, [13, 16]. Therefore, any misspecifica-
tion of the mean will have considerably greater consequences than mistakes
regarding variances and co-variances. It is also argued by some authors,
[28], that the sample mean data parameter is too sensitive to be reliable and
is therefore not suitable for portfolio optimization. This assertion has two
consequenses. First, it sustains the optimality or near-optimality of passive
investment strategies like the 1/N -portfolio, e.g. equal weights on all assets,
[18]. Secondly, it has pushed some authors to discard the mean altogether
from the optimal portfolio model and to calculate the optimal decisions using
the simple minimum variance model, [19]. On the other hand, this assump-
tion that the mean is of little use contrasts strongly with other experiments
focusing on momentum strategies, in which the sample mean plays an im-
portant role. A momentum strategy allocates wealth to assets that have
registered the highest mean performance in the past, and this has proven
[5, 29, 42] to result in effective decisions. So when all is said and done, we
believe that between the extremes of accepting and discarding the sample
mean entirely, there is room for experimenting with different location and
efficiency estimators, such as the median and other robust statistics.

This is not the first time robust statistics have been used in a portfolio
optimization framework, but previous works have tended to focus more on
robust variance or scale estimators rather than on questioning the use of the
mean. In [19], a minimum variance portfolio model is proposed, in which the
sample variance is replaced by an M-estimator or an S-estimator. From a
computational point of view, this involves solving a non-linear programming
problem where the variance has to be estimated and optimized in a single
step. This one step approach compares favourably with other approaches
where estimations and optimization are carried out in two separate stages,
e.g. a robust estimation of the mean and variance is calculated first and then
the results are used to solve a standard mean/variance quadratic program-
ming problem. This approach has been used, for example, by [22, 31, 35, 45].
Other studies also include ways of addressing the estimation error. The term
’robust’, for example, has been used for models, which recognize that pa-
rameter variability can be caused by the estimation process and confidence
levels, but still consider the data to be within the framework of normality.
In this case, so-called robust optimization assumes a max-min approach, in
which the decision-maker optimizes a worst-case scenario, see [40] and the
references therein.



In this paper, we present a number of new portfolio optimization mod-
els, where the portfolio mean is replaced by the median. The core problem
is to maximize the median, which can be formulated by finding the convex
combination of arrays, e.g. the portfolio weights, such that the resulting vec-
tor, e.g. past portfolio returns, has the maximum median value. In [10], we
prove that the Optimal Median is a NP-complete problem, and that it can be
formulated as a Mixed Integer Linear model. There is an interesting finan-
cial consequence to this finding, despite its inherent difficulties. When the
median objective function is plotted in a bidimensional space, it transpires
that the optimal median can be an internal point of simplex, and this means
that optimal median portolios can consist of many assets, all with weights
of less than 1. This is contrasts sharply with presumable Optimal Mean
portfolios, in which the objective function is linear, where optimal portfolios
can only consist of one single asset with weight 1. This implies that the
Median model has the appealing property of introducing portfolio diversifi-
cation, even when no risk measure is introduced to complete the model. The
computational aspects of the Median problem are also developed in [8, 26].

This paper is structured as follows. The second section contains the
formulation and the main properties of the Optimal median problem, where
we will show how the two processes of parameter estimation and optimization
are carried out in a single step. In the third section of the paper, we create
a fully-fledged risk/return model by adding a number of risk measures to
the problem. Please note that, since the optimal median is itself a MILP
model, only risk measures formulated as linear constraints are used, like
the ones experimented with in [33]. We have experimented with 4 different
risk measures: Mean Absolute Deviation [27], Value-at-Risk [30], Conditional
Value-at-Risk [38], and Maximum Loss, [46], and we have ruled out quadratic
risk measures, such as sample variance and its variations. This is because in
our financial applications, as will be seen, the sample variance/co-variance is
a singular matrix, and therefore unusable in a quadratic optimization model.

The fourth section of the paper describes the main financial application
of our new models, i.e. the allocation of assets in the Milan stock market.
Over the last few years, we have worked together with a small Italian bank,
providing their traders with computer programs to implement optimal port-
folio models, as documented in [11]. In this period, we have observed that
the portfolio models are sometimes cheated by assets where the sample mean
is high, simply because their data contains an isolated jump in a context of
flat returns. The models have nevertheless selected these asset, but their
perfomance has often been unsatisfactory, because the jumps are not repli-
cated. Isolated jumps, however, are outliers in statistical terms, of course,
and statisticians deal with them using robust statistics. That is how we first



began to think of using the median as an objective portfolio function. As we
will see, the results we have achieved by applying the median/risk model to
the Milan stock market are very encouraging, as they are the best portfolio
models in our experiment. Finally, in the last section we test the robust-
ness of the models by applying them to 13 different data sets taken from
[6, 14, 15].

If we were to summarize all our results in single sentence, then our overall
claim is that median models calculate portfolios with a higher asset diversi-
fication than mean models, and this, I think it is fair to say, is a significant
financial breakthrough.

2 The Optimal Median Problem

Let R be a random variable whose distribution is unknown, and from
which a sample r = {r1, r2, . . . , rT} is drawn. Rank r in a non-decreasing
order to obtain the ordered array:

r1:T ≤ r2:T ≤ ... ≤ rT :T ,

so that ri:T is the value in position i on a list of T . For the sake of
simplicity, let T be odd, so there is no ambiguity regarding the middle value
of r. The estimated median of R is med[R] = rT+1

2
:T .

The sample median is popular for being a robust location estimator of
a distribution function. Its optimality properties are described in terms of
the breakdown point, [20], and the influence function, [23]. The breakdown
point of an estimator is the smallest fraction of observation that has to be
replaced to make the estimator unbounded1. The breakdown point of the
sample median is 50%, as at least half of the data have to be replaced to
push the sample median outside the range of the original data, while the
breakdown point of the sample mean is 1

T
. The influence function is the

measure of how an estimator, say µ̂, at a distribution of F is affected by
contaminating the F with an outlier datum. The influence of contamination
on the median is bounded by the constant 1

f(F−1(1/2)
, while the influence on

the sample mean is unbounded. That is, any contamination, however small,
but sufficiently far from the estimated mean, can carry the mean arbitrarily
far away from its initial value. In the context of financial data, it can be the
case that the mean is affected by critical factors resulting from its weakness
with regard to these properties.

1Replaced data and outliers magnitude can be chosen in the least favourable way.



In the Optimal Median Problem, the returns of K assets are modeled as
multivariate random variables R1, . . . , RK , from which we can take samples
of Rj in the form of time series rj = {r1j , . . . , rTj}. Then all the data is
collected in a matrix R ∈ ℜT×K , in which matrix entry rij is the return on
the time i of the asset j. Let xj be the percentage of wealth allocated on
asset j, so the portfolio is a random variable Z that is linked to Rj through

the linear formula Z =
∑K

j=1 xjRj, and the Z time series is zt =
∑K

j=1 xjrjt.
To formulate the Optimal Median problem, assume that the investor

cannot go short and that all wealth must be allocated, then problem P1 is:

max
x,z

(

zT+1

2
:T

)

s.t.

zi =
K
∑

j=1

xjrij for i = 1, ..., T (1)

K
∑

j=1

xj = 1 (2)

xj ≥ 0 for j = 1, ..., K (3)

As can be seen in [10] and in figure 1, the median of a convex combination
of vectors is a non-differentiable piecewise linear function. It is characterized
by many local optima, in which the function is non-differentiable. From an
optimization point of view, [10] proves that the Optimal Median Problem
is APX-complete, that is, the problem cannot be solved, even if a fixed
tolerance ǫ from an optimal solution is allowed. It follows that optimal
solutions to the problem can only be calculated with exponential algorithms,
or by implementing heuristic procedures to obtain a fast solution.

