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’Spatial long memory’goes back at least to:

Smith, H. Fairfield (1938). An empirical law, describing heterogeneity in the
yields of agricultural crops. Journal of Agricultural Science 28, 1—23.

Consider n agricultural plots on a field.

Yield at location i = (i1, i2) is xi1i2

Sample mean = x



Suppose the i, j locations of the data form a regular lattice (equal spacing),
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Smith assumed in effect:

V ar (x) ∼ Cn2d−1, 0 ≤ d < 1/2, (1)

and estimated d by LS regression after logging.

If the lattice has dimension n1/2 × n1/2, the model (1) is consistent with the
underlying isotropic model

Cov
(
xi1i2, xj1j2

)
∼ c

√
(i1 − j1)2 + (i2 − j2)2

2d−1
= c ‖i− j‖2d−1 ,

which is equivalent to the usual autocovariance function of a stationary long
memory time series with differencing parameter d, eg FARIMA(p, d, q) .



Since then, many papers on ’spatial long memory’, but topic has not been
developed as systematically or comprehensively as ’long memory time series ’.

Some distinctive issues arising in the ’spatial’case:

Isotropy or not?

Regular or irregular sampling?

Unilateral or multilateral, curse of dimemnsionality?

Edge effect?



Topics:

1. Inference on location and regression with long memory errors

2. Inference on second-order properties of long memory stationary processes

3. Miscellaneous topics: nonstationary processes, irregular spacing, adaptive
estimation, nonparametric regression

We do not consider ’spatial autoregressive’-type models (which depend on a
user-chosen weight matrix of geographic or economic inverse distances); these
typically have short memory.



1 Inference on location and regression with long

memory errors

Sample mean x is a basic statistic, whose asymptotic properties are well known
under time series short and long memory.

In time series case, suppose

xt = µ+
∞∑
j=0

αjεt−j,
∞∑
j=0

α2
j <∞,

where {εt} is a sequence of iid (0,1) random variables, or even homoscedastic
(but not necessarity id) martingale differences.



Implies xt is stationary, and can have ’short memory’.or ’long memory’ or
’negative memory’.

First suppose xt has short memory, or is I (0) , i.e. xt has spectral density

f (λ) =
1

2π

∞∑
j=−∞

Cov
(
xt, xt+j

)
cos (jλ) , − π ≤ λ ≤ π,

that satisfies

0 < f (0) <∞.

Then x is an asymptotically normal and effi cient estimate of µ,
√
n (x− µ)→d N (0, 2πf (0)) , as n→∞,

where f (0) can be consistently estimated, e.g. by nonparametric spectral
estimate.



Long and short memory can be described by I (d) process with

αj ∼ S(j)jd−1, 0 < d < 1/2,

for a slowly varying function S(j) and

0 < d < 1/2, so f (0) =∞, long memory,
−1/2 < d < 0, f (0) = 0, negative memory.

There is interest in allowing for a nonconstant S(j) (eg S(j) = log j), and this
has been done in limit theory for basic statistics, and also in (semiparametric)
estimation of d.

But we focus on constant S(j), which covers FARIMA and FBM.

x is no longer asymptotically effi cient (Adenstedt, 1975) but it can still be
asymptotically normal, albeit possibly with a different rate of convergence.



We can obtain

n1/2−d (x− µ)→d N
(

0, σ2 (d)
)
as n→∞, 0 < d < 1/2,

n1/2 (x− µ)→d N
(

0, σ2 (d)
)
as n→∞, − 1/2 < d < 0.

We can studentize, with consistent estimates of d and σ2 (d) (Robinson,
2005a).



More generally consider the self-normalized statistic

u = (x− µ) /

E
n−1

n∑
t=1

(xt − µ)

2


1/2

.

Ibragimov and Linnik (1971) showed that

u→d N (0, 1) , as n→∞,

if only the εt are iid (relaxable) and

∞∑
j=0

α2
j <∞, E

 n∑
t=1

(xt − µ)

2

→∞, as n→∞.



Note that under negative memory

E

 n∑
t=1

(xt − µ)

2

at best diverges slowly, indeed if yt = µ+ εt − εt−1

n∑
t=1

(xt − µ) = εn − ε0

and it does not diverge at all.



For spatial data, consider an m−dimensional lattice.

t is a multiple index (t1, ..., tm) with tj ∈ Z = {0,±1, ...}, j = 1, ...,m.

