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Abstract: Increasing globalization and interconnection among countries generates spatial and

temporal dependence which will affect the production process of each country. Many studies

have analyzed the effect of cross-sectional dependence by using restrictive parametric models.

We use a flexible nonparametric two-step approach on conditional efficiencies to eliminate the

dependence of production inputs/outputs on these common factors. By using a dataset of 44

countries over 1970-2007, we estimate the global frontier and explore the channels under which

Foreign Direct Investment (FDI) and time affect the production process and its components: im-

pact on the attainable production set (input-output space), and the impact on the distribution of

efficiencies. We extend existing methodological tools - flexible non parametric location-scale fron-

tier model - to examine these interrelationships. We emphasize the usefulness of “pre-whitened”

inputs/outputs to obtain more reliable measure of productivity and efficiency to better inves-

tigate the driven forces behind the catching-up productivity process. Furthermore, since the

influence of external factors has been eliminated, our proposed approach mitigates the prob-

lem of endogeneity bias caused by reverse causality between the external factors as FDI and

productivity.
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1 Introduction

Due to an increasing globalisation and interconnection among countries through history, geog-

raphy and trade relations, technological interdependency generated by externalities is impor-

tant in explaining conditional convergence process across countries. Total factor productivity

has been recognized as the most important driver behind economic growth (Prescott 1998,

Caselli 2005, Parente and Prescott 2005). The issue of cross section dependency or corre-

lation has been widely discussed in the empirical panel data literature (Bai and Ng 2006,

Pesaran 2006, Bai 2009, Kapetanios et al. 2011). The productivity analysis also recognises

an importance of investigating the spillover effects of the global shocks and business cycles.

Mastromarco et al. (2013) among others, demonstrate that it is crucially important to take

into account globalisation factors for an analysis of productivity and output growth. Due to a

certain degree of cross-section dependence (CSD) introduced by unobserved (heterogeneous)

time-specific factors the conventional estimators would be seriously biased. The literature

deals with cross section dependence, attributable to economy-wide shocks that affect all units

in the cross section but with different intensities, by assuming a multifactor error process char-

acterized by a finite number of unobserved common factors. According to this approach, the

error term is a linear combination of a few common time-specific effects with heterogeneous

factor loadings plus an idiosyncratic (individual-specific) error term.

Chudik et al. (2011) introduce the distinction between weak and strong cross section

dependence. Specifically, a process is said to be cross sectionally weakly dependent at a given

point in time, if its weighted average at that time converges to its expectation in quadratic

mean, as the cross section dimension is increased without bounds. If this condition does not

hold, then the process is said to be cross sectionally strongly dependent. The distinctive

feature of strong correlation is that it is pervasive, in the sense that it remains common to all

units however large the number of cross sectional units.1

Pesaran (2006) and Bai (2009) propose two alternative way to handle strong cross sectional

dependence. Pesaran (2006) suggests a pooled common correlated estimator (PCCE) which

approximates the linear combinations of the unobserved factors by cross section averages of

the dependent and explanatory variables and then runs standard panel regressions augmented

with the cross section averages. An advantage of this approach is that it yields consistent es-

timates even when the regressors are correlated with the factors, and the number of factors

are unknown. Bai (2009) proposes a principal component (PC) interactive maximum likeli-

hood estimator where the unobserved factors are identified by principal components. More

recently Pesaran and Tosetti (2011) have presented a panel model in which the errors are

1Spatial dependence typically entertained in the literature turns out to be weakly dependent in this frame-
work.
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a combination of a multifactor structure and a spatial process, hence combining strong and

weak CSD.