The following reformulation puts the Optimal Median in the form of a
Mixed-Integer Linear Programming model. Let zMed be the variable repre-
senting the median; let yi, i = 1, ..., T be the binary variables representing
the inequalities that define zMed, let M be a sufficiently large number. The
resulting problem, referred to as P2, is :



max
x,y,zMed

zMed

s.t.

zMed ≤
K
∑

j=1

xjrij +M(1− yi) for every i = 1, . . . , T (4)

T
∑

i=1

yi =
T + 1

2
(5)

K
∑

j=1

xj = 1

yi ∈ {0, 1} for every i = 1, . . . , T

xj ≥ 0 for every j = 1, . . . , K.

The constraints (4) are active iff yi = 1, otherwise they are not binding;
zMed is the median of z if there are T+1

2
zi values that are greater or equal to

zMed, therefore variables yi, constrained by (5), define which linear equations
characterize the local optima of figure 1.

From a financial point of view, the most remarkable consequence of non-
convexity is that the optimal median portfolio, e.g. the solution x, is not
restricted to being an extreme point of the simplex S = {x ≥ 0,

∑K
j=1 xj =

1}, as it would be if we calculated the Optimal Mean, but instead, it can
be an internal point of the 0 ≤ x ≤ 1 range. That is to say, if we use the
Optimal Median to make financial decisions, we can obtain optimal portfolios
containing more than one asset.

Compare this case with the classic Mean/Variance approach where only
the risk measure, e.g. the variance, to brings diversification to the portfolio.
If we use the Mean/Variance without the Variance, then the portfolio we end
up with will have one asset only!

Problem P2 is not a method for making portfolio decisions because it
contains no risk index. What interests us here is how much diversification it
can bring to the portfolio and how it can be useful to avoid bad investments.
To achieve this, in the simulation studies it will be benchmarked against the
mean-variance model formulated without the variance constraint, i.e. as a
straight Best Mean Problem P3:



max
x

1

T

T
∑

i=1

zi

zi =
K
∑

j=1

xjrij

K
∑

j=1

xj = 1

xj ≥ 0 for every j = 1, . . . , K.

The Best Mean solution is xj = 1 if j is the asset with the best sample
mean, or xi = 0 otherwise. As we have already stated, the Optimal Mean
does not induce any diversification and also imposes the maximum risk mea-
sure on the portfolio. As we will see in the computational section, in certain
market conditions this property can lead to high losses, which can be reduced
using the Optimal Median model.

3 Introducing Risk Measures

The optimal median model presented in the previous section can be fur-
ther enhanced using a risk measure, and there are numerous studies from
which this can be taken. Unfortunately, variance is not an option, because
of the singularity of the matrix. It is easy to see that, using sample data
collected in the matrix R, the sample co-variance matrix is calculated as:

Σ =
1

T
R(I−

1

T
11t)Rt

which is an idempotent matrix. As such, Rank(Σ) = Rank(I− 1
T
11t) =

T − 1. In practice, the condition T < K is frequent. For example, an
investor wishes to optimize over all stocks traded on a particular market,
and therefore K can be more than one hundred. As a second example, T can
be a small time window, for example, because the economy is at a turning
point (between recession and recovery, for example), that makes older data
obsolete. In this case, T are ten or twenty at most, and T << K. In any
case, the singularity of the matrix makes any model that uses the sample
variance inconsistent.



Furthermore, the Optimal Median is calculated by any software that can
solve a MILP problem. So when risk measures are added, the problem should
preferably not be made more complex, but remain in the MILP class, in order
to fully exploit existing technology as this will save researchers from having
to create their own software. Even with these restrictions (e.g. the fact that
risk measures should be represented by linear constraints, but still allow
for binary variables), there are many risk measures that can be used. We
experimented with the following four:

• the Mean Absolute Deviation (MAD), the resulting portfolio model will
be called MedMAD;

• the Value-at-Risk (VaR), the resulting model will be MedVaR;

• the Conditional Value-at-Risk(CVaR), the resulting model is MedC-
VaR;

• the Maximum Drawdown, (Max), giving the MedMax portfolio model.

The Optimal Median is then paired with any of the four measures to
obtain four different optimization models.

The Median Absolute Deviation is presented in [27] and is calculated as
follows. Suppose a parameter t is given, then the MAD from t of a return
vector z (regarded as occurrences of the rv Z) is:

MADt[Z] =
1

T

T
∑

i=1

|zi − t|

According to existing literature, there are two alternatives for t, e.g. the
sample mean or the median of Z. The original paper [27] uses t = E[Z], but
in our application, the estimation med[Z] = zMed is available. In line with
our model assumptions, we use t = zMed and then:

MAD[Z] =
1

T

T
∑

i=1

|zi − zMed|

If data follows a multivariate normal distribution, then two scenarios may
occur. If the parameters are known, then theorem 1 of [27] applies, by which
the Mean/Variance and the MedMAD calculates the same efficient frontier2.
Of course, this is not the case with real applications, where parameters must

2If parameters are known, then µ = E[Z] = med[Z] and V ar[Z] = kMAD[Z], with k
being the appropriate constant.



be estimated. In this case, and if data is normal, then the MAD is less effi-
cient than the mean, as documented in [43]. But when data is contaminated,
the properties of the MAD are appealing, see [44], as just 10% of contami-
nated data is enough to make the MAD estimators more efficient than the
sample variance. The MAD is sometimes erroneously referred to as a robust
estimator, but it is not, as its breakdown point is 0 and its influence function
is unbounded, [39].

TheMAD is inserted as a risk measure in problemP2, using the following
formulation. First, to control for the variability maximum, a threshold of v∗

must be established. Then, these inequalities must be added to the Optimal
Median Problem:

vi ≥ zi − zMed for all i = 1, . . . , T (6)

vi ≥ zMed − zi for all i = 1, . . . , T (7)

1

T

T
∑

i=1

vi ≤ v∗

The constraints (6) and (7) stand for the non-linear vi ≥ |zi−zMed| which
together with the property

∑

i |zi − zMed| = mint

∑

i |zi − t| make the model
formulation correct.

Between the four models we experimented with, the MedMAD model
is the closest to the original Markovitz formulation. The mean/variance
Markovitz formulation was viewed as a location/scale trade-off problem re-
garding a random variable Z. Then the problem was reformulated using the
sample Median as the location estimator of Z, and the sample MAD as the
scale estimator of Z.

The MedMAD model is the only new model that uses a symmetric index
as a risk estimator. The other three models used indexes calculated on the
tail of the distribution as risk measures. This decision was based on the
observation, supported by existing literature, that risk should be connected
to the bad occurrences of a random variable, not to positive or negative
returns.

The first tail measure we used was Value-at-Risk, [30]. The definition
of Value-at-Risk coincides with that of the α-quantile of a distribution F .
Let Z be the random variable that describes the portfolio return and fix the
probability threshold as α ∈ [0, 1], so the Value-at-Risk is:

V aRα[Z] = −min{t|Pr[Z ≤ t] ≥ α}.