Consider covariance stationary process xt observed on the lattice

t ∈ N = {t : 1 ≤ ti ≤ ni, i = 1, ...,m}, n =
∏m
i=1 ni

(or more general region):

xt =
∑

j∈Zm
αt−jεj,

∑
j∈Zm

α2
j <∞, εj ∼ (0, 1) , inid.



E.g. in isotropic case, m = 2

αj ∼ ‖j‖−δ =
(
j2

1 + j2
2

)−δ/2
,

with memory parameter δ > 1.

For time series long memory has been ’explained’as arising from cross-sectional
aggregation of AR(1) processes, see Robinson (1978), Granger and (1980) etc.

This interpretation has been extended to spatial processes by eg Lavancier
(2011).



Let Λ be the domain of observations and λ = V ol (Λ) , so λ ∼ n1n2 in
2-dimensional rectangular lattice case

For

S =
∑
t∈Λ

xt

we have

λδ−3S →d N
(

0, σ2 (δ)
)
,

with

δ ∈ (1, 2) (long memory),

δ ∈ (2, 2.5) ,
∑
j∈Z2

αj = 0 (negative memory).



Also

λ−1/2S →d N
(

0, σ2 (δ)
)
,

with

δ > 2.5,
∑
j∈Z2

αjk = 0.

Studentization?



Extension to regression models:

An interesting case, for m = 2, is

yt = β0 + β1t
θ1
1 + β2t

θ2
2 + xt,

because regression powers will ’interact’with memory parameters.

For a more general model, and with general m, Robinson (2012a) considered
nonlinear LS estimation of β′s and θ′s, for short memory xt.

In this case, estimates are effi cient, but β′s are estimated slightly less well than
θ′s, with rates dependng on θ′s (and slightly less well than if θ′s were known) .

With long memory xt rates will be slower, and if memory is strong enough
relative to magnitude of θ′s we may not be able to estimate some β′s and θ′s,
because error term xt dominates regression component.



2 Inference on second-order properties of long

memory stationary processes

Now consider estimating either a full parametric model for the spectrum/autocovariance
function, or else a ’semiparametric’one specified for only low frequencies/long
lags.

For short memory time series, early work on asymptotics covered LS and YW
estimates of stationary AR.

Continuous and discrete frequency, and Gaussian PMLE, estimates of ARMA
and other short memory time series were well covered by Hannan (1973).



He relaxed iid assumptions on innovations, allowing them, and centred squared
innovations, to be stationary martingale differences (expressing the natural or-
dering of time series data), with only finite second moments required (for es-
timation of dependence parameters), expressing the natural ordering of time
series data.

(In fact the squared innovations need only be absolutely integrable).

His CLT prooof was essentially found to work under long memory with differ-
encing parameter d ∈ (0, 1/4) by Yajima (1985).

Using a different method of proof Fox and Taqqu (1986) established a CLT for
d ∈ (0, 1/2) .



For spatial lattice data, a vital early (short memory) reference is Whittle (1954).

Noting that multilateral MA/AR representations are more natural for spatial
data than for the unilateral/one-sided ones normal in time series, he pointed out
identifiability problems with multilateral repesentations, and extended the (uni-
lateral) Wold representation for purely nondeterministic time series to spatial
processes, introducing ’half-plane’representations.

But a given multilateral ARMA doesn’t necessarily have a neat half-plane rep-
resentation, where AR or MA orders may be infinite.

Sometimes a ’quarter plane’representation is possible.



Whittle, and others (eg Martin (1979), Tjostheim (1983), Kashyap (1984),
Huang and Anh (1992)) considered estimation of various short memory para-
metric models, some extending ARMA in an isotropic or separable way, eg, for
m = 2,

(1− α1L1) (1− α2L2)xt = εt,

with iid εt.

Other kinds of models, eg Matern, were considered by eg Stein (1999).



For asymptotic theory of estimates one basic question is whether to use in-
creasing domain (as usually in time series) or fixed-domain (infill) asymptotics.

Infill asymptotics can lead to results that are not easy to use in practice and
even to inconsistency.

Also one can consider a compromise, where domain increases slowly.



Another issue is the ’edge effect’.

Consider estimating the autocovariance γj = cov
(
xt, xt+j

)
of a (zero mean)

process xt by

γ̂j =
1

n

∑
t,t+j∈Λ

xtxt+j.

Various estimates of parameters (and indeed nonparametric spectral estimates)
are essentially functions of the γ̂j.



For m = 1 (time series) Λ contains n − j points and so (for fixed j), γ̂j has
bias O

(
n−1

)
,so doesn′t prevent CLT for n1/2

(
γ̂j − γj

)
from holding.