Note that in this definition, positive VaR stands for losses. To intro-
duce Value-at-Risk in an optimization model, first one must observe that the



decision-maker can describe the distribution of Z with its historic achieve-
ments, i.e. its set of portfolio returns z1, z2, . . . , zT . Then, the distribution
of Z is approximated by Pr[z = zi] = pi =

1
T

and a new variable, −zV aR,
standing for the Value-at-Risk quantile, must be introduced. Let z∗ be the
greatest Value-at-Risk that is accepted by the investor, introduce new binary
variables wi, and the model MedVaR is obtained by adding the following con-
straints to P2:

−zV aR ≤
K
∑

j=1

xjrij +M(1− wi) for every i = 1, . . . , T (8)

zV aR ≤ z∗ (9)
T
∑

i=1

zi = T ⌈(1− α)⌉ (10)

wi ≥ yi for every i = 1, . . . , T (11)

wi ∈ {0, 1} for every i = 1, . . . , T

These constraints are discussed in detail in [9], which shows that the
resulting problem is NP-complete, but if T is a fixed parameter, then poly-
nomial algorithms are possible, and a global optimization approach for VaR
optimization is also proposed in [21]. Here, the constraints (8) and (10) are
the same as the constraints defining zMed as both the variables zMed and zV aR

are defining the quantile of a distribution. The constraints (11) connect the
binary variables that define the median with the one defining the Value-at-
Risk: more precisely, if an inequality of the form zMed ≤

∑K
j=1 xjrij defines

the value of the median, then it also defines −zV aR through the inequality
−zV aR ≤ zMed ≤

∑K
j=1 xjrij. As can be seen, the model requires the intro-

duction of T new binary variables for a whole of 2T . However this size is
not critical and the computational times that we experimented are no longer
than those of other models. Last, (10) is the constraint on the maximum
VaR.

At the time VaR was introduced for financial decisions, many researchers
were criticizing the use of Value-at-Risk, on the basis that if a loss exceeds
the Value-at-Risk, then it can be any size whatsoever. In mathematical
terms, it was soon realized that Value-at-Risk lacks the subaddittive prop-
erty, i.e. a property that is fundamental for controlling risk as it imposes
diversification on a mathematical basis. This is the main assumption of the
so-called Coherent Measures of Risk, [4, 1]. The correction that was proposed
is straightforward and is called Conditional Value-at-Risk, e.g. CVaR in [38],



or Expected Shortfall [2], i.e. the expectation of shortfall due to unfavourable
conditions.

To calculate CVaRs, first the Value-at-Risk has to be calculated, then the
expectation of the random variable Z is computed on the condition that it
takes values below the VaR. As before, the occurrences of z1, z2, . . . , zT are
available, and the distribution of Z is approximated using Pr[z = zi] = pi =
1
T
, then:

CV aRα[Z] =
1

1− α

∑

i:−zi≥V aRα[Z]

pi(−zi)

As is shown in [38], which is true for any coherent risk measure as they
can all be easily linearized, see [7], the CVaR can be easily inserted in port-
folio models. First, introduce the continuous variables −zV aR, vi and the
parameter z∗ for the highest CVaR tolerable, and then insert the following
constraints:

−zV aR +
1

(1− α)T

T
∑

i=1

vi ≤ z∗

vi ≥ 0 for every i = 1, . . . , T

vi ≥ −ri + zV aR for every i = 1, . . . , T

As all new variables are continuous, the model is easy to optimize. It
is also one of the most commonly used models in financial contexts where
variance is replaced by a tail risk measure, such as in a credit risk model, [3].

The last measure we considered was the Max Drawdown (MaxD), that
was introduced in [46]. It is defined as zMin = min{zi|i = 1, . . . , T}. Then,
letting z∗ be the maximum acceptable loss, the constraints to add are:

zi =
∑

j = 1Kxijrij for all i = 1, . . . , T

zi ≥ z∗ for all i = 1, . . . , T

The quantity zMin is a quantile estimator, [24], and has been recently
extended in [36].

We therefore ended up with 4 variants of our Median/Risk portfolio
model. All the models are ILP, but the MedCVaR and MedMax are the
ones requiring less constraints and variables, while the most difficult to solve



was the MedVaR model, as it introduces T new binary variables. In our
computational tests, the problems were all small-sized and the computa-
tional burden was not an issue. However, if the problem were to become
significantly larger , then these differences should be taken into account.

4 Test results

We used these new models to simulate an investor who utilises the last
T observations to calculate an optimal portfolio, and then waits for W new
observations, (e.g. the rolling window W ), before optimizing the portfolio
again. The new portfolio models are tested with these specifications of α3:

• The Best Median with no risk constraint.

• The Best Median with Median Absolute Deviation constraint.

• The Best Median with Value-at-Risk constraint, with α = 0.25 .

• The Best Median with Conditional Value-at-Risk constraint, with α =
0.10.

• The Best Median with Maximum Drawdown constraint.

In order to be as objective as possible, we used the following method to
specify the constraints on the maximum tolerable risk. All the models take
as their input a T×K matrix of returns. Then the market index is calculated
assuming that wealth is allocated evenly on all assets, e.g. using the 1

K
rule

[18]. The result is a time series of T data, on which the VaR, CVaR, MaxD
and MAD of the 1/K portfolio index can be calculated. These values are used
as the risk benchmarks for optimization in the next stage. In other words,
the decision maker calculates a new median/risk portfolio, on the condition
that the expected risk is less than the risk observed in the last stage on the
1/K portfolio. The portfolio weights are kept constant until a new optimal
portfolio is calculated4.

To analyze the performance and other financial features of median port-
folios, we have also compared our five models with two benchmark portfolios:

• The Equal Weight Portfolio (EqW), in which wealth is evenly allocated
between all assets (implementing the 1/K-strategy).

3The value of α was chosen as reasonable for the problem in hand, and no attempts
were made to find the best one.

4This implies rebalancing on every t.



• The Best Mean Portfolio, in which the problem P3 is solved and all
wealth is allocated to the asset with the best sample mean.

These benchmarks represent the two most extreme strategies of a fund
manager. Equal weight is a passive strategy 5 that does not use any of the
available information. Here, portfolio diversification is as high as it can get,
which most likely implies a very low ex-post risk. It is important to note
that the 1/K portfolio is a very demanding benchmark, more demanding
than an official index for example, as [18] proves that when a number of
portfolio strategies are compared, this one is by far the best. Furthermore,
uniform portfolios provide an answer to one of the basic financial questions
that matter to investors: is any advantage to be gained by using an active
strategy instead of a passive one? Clearly, if new models did not obtain a
higher return than the EqW, then they are pointless, as it is almost impossible
for them to achieve less risk.

The second benchmark portfolio is the Best Mean. Clearly, it is a parox-
istic and unrealistic method of investing, but not as airy-fairy as it seems.
First of all, the model can be seen as an application of the so called ’momen-
tum strategies’, in which an investor simply has to follow the market and
pick up assets with the best past performance. Those strategies are tested
in [5, 29, 42] and the results were surprisingly good. Secondly, some authors
claim that sample expectation is such an unreliable estimator that it can be
discarded completely from portfolio models, [28]. But this is an issue that
needs to be examined in greater detail, which is what we have done. Last
but not least, it is also important to remember that the Best Mean is the
best benchmark for the Best Median model, as both models lack a measure
of risk.

All these models have been applied to decision making situations using
real financial data. The first section regards experiments made on daily
data from the Milan stock market. These experiments used specific portfolio
models from the trading desk of a small Italian bank that we frequently work
with, [11]. The second section describes how we applied the models to return
data taken from current literature, or to be more specific, to data taken
tests carried out by Beasley et al., [6, 14], and Cesarone et al., [15]. The
main differences between the two experiments is that certain specifications
in the Milan stock market experiment, e.g. daily versus weekly data, monthly
rolling windows, and so on, were prompted by current financial investment
practices. When the same parameters were applied to Beasley and Cesarone’s
public data, a certain degree of realism was inevitably lost, but at least we

5The strategy is passive in the sense that it does not use any market information.
However, the 1/K ratio rebalances the portfolio at every stage.



did not bias the experiments by finding the best ways of implementating the
new models.

For every test in which the portolio models were applied, an ex-post
portfolio return time series was obtained showing the gains or losses made by
the investor. We also registered the relevant means and distribution quartiles
for each time series. So, when the models are compared in terms of highest
returns, the highest mean stands for the wealthiest portfolio6. When we
compare risks, on the other hand, we refer to the time series maximum
loss. Standard deviations are not reported, as the return distributions show
asymmetric gains and losses and we did not want to penalize gains7.

The models were also used to calculate the portfolio weight vector. Weights
give the portfolio diversification objectively suggested by the models. It is
important to note that this diversification is not imposed by the investor, us-
ing upper bounds on weights for outside contingent information. To compare
diversification we used the following two indexes: the Herfindahl-Hirschman
(HH) Index [25] and the Max index (Max), (i.e. the maximum portfolio
weights).

In each period t, the models calculate the portfolio weights xt1, . . . , xti, . . . , xtK ,
such that xti ≥ 0 and

∑K
i=1 xti = 1, therefore, the HH-index, that is com-

monly used for market concentration, [25], is a suitable concentration/diversification
index. It is:

HHt(x) =
N
∑

i=1

x2
ti.

The second index, the MAX, reports the greatest portfolio weight in each
period t and is calculated as:

MAXt(x) = max{xti|i = 1, . . . , N}

So, after applying the models, we obtained the time series of the indexes
and registered the mean values of both.

Note that the two benchmark portfolios obtain the upper and lower
bounds of the two indexes: the 1/K-portfolio gives weights x such that
HHt(x) = MAXt(x) = 1/K, the Best Mean model calculates x such that
HHt(x) = MAXt(x) = 1.

All tests were carried out in R, [37], using the lpSolve and lpSolveAPI
packages, [12, 32]. We will try to publish our subroutines too, if it is possible.

6One can freely compare return medians, but the result does not change much.
7The asymmetry of many distributions is evidenced by the fact that the means and

medians obtained are often very different.



4.1 The Milan stock market

The Milan stock market data is made up of returns calculated from the
daily market prices of 60 companies, who traded throughout the time period
ranging from March 2003 to March 2008. The Milan stock market is the
main market in which the small Italian bank, the Cassa Rurale di Rovereto,
invests, and their investment practice and the way in which they apply port-
folio models has been documented elsewhere, [11]. To give an idea of the
effectiveness of their decision making, figure 2 shows a comparison between
the Equal Weight portfolio, which approximates a passive strategy and stands
for a market index, with the Mean/CVaR portfolio model, [38], which is one
of the Bank’s favourite models and approximates the Bank’s active decision
making. The MeanCVaR model is specified with α = 0.1, T = 50 and no-
shortselling, weights are recalculated for every W = 20 new data, the CVaR
threshold is the CVaR of the equal weight portfolio of the last T days. These
parameters reflect the views of the bank traders, as they trust daily prices
more than weekly prices. Moreover, they only consider relevant returns from
the last T=50 trading days, e.g. data from the last two and a half months, as
markets change direction frequently and older data soon becomes obsolete.
As can be seen from the figure, during the bull market before the 2007 cri-
sis, the CVaR model provided a stable wealth growth, and obtaining better
results than the ones using the EqW portfolio, as the CVaR portfolio is 50%
more than the EqW (see also table 1).

On the basis of the widespread practice established in these pre-crisis
years, and convinced that porfolio models are useful tools for decision making,
bank practitioners have suggested two ways in which portfolio models could
be upgraded.

• Models should distinguish stocks whose high expectation, calculated
from the sample data, is due to stable growth, from stocks in which a
few isolated jumps determine a high sample mean.

• Models with short time series should be made available, i.e. with T <<
50, as sometimes the announcement of a new economic policy changes
the economic scenario and makes old data obsolete and unreliable.

But what exactly is the contemporary take on these issues? Regarding
point 1, our bank contacts pointed out that price time series are characterized
by jumps, for example, following the publication of positive business news,
e.g. when a company signs a new contract or officializes a new alliance. The
most typical - and unreliable - jump is when a takeover bid is made for a
company. For example, figure 3 shows a price graph for the Italian Bulgari



company, in the early months of 2011. As can be seen, the price line begins
with an irregular trajectory of small price adjustments, before making a price
jump of almost 50% following a takeover bid by the French group LVH. After
the jump, however, prices remained in a close range around the bid price.
In the following months, all the mean portfolio models selected Bulgari as
a main asset, but this is clearly a mistake, as the high level of recent gains
could clearly not be repeated in the future.

With regard to the second issue, demanding short time series models (of
T = 20 or even less), the economic rationale is clear. Markets are driven
by economic policies made by many interdependent decision-makers, whose
behaviour is impossible to predict. Who knows how the European sovereign
debt crisis will evolve, for example? A completely new scenario may emerge
after even just one solitary policy decision, like a quantitative easing agree-
ment, for example. In any radically new market condition, the data that can
be used to forecast prices will be limited to just a few days, as any older
information will no longer be reliable. Unfortunately, portfolio models are
not built for use with short time series, and even the strongest arguments
favouring the sample mean inevitably rely on the large number law, which
assume long time series.

We have addressed both points by replacing the mean, as the measure
of portfolio efficiency, with the median. As far as point 1 is concerned, the
median, being a robust statistic, is not affected by jumps that are treated
as time series outliers. Regarding point 2, it is common knowledge that the
highest level of statistic efficiency (e.g. least variance) when using the mean
as a location parameter estimator, is only obtained on the condition that
data is normal and a sufficient long time series is available. In practice, when
one of these conditions, or both, are not met, then there is a valid reason for
experimenting with other location estimators.

For this reason, we compared the first two models: the BestMean with the
BestMedian model. Neither of them include a risk measure, so we observed
the pure buying signal issued by the two measuers. We also tried to establish
how significant the hypothetical diversification effect of the Median, caused
by the presence of so many local optima, was. For both models, and for
all the median/risk models, we used T = 21, an odd number to avoid any
ambiguity when defining the median.

If we look at figure 4, one of the drawbacks of the BestMean model
becomes apparent. The mean is an efficient measure that cannot diversify
the portfolio, and even worse, as it invests completely in one asset only,
it obtains maximum concentration and maximum risk. As a consequence,
extreme returns in terms of both gains and losses are possible. The test shows
that with the Milan Stock Market data, for many periods the Best Mean



portfolio mimiced EqW index returns, but with a higher level of volatility.
This strategy is extremely risky as it traps investments in one asset only, e.g.
Impregilo, whose price plummeted at the end of 2004. As a result, the final
wealth of the BestMean portfolio is much less than the EqW8.