But for m = 2, and Λ =
[
1, n1/2

]
×
[
1, n1/2

]
bias is of exact order n−1/2 so

limit distribution of n1/2
(
γ̂j − γj

)
has nonzero mean.

And for m = 3 and Λ =
[
1, n1/3

]
×
[
1, n1/3

]
×
[
1, n1/3

]
bias is of exact

order n−1/3 so no CLT.

Likewise for m > 3.

So obvious extensions of time series estimates (eg Whittle) of parameters don’t
work.



Solutions;

1. (Guyon (1982)) Base estimation on unbiased estimates

γ̃j = nγ̂j/#
∧

2. (Dahlhaus and Kuensch (1987)) Tapering of xt.

3. (Robinson and Vidal Sanz (2006), Robinson (2007)) Trimming: omitting γ̃j
for large ‖j‖.



Edge effect may be an even bigger issue for long memory spatial processes.

Nevertheless a number of parametric long memory stationary linear models,
both isotropic and separable, have been considered, with some asymptotic the-
ory.

E.g. Sethuraman and Basawa (1995), Boissy et al (2005), Shitan (2008), Beran
et al (2009).

For cyclic/seasonal long memory models see eg Cisse et al (2016).



For ’semiparametric’estimates of the memory parameter:

Log periodogram spatial estimates (extending Geweke and Porter-Hudak (1983))
have been considered by eg Ghodsi and Shitan (2016), the latter extending as-
ymptotic theory of Robinson (1995a) (G and S assume a parametric model).

Local Whittle spatial estimates (extending Kuensch (1986)) have been devel-
oped by Guo et al (2009), Durastanti et al (2014), extending asymptotc theory
of Robinson (1995b).



Scope for further study of issues of model choice (especially due to danger of
’curse of dimensionality’in lattice models) and bandwidth choice.



3 Miscellaneous topics

3.1 Nonstationary processes

Really, time series AR(1) with a unit root is a ’long memory’process because
it has longer memory than a stationary long memory process, and it coincides
with a fractional process with d = 1.

But nesting it in the fractional, rather than AR, class leads to standard asymp-
totics, eg CLT for memory and other parameter estimates, even under nonsta-
tionarity, using either tapering and skipping of frequencies in discrete-frequency
Whittle estimation, or using CSS estimation.



These ideas seem capable of extension to nonstationary fractional processes on
a spatial lattice.

Current work on semiparametric estimation for underlying continuous isotropic
process for m = 2, using tapering and skipping, with Yajima and Matsuda.

We can have multivariate observations, and consider cointegration etc of spatial
data.



3.2 Irregular spacing

This is more likely to be an issue with spatial data than with time series data.

For an underlying continuous process, we can in principle construct a Gaussian
likelihood, conditional on the observation points.

But conditions for asymptotic theory are messy relative to the regular spaced
case.

Sometimes irregular spacing is due to missing from a regular lattice.

Then we might extend Parzen’s (1963) amplitude modulating idea for missing
data in time series, studying the process atxt, where at is a zero-one process.



3.3 Adaptive estimation in semiparametric models

’Gaussian’estimates, such as Whittle, of course retain their property of robust-
ness to departures from Gaussianity with spatial data.

But if the process is non-Gaussian such estimates are ineffi cient.

For time series data ’adaptive’estimation has been developed, where effi ciency
is established under a nonparametric error distribution, eg for long memory
series Hallin and Serroukh (1998), Robinson (2005b).

These ideas seem extendable to long memory lattice processes.



3.4 When ordering doesn’t matter

Unlike with time series data there is no natural uni-dimensional ordering of
spatial data.

For spatial lattice there is typically an ordering of locations only with respect
to each of the m dimensions.

For inference on many features, such as spatial dependence parameters, respect
for the ordering is crucial.



But for estimating some ’instantaneous’ features, such as location, and sto-
chastic design nonparametric regression, ordering can be disregarded and the
spatial data xi mapped arbitrarily into a sequence ui, i = 1, ..., n.

We might assume, say (Robinson, 2012b),

ui =
∞∑
j=1

aijηj, 1 ≤ i ≤ n, sup
i

∞∑
j=1

a2
ij <∞. (2)

We have ’long memory’if

1

n

n∑
i,j=1:i 6=j

Cov(ui, uj) =
1

n

n∑
i,j=1:i 6=j

∞∑
k=1

aikajk →∞, as n→∞.

For stochastic design nonparametric (kernel) regression, with spatial data,
Robinson (2012b) gave conditions for CLT, based partly on (2) and on dis-
tance between multivariate and product univariate densities, which can cover
long memory.