The Median model avoids crashes like these. Figure 5, plots the Best
Median model returns. The dips and volatility that characterize and affect
the Best Mean returns are nowhere to be seen, and, even more importantly,
the final wealth of the median portfolio is higher than that of the EqW
portfolio. If we look at table 1 and 2, then we can see some of these statistics
in detail. The quartiles show that risk, e.g. the maximum portfolio loss, of
the Median portfolio is lower than the risk of the CVaR portfolio, that is to
say, lower than the portfolio that is considered to be the main benchmark
for all our financial applications. As expected, the BestMed risk level is
much lower than the BestMean. And if we look at table 2 and compare the
averages of the HH and MAX indexes, we can see that the diversification
obtained by the BestMed portfolio is even smaller than the CVaR model.
This is quite remarkable, as the BestMed model is formulated without any
risk measure whatsoever. Nevertheless, it still permits more diversification
than a fully fledged model. If we look at the MAX index, we can also see that
its value corresponds to a portfolio asset with maximum weight accounts for
an average of 48% of the whole investment, showing that the optimal median
is an internal point of the multidimensional simplex. This point is very far
from the simplex corners, e.g. the best mean solution, and in the end, the
optimal median model is achieved by processing different market information
from the mean models.

The BestMed model alone is not enough to base investment decisions on as
risk measures need to be introduced to the model. The data from the models
MedMAD, MedVaR, MedCVaR and MedMAX is plotted in figures 6, 7, 8
and 9. As can be seen, all the models provide higher returns than the EqW
portfolios, and also improve on the return performance of the BestMed model
in three cases out of four, see table 1. Regarding risk, e.g. maximum loss risk,
all the models improve on the BestMed model as they all achieve less risk.
These higher returns can be explained by the fact that the median, when
measuring allocation efficiency, discards both positive and negative jumps.
The former may be seen as a positive feature, but the latter is negative,
as the drops registered warn of more severe, future losses. However, these
potentially bad investments are prevented by the risk measures. If we look

8This experiment also suggests that the good results of the MeanCVaR model with the
same data are due to the CVaR constraints, e.g. the diversification imposed by the risk
measure, and not due to the efficiency criteria, e.g. the Best Mean.



at the portfolio diversification indexes, see table 2, we can see that the four
Median/Risk models enjoyed greater diversification than the BestMed and
the minimum values, apart from the EqW, were obtained by the MedCVaR
and MedMAD portfolios. The high diversification of the MedMAD portfolio
will be further confirmed in the following tests too.

In terms of an overall conclusion to this first test, our data shows that Best
Median portfolios are an important decision making tool as they achieved the
highest returns on the EqW portfolio. Our data also shows that using the
BestMean as the portfolio efficiency measure may lead to major drops, a
fact of life that, if not carefully monitored, may impoverish the wealth of the
portfolio. These drops can be avoided using any Median/Risk model because
the resulting portfolio is more diversified, even than the ones that match the
Mean with a risk measure, like the MeanCVaR. Having said that, the test
also demonstrates that as far as risk is concerned, the EqW portfolio is still
the best9.

4.2 Beasley and Cesarone’s time series

We then applied the same strategy outlined in the previous section to the
public data sets proposed by Beasley et al. [6, 14] and Cesarone et al. [15].
This involves 13 data sets, covering different stock markets and time periods.
The purpose of the test was not to show that there is a portfolio model that
outperforms all the others in every market and every time period, as this
would be an impossible task. What we really wanted to see was whether the
main portfolio features would remain the same when we applied the fixed
parameters used in the Milan experiments.

It is important to note that the 13 data sets are composed of weekly data
instead of daily data, as was the case with the Milan experiment, therefore
keeping the same estimation time window, e.g. T = 21, and rolling window of
W = 20, may result in a suboptimal policy. But we prefered to maintain the
same parameters as the Milan experiments, so the models could be compared
on a completely neutral base. After all, if a model works well on a blind
test, like this, then it can only improve when optimized on more realistic
parameters.

Table 3, summarizes the data sources. As can be seen, they come from a
wide timespan covering radically different economic climates, scenarios and
markets. After the experiments, the most striking difference between the

9Note that the diversification provided by the optimization models uses market infor-
mation only, but can be decreased further by imposing bounds on the maximum invest-
ment. This, however, would be an arbitrary new assumption for our experiments and was,
therefore, not tested.



markets, is how effective the BestMean strategy is with regard to the follow-
ing factors:

• Markets where investing is easy. In this case, simply investing all avail-
able money on a single asset is rewarded with the highest final wealth
and is the most profitable strategy of all. This occurs on Beasley’s 1,
2, 3, 4, 6 and 8 time series. The EqW strategy is the least risky, but it
achieves lower returns. All the Median models are located somewhere
in the middle.

• Time series where investing is difficult, and the BestMean is more risky
than the EqW, and also achieves lower returns. These refer to Beasley’s
5 and 7 time series, and all the Cesarone files (except the Nasdaq, see
below). In all these cases, the Median models achieve higher returns
than the EqW, but at the price of higher risk.

• Time series where investing is very difficult, e.g. the Cesarone Nasdaq
time series, where no active strategies beat the EqW.

Diversification indexes: The two concentration indexes for each individual
single test are shown in tables 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29. The
most important result is that this data confirms the Milan results, showing
that the median models all increase diversification. The median portfolio
with no risk at all, still obtains half the concentration of the BestMean model.
When risk measures are introduced, diversification improves, and we can
see that the most diversified model is the MedMAD model, in which the
MAX index range stretches approximately from 20 to 35%. Clearly, all these
numbers are still a long way from the EqW diversification index.

The model with the greatest return: In table 30, column 1 shows which
strategy guaranteed the highest profit for each data set. As can be seen, for
7 of the 13 data sets, BestMean was a rewarding choice, naturally, at the
price of high risk, see below. But in 5 of the data sets, median portfolios
perform better than both the BestMean and the EqW, and these are the
cases in which the BestMean is worse than the EqW. In adverse scenarios, it
therefore seems that median portfolios still outperform the EqW. The only
exception is the last case, the Nasdaq, in which no portfolio is better than
the EqW10.

The least risky model: The second column in the table 30 shows which
portfolios offer less risk. Here, the EqW is the most diversified portfolio, but

10Perhaps in this case our time windows were completely wrong, as the Nasdaq is often
considered a very fast and reactive market.



ex-post is not always the least risky. It is the best in 9 cases out of 13, but
in 4 cases, MedMAD diversification is more efficient. This shows that the
diversification in Median models, even if it is higher than the EqW portfolio
when measured through the diversification indexes, can still select assets with
the lowest market risk.

Combining risk/return analysis: We have tried to summarize the quantile
results in tables 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 using risk/return
analysis. The general principle of portfolio theory is that extra-profit is
achieved at the price of higher risk, so if a model is not over-dominated by
either risk or return measures, then it is a useful tool for decision making.
First of all, in table 31, we can see that the return on the Median models is
nearly always better than the EqW:

1. BestMed achieved a higher return than the EqW 8 times out of 13.

2. Median/Risk portfolios achieved a higher return in 43 matches out of
52.

Regarding point 1, the BestMean achieved a higher return than the EqW
7 times out of 13, so the BestMed only has a slight advantage. But this
performance can be greatly improved by adding a risk measure, see point 2,
as when this is done, in the vast majority of cases the Median/Risk models
outperform the EqW.

When the Median models are compared with the BestMean, which is the
most profitable strategy in 7 cases out of 13, we would expect the median
models to have a much lower level of risk, as they are much more diversified.
From the tests, see 32, we can see that:

1. BestMed has less risk than BestMean 8 times out of 13.

2. Median/Risk portfolios are less risky in 44 matches out of 52.

Regarding point 1, when the median is implemented without a risk mea-
sure, the results can be disappointing, as it registers more risk in 5 cases out
of 13, even though its diversification is better. However, this result can be
greatly improved when risk measures are included in the model: all risk com-
parisons between the Median/Risk models and the BestMean demonstrate
that in the vast majority of cases the Median models achieve less risk.

One final remark must be devoted to the MedMAD strategy. We have
seen that the diversification indexes are the lowest of all the active portfolios,
and that in 2 experiments, see table 30, this is the dominating strategy, i.e.
it achieves less risk and more returns than all the other portfolio models. If
this data is then combined with the data in tables 31 and 32, it would seem
fair to conclude that the MedMAD model is the best.



5 Conclusion

In this paper we have tested a number of portfolio models that use the
Median instead of the Mean as the objective function. Theoretically, these
portfolio models should be better when data is non-normal, and also, as
the objective function has many local optima, they should provide more
diversification. When the real data is tested, the results show that this is
true. Median models do provide more portfolio diversification, and they
can achieve higher profits. As we have already explained, this application
has been specifically designed for cases is which only a limited amount of
data is available for optimization, e.g. when T is much less than K, and
Mean/Variance models cannot be used on account of the singularity of the
covariance matrix. This is why we believe that the Median/MAD model is
a valid reformulation of the Markovitz principle.

From these conclusions, two questions naturally arise. Firstly, what hap-
pens when the T is large? In this case, Median models can be directly
compared to Mean/Variance models, but first we must extend the heuristic
methods developed in [7, 26] to deal with the constrained optimal median
problems involved too. And secondly, what happens if we use a robust risk
estimator? We have constructed our models using the most popular linear
risk function available in current literature, but only VaR can be interpreted
as a robust measure, as it is an order statistic. A more interesting robust
measure is the Median Absolute Deviation, but, as this again is a median
model, it would increase the binary variables and consequently the complex-
ity of the problem. Nevertheless, we are convinced that this is a line of
research that merits future attention.
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Figure 1: A graph showing the median of the convex combination of two
assets.
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Figure 2: Milan stock market: comparing the EqW (black line) and MeanC-
VaR (red line) portfolios.
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Figure 3: Bulgari prices before and after OPA.
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Figure 4: Milan stock market: comparing the EqW (black line) and the
BestMean (red line) portfolios.
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Figure 5: Milan stock market: comparing the EqW (black line) and BestMed
(red line) portfolios.
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Figure 6: Milan stock market: comparing the EqW (black line) and the
MedMAD (red line) portfolios.
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Figure 7: Milan stock market: comparing the EqW (black line) and the
MedVaR (red line) portfolios
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Figure 8: Milan stock market: comparing the EqW (black line) and the
MedCVaR (red line) portfolios
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Figure 9: Milan stock market: comparing the EqW (black line) and the
MedMAX (red line) portfolios



Min. 1st Qu. Median Mean 3rd Qu. Max.
Equal W -0.0468200 -0.0029100 0.0010640 0.0005039 0.0049610 0.0305100
CVaR.50 -0.0688400 -0.0060630 0.0007623 0.0007139 0.0078750 0.0450600
Best Med -0.0580500 -0.0071540 0.0004696 0.0007094 0.0090390 0.0639800
Best Mean -0.377500 -0.010730 0.000000 0.000353 0.010890 0.118800
MedVar -0.0574100 -0.0063020 0.0007768 0.0008085 0.0084260 0.0647400

MedCVaR -0.0565500 -0.0054030 0.0007629 0.0006752 0.0069260 0.0582200
MedMax -0.0554400 -0.0051970 0.0009366 0.0011130 0.0081340 0.0624700
MedMAD -0.0516400 -0.0047880 0.0006076 0.0007968 0.0068860 0.0533700

Table 1: Milan stock data: Mean and quantile returns from different portfolio
models

HH max
Equal W 0.01666667 0.01666667
CVaR.50 0.3912677 0.5012798
Best Med 0.3404817 0.4834777
Best Mean 1 1
MedVar 0.302726 0.4454241

MedCVaR 0.2255899 0.3518155
MedMax 0.2566656 0.3837267
MedMAD 0.2293793 0.3526348

Table 2: Milan stock data: Mean and quantile returns from different portfolio
models



Source Market T, K Period
Beasley-1 Hang Seng 290, 31 March 1992, September 1997
Beasley-2 Dax 100 290, 85 March 1992, September 1997
Beasley-3 FTSE 100 290, 89 March 1992, September 1997
Beasley-4 S&P 100 290, 98 March 1992, September 1997
Beasley-5 Nikkey 225 290, 225 March 1992, September 1997
Beasley-6 S&P 500 290, 457 March 1992, September 1997
Beasley-7 Russell 2000 290, 1318 March 1992, September 1997
Beasley-8 Russell 3000 249, 2151 March 1992, September 1997
Cesarone-1 EuroStoxx50 264,47 March 2003, March 2008
Cesarone-2 FTSE 100 264, 76 March 2003, March 2008
Cesarone-3 MIBTEL 264, 221 March 2003, March 2008
Cesarone-4 S&P 476 264, 476 March 2003, March 2008
Cesarone-5 NASDAQ 264, 2191 March 2003, March 2008

Table 3: Data sets from Beasley and Cesarone.



Min. 1st Qu. Median Mean 3rd Qu. Max.
EqW -0.137200 -0.015530 0.005178 0.003510 0.022910 0.117500

BestMean -0.147500 -0.026570 0.009221 0.011610 0.045000 0.219900
BestMed -0.150000 -0.021820 0.009354 0.008079 0.035440 0.203600
MedVaR -0.190700 -0.022160 0.008490 0.008261 0.036960 0.173100
MedMax -0.149100 -0.020380 0.006472 0.003675 0.029080 0.116700
MedCVaR -0.161600 -0.017160 0.005322 0.004303 0.026650 0.108100
MedMAD -0.132800 -0.017800 0.006497 0.003748 0.028000 0.115600

Table 4: Mean and quantiles of portfolio strategies applied to the Hang Seng
1992-97

HH MAX
Equal W 0.03125 0.03125
Best Med 0.4624018 0.5947217
Best Mean 1 1
MedVaR 0.4295522 0.5492874
MedMax 0.2840001 0.419751
MedCVaR 0.2516018 0.3667023
MedMAD 0.2580075 0.3873757

Table 5: Diversification indexes of portfolio strategies applied to the Hang
Seng 1992-97.



Min. 1st Qu. Median Mean 3rd Qu. Max.
EqW -0.051250 -0.007485 0.001643 0.001501 0.011430 0.049150

BestMean -0.149500 -0.013980 0.002460 0.009176 0.034810 0.262400
BestMed -0.090710 -0.008500 0.0007659 0.005814 0.023470 0.095680
MedVaR -0.099840 -0.008776 0.002301 0.006348 0.021220 0.098920
MedMax -0.093140 -0.008303 0.003446 0.005619 0.019920 0.095680
MedCVaR -0.079940 -0.008924 0.001577 0.005536 0.020990 0.095680
MedMAD -0.076020 -0.008675 0.002654 0.004210 0.017500 0.074930

Table 6: Mean and quantiles of portfolio strategies applied to the Dax 100,
1992-97

HH MAX
Equal W 0.01162791 0.01162791
Best Med 0.3900327 0.5325823
Best Mean 1 1
MedVaR 0.3263508 0.47111374
MedMax 0.3306594 0.4744355
MedCVaR 0.2804148 0.4182394
MedMAD 0.1744027 0.2616575

Table 7: Diversification indexes of portfolio strategies applied to the Dax
100, 1992-97



Min. 1st Qu. Median Mean 3rd Qu. Max.
EqW -0.054780 -0.008188 0.002756 0.002658 0.012680 0.086870

BestMean -0.111600 -0.018270 0.003419 0.006091 0.028760 0.159700
BestMed -0.069700 -0.013230 0.002998 0.003396 0.018810 0.101300
MedVaR -0.081350 -0.012800 0.003391 0.003819 0.017030 0.101300
MedMax -0.061130 -0.010270 0.003145 0.004056 0.017200 0.094070
MedCVaR -0.060520 -0.010780 0.002083 0.003422 0.014590 0.100200
MedMAD -0.054220 -0.009937 0.002370 0.003726 0.015620 0.086870

Table 8: Mean and quantiles of portfolio strategies applied to the FTSE 100,
1992-97.

HH MAX
Equal W 0.01111111 0.01111111
Best Med 0.3467349 0.5033554
Best Mean 1 1
MedVaR 0.2967019 0.4552982
MedMax 0.2198074 0.3434669
MedCVaR 0.2220292 0.3501135
MedMAD 0.1711999 0.2749024

Table 9: Diversification indexes of portfolio strategies applied to the FTSE
100, 1992-97.



Min. 1st Qu. Median Mean 3rd Qu. Max.
EqW -0.036100 -0.007154 0.003276 0.002874 0.012450 0.053120

BestMean -0.168800 -0.024930 0.002924 0.005857 0.036850 0.166000
BestMed -0.09510 -0.02038 -0.00007669 0.003054 0.02283 0.1597
MedVaR -0.116800 -0.018910 0.002750 0.003435 0.024480 0.148200
MedMax -0.082720 -0.013790 0.002103 0.002206 0.017990 0.067900
MedCVaR -0.094520 -0.013270 0.002513 0.003132 0.021440 0.096160
MedMAD -0.101600 -0.010510 0.003163 0.002233 0.016110 0.076040

Table 10: Mean and quantiles of portfolio strategies applied to the S&P 100,
1992-97

HH MAX
Equal W 0.01010101 0.01010101
Best Med 0.4055683 0.5033554
Best Mean 1 1
MedVaR 0.3277657 0.4729854
MedMax 0.1894146 0.3164776
MedCVaR 0.1811819 0.2986034
MedMAD 0.1768587 0.2960193

Table 11: Diversification indexes of portfolio strategies applied to the S&P
100, 1992-97



Min. 1st Qu. Median Mean 3rd Qu. Max.
EqW -0.12600 -0.02008 -0.000766 -0.0015030 0.0167600 0.1215000

BestMean -0.135200 -0.031700 -0.005603 -0.001971 0.023160 0.141700
BestMed -0.238400 -0.025160 -0.003819 -0.001535 0.022340 0.145500
MedVaR -0.121900 -0.022090 -0.002978 0.0001875 0.019580 0.14750
MedMax -0.127700 -0.022660 -0.003733 -0.0004099 0.019540 0.12840
MedCVaR -0.105400 -0.022110 -0.003827 -0.0004266 0.018150 0.13230
MedMAD -0.084180 -0.019890 -0.002876 -0.0003084 0.018040 0.11810

Table 12: Mean and quantiles of portfolio strategies applied to the Nikkey
225, 1992-97

HH max
Equal W 0.004424779 0.004424779
Best Med 0.353322 0.4848529
Best Mean 1 1
MedVaR 0.3041650 0.4267809
MedMax 0.2726755 0.3958407
MedCVaR 0.2550025 0.3825
MedMAD 0.2149165 0.3294858

Table 13: Diversification indexes of portfolio strategies applied to the Nikkey
225, 1992-97



Min. 1st Qu. Median Mean 3rd Qu. Max.
EqW -0.097090 -0.012720 0.004244 0.001724 0.016430 0.079340

BestMean -0.262500 -0.041820 0.008067 0.010360 0.064700 0.234800
BestMed -0.209100 -0.040520 0.010290 0.008092 0.056830 0.212500
MedVaR -0.242100 -0.034370 0.004177 0.006049 0.054520 0.212500
MedMax -0.251700 -0.019470 0.006566 0.005517 0.039300 0.160600
MedCVaR -0.241600 -0.018830 0.005330 0.005735 0.035360 0.179900
MedMAD -0.199400 -0.017070 0.004812 0.004704 0.028680 0.121800

Table 14: Mean and quantiles of portfolio strategies applied to the S&P 500,
1992-97

HH MAX
Equal W 0.002183406 0.002183406
Best Med 0.4109845 0.553372
Best Mean 1 1
MedVaR 0.3717943 0.5068179
MedMax 0.2137783 0.3372625
MedCVaR 0.1897302 0.3158391
MedMAD 0.1634776 0.2586778

Table 15: Diversification indexes of portfolio strategies applied to the S&P
500, 1992-97



Min. 1st Qu. Median Mean 3rd Qu. Max.
EqW -0.126000 -0.020080 -0.0007666 -0.0015030 0.0167600 0.1215000

BestMean -0.135200 -0.031700 -0.005603 -0.001971 0.023160 0.141700
BestMed -0.238400 -0.025160 -0.003819 -0.001535 0.022340 0.145500
MedVaR -0.121900 -0.022090 -0.002978 0.0001875 0.019580 0.147500
MedMax -0.127700 -0.022660 -0.003733 -0.0004099 0.019540 0.128400
MedCVaR -0.105400 -0.022110 -0.003827 -0.0004266 0.018150 0.132300
MedMAD -0.084180 -0.019890 -0.002876 -0.0003084 0.018040 0.118100

Table 16: Mean and quantiles of portfolio strategies applied to the Russell
200, 1992-97

HH MAX
Equal W 0.004424779 0.004424779
Best Med 0.353322 0.0.4848529
Best Mean 1 1
MedVaR 0.3041650 0.4267809
MedMax 0.2726755 0.3958407
MedCVaR 0.2550025 0.3825
MedMAD 0.2149165 0.3294858

Table 17: Diversification indexes of portfolio strategies applied to the Russell
200, 1992-97



Min. 1st Qu. Median Mean 3rd Qu. Max.
EqW -0.099920 -0.011120 0.004791 0.001604 0.015450 0.094400

BestMean -0.37040 -0.05557 0.01185 0.01243 0.07950 0.46570
BestMed -0.429400 -0.029020 0.008644 0.003490 0.044740 0.341000
MedVaR -0.275900 -0.033380 0.010980 0.008729 0.054710 0.320700
MedMax -0.438400 -0.027920 0.008186 0.003596 0.045550 0.214100
MedCVaR -0.412900 -0.025400 0.005969 0.002960 0.043750 0.226900
MedMAD -0.216500 -0.017850 0.012490 0.006061 0.039950 0.154500

Table 18: Mean and quantiles of portfolio strategies applied to the Russell
300, 1992-97

HH MAX
Equal W 0.004424779 0.004424779
Best Med 0.2656127 0.3964605
Best Mean 1 1
MedVaR 0.2239116 0.3682222
MedMax 0.1892909 0.3336972
MedCVaR 0.1854615 0.3250739
MedMAD 0.1345886 0.2310935

Table 19: Diversification indexes of portfolio strategies applied to the Russell
300, 1992-97



Min. 1st Qu. Median Mean 3rd Qu. Max.
EqW -0.060490 -0.009208 0.004439 0.003216 0.017340 0.075660

BestMean -0.712100 -0.01457 0.003656 0.002990 0.022710 0.762400
BestMed -0.101800 -0.012080 0.003844 0.002888 0.018770 0.077920
MedVaR -0.100600 -0.010880 0.003594 0.002901 0.019080 0.083540
MedMax -0.084970 -0.012560 0.003976 0.003182 0.019460 0.075660
MedCVaR -0.082050 -0.010090 0.004851 0.004872 0.017880 0.446500
MedMAD -0.079710 -0.009283 0.003161 0.003331 0.017750 0.075660

Table 20: Mean and quantiles of portfolio strategies applied to the Eu-
roStoxx, 2003-08

HH MAX
Equal W 0.020833 0.020833
Best Med 0.3133755 0.4384548
Best Mean 1 1
MedVaR 0.2615966 0.3870369
MedMax 0.2663146 0.3871546
MedCVaR 0.2438328 0.3655124
MedMAD 0.201106 0.3047439

Table 21: Diversification indexes of portfolio strategies applied to the Eu-
roStoxx, 2003-08



Min. 1st Qu. Median Mean 3rd Qu. Max.
EqW -0.065450 -0.006498 0.004983 0.003182 0.016040 0.068650

BestMean -0.302600 -0.022780 0.007054 0.003655 0.033300 0.153500
BestMed -0.218700 -0.017580 0.005245 0.008551 0.028930 1.130000
MedVaR -0.181000 -0.018390 0.007401 0.008166 0.029520 0.980400
MedMax -0.108800 -0.014170 0.005228 0.003752 0.025100 0.120000
MedCVaR -0.104400 -0.011000 0.005521 0.004423 0.022960 0.111700
MedMAD -0.093290 -0.007530 0.007398 0.004961 0.020740 0.096240

Table 22: Mean and quantiles of portfolio strategies applied to the FTSE
100, 2003-08

HH max
Equal W 0.012658 0.012658
Best Med 0.3842628 0.518389
Best Mean 1 1
MedVaR 0.3385556 0.483172
MedMax 0.2520822 0.3891488
MedCVaR 0.2329686 0.3628687
MedMAD 0.1934227 0.3169802

Table 23: Diversification indexes of portfolio strategies applied to the FTSE
100, 2003-08



Min. 1st Qu. Median Mean 3rd Qu. Max.
EqW -0.078020 -0.006822 0.004380 0.001378 0.01264 0.050430

BestMean -0.36080 -0.02327 0.00000 0.00096 0.01771 0.45320
BestMed -0.801100 -0.020960 0.0005164 -0.0033710 0.02255 0.3732000
MedVaR -0.537000 -0.018740 0.003674 0.0005118 0.02482 0.3187000
MedMax -0.393500 -0.013830 0.004793 0.002709 0.02494 0.339200
MedCVaR -0.385100 -0.013860 0.004835 0.002391 0.02213 0.330100
MedMAD -0.193800 -0.010050 0.006839 0.003839 0.01968 0.216200

Table 24: Mean and quantiles of portfolio strategies applied to the MIBTEL,
2003-08

HH MAX
Equal W 0.0044247 0.0044247
Best Med 0.3415395 0.4775823
Best Mean 1 1
MedVaR 0.2908776 0.4376798
MedMax 0.2040393 0.328877
MedCVaR 0.1942376 0.3236113
MedMAD 0.1387325 0.2243378

Table 25: Diversification indexes of portfolio strategies applied to the MIB-
TEL, 2003-08



Min. 1st Qu. Median Mean 3rd Qu. Max.
EqW -0.061440 -0.008898 0.003767 0.002511 0.014900 0.072890

BestMean -0.228000 -0.033560 0.010220 0.002763 0.049020 0.190100
BestMed -0.157300 -0.017660 0.006283 0.005080 0.036560 0.150500
MedVaR -0.148700 -0.017660 0.008731 0.006318 0.037330 0.134400
MedMax -0.136600 -0.015090 0.005941 0.004086 0.025700 0.118000
MedCVaR -0.155200 -0.013020 0.006160 0.003786 0.027840 0.120600
MedMAD -0.109200 -0.009447 0.006418 0.004077 0.023450 0.077700

Table 26: Mean and quantiles of portfolio strategies applied to the S&P 500,
2003-08

HH MAX
Equal W 0.0021 0.0021
Best Med 0.3265198 0.4634541
Best Mean 1 1
MedVaR 0.3076458 0.4325518
MedMax 0.2451123 0.3704486
MedCVaR 0.2629144 0.3889473
MedMAD 0.1710927 0.2840422

Table 27: Diversification indexes of portfolio strategies applied to the S&P
500, 2003-08



Min. 1st Qu. Median Mean 3rd Qu. Max.
EqW -0.062920 -0.009319 0.001967 0.001792 0.015270 0.056850

BestMean -0.628600 -0.058370 -0.001080 -0.005323 0.046610 0.916300
BestMed -0.230800 -0.044730 0.002729 -0.0005791 0.035370 0.257400
MedVaR -0.238200 -0.032390 -0.000899 -0.001441 0.0306000 0.352300
MedMax -0.228600 -0.033320 -0.001126 -0.001285 0.030960 0.185400
MedCVaR -0.203000 -0.028240 0.002465 0.001013 0.035070 0.152800
MedMAD -0.154100 -0.026230 0.005575 0.001253 0.033020 0.118000

Table 28: Mean and quantiles of portfolio strategies applied to the NASDAQ,
2003-08

HH MAX
Equal W 0.000455 0.000455
Best Med 0.2946113 0.4369417
Best Mean 1 1
MedVaR 0.2431236 0.3992313
MedMax 0.1778284 0.2920459
MedCVaR 0.1744571 0.3016559
MedMAD 0.1187219 0.204928

Table 29: Diversification indexes of portfolio strategies applied to the NAS-
DAQ, 2003-08



Data Best return Least Risk
Beasley-1 BestMean MedMAD
Beasley-2 BestMean EqW
Beasley-3 BestMean MedMAD
Beasley-4 BestMean EqW
Beasley-5 MedMAD MedMAD
Beasley-6 BestMean EqW
Beasley-7 MedMAD MedMAD
Beasley-8 BestMean EqW
Cesarone-1 MedCVaR EqW
Cesarone-2 BestMed EqW
Cesarone-3 MedMAD EqW
Cesarone-4 MedVAR EqW
Cesarone-5 EqW EqW

Table 30: The highest return portfolios and least risk portfolios.



Data Most return Less return
Beasley-1 All None
Beasley-2 All None
Beasley-3 All None
Beasley-4 MedVaR, MedCVaR MedMax, MedMAD
Beasley-5 All None
Beasley-6 All None
Beasley-7 All None
Beasley-8 All None
Cesarone-1 MedCVaR, MedMAD MedVaR, MedMax
Cesarone-2 All None
Cesarone-3 MedMAD, MedMax, MedCVaR MedVaR
Cesarone-4 All None
Cesarone-5 None All

Table 31: Return comparison of all Median/Risk portfolio models against
EqW



Data Less Risk More Risk
indtrack-1 MedMAD MedVaR, MedMax, MedCVaR
indtrack-2 All None
indtrack-3 All None
indtrack-4 All None
indtrack-5 All None
indtrack-6 All None
indtrack-7 All None
indtrack-8 MedMAD, MedVaR MedMax, MedCVaR

EUROSTOXX All None
FTSE All None

MIBTEL MedMAD MedVaR, MedMax, MedCVaR
S&P All None

NASDAQ All None

Table 32: Risk comparison of all Median/Risk portfolio models against Best-
Mean