So far all of the studies analyzing effect of external common factors on productivity of

countries have been in the stream of parametric modeling. However, the parametric approach

suffers of misspecification problems when the data generating process is unknown, as usual in

the applied studies, and the nonparametric methods often give the most reliable results. The

purpose of this paper is to provide fully nonparametric location scale estimators of production

frontiers and time variant technical efficiency in a dynamic framework which allows external

and global (time specific) factors to affect technical efficiency.2

There is a fundamental measurement problem for total factor productivity (TFP). The

usual approach to estimate TFP is through growth accounting to explain output growth as

the accumulation of factor inputs and the growth of TFP. However this approach has an

important drawback since it does not consider non-competitive markets, increasing returns

to scale and factor utilisation over the business cycle. More importantly, growth accounting

interprets the TFP (Solow residual) as ”technical change“. The interpretation of the TFP as

technical change is reasonable only if all countries are producing on their frontier. Beyond

factor inputs, we could have additional determinants of output growth affecting the efficiency

with which real inputs are transformed into output and thus directly affecting productivity.

TFP comprises two mutually exclusive parts, technological change and efficiency change, and

frontier model allows us to distinguish between the two. Moreover our frontier model enables

us to see whether the effect of environmental/global variables on productivity occurs via

technology change or efficiency. We can then quantify the impact of environmental/global

factors on efficiency levels and make inferences about the contributions of these variables in

affecting efficiency.

We propose a full flexible non parametric two step approach to take into account the cross

section dependence due to common factors attributable to global shocks. Following recent

development in non parametric conditional frontier literature (Florens et al. 2014) we suggest

a flexible nonparametric location-scale frontier model linking production inputs and output

to the global and environmental factors. In the first step we clean the dependence of inputs

and outputs on global and other environmental factors. In the second step we estimate the

frontier and the efficiency using inputs and outputs whitened from the influence of global

shocks and endogenous environmental factors. By eliminating influence of external factors

our nonparametric estimator is also robust to the endogeneity bias caused by reverse causality

between the external factors as FDI and productivity. Our approach deals with endogeneity

2The efficiency frontier literature defines environmental or external factors, those variables which might
affect the production process but which are not under the direct control of the production unit.
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by proposing an estimator of the boundary of the production set based on ’cleaned’ output

and inputs which are uncorrelated with global factors and FDI.

More fundamentally, we propose a robustness method which simultaneously addresses the

problem of model specification uncertainty, potential endogeneity and spatial dependence in

the analysis of productivity. It also accounts for heteroskedasticity.

The paper aims to examine the productivity catching up process using 44 countries over

the period 1970-2009 and to investigate the role of global factor as FDI and time in spurring

technological catching up (efficiency) among countries.

2 The Methodology

We apply Florens et al. (2014) methodology and consider a Data Generating Process (DGP)

characterizing the production process in the presence of environmental factors and we extend

their models to a dynamic framework to allow the introduction of the time dimension and

cross section dependence (CSD). Consider a generic input vector X ∈ R
p
+, a generic output

vector Y ∈ R+ and we will denote by Z ∈ R
r the generic vector of environmental variables

(FDI in our study). Since we are in a context of panel data, our sample will be denoted by

(Xit, Yit, Zit), with i = 1, . . . , n being the firm index and t = 1, . . . , s the time index. For

handling the time dimension, we will consider, with some abuse of notation, the time T as an

additional conditioning variable. To better investigate the influence of globalization factors

(e.g., technological shocks and financial crises) on the economic performance of countries under

analysis, we develop a method to envelop the effect of CSD on the production process. Hence,

we assume that the production process is function of unobserved time-varying factors. As

proposed by Pesaran (2006), Bai (2009) we will consider Ft = (t, X·t, Y·t) as proxy for the

unobserved nonlinear and complex trending patterns associated with globalisation and the

business-cycle.

2.1 A short excursion in Frontier models

For unfamiliar readers, we can summarize the setup of frontier models as follows. The pro-

duction process is a process generating pairs of inputs X ∈ R
p
+ and outputs Y ∈ R+. We

first define the unconditional (marginal) attainable set of feasible combinations of inputs

and outputs as Ψ = {(x, y) ∈ R
p+1
+ |x can produce y}. It can be can be characterized by

Ψ = {(x, y)|HX,Y (x, y) > 0}, where HX,Y (x, y) = Prob(X ≤ x, Y ≥ y). So Ψ is the support

of the joint random variable (X, Y ). For the univariate output case, the frontier function can
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be defined for an input vector x as

τ(x) = sup{y|HXY (x, y) > 0} = sup{y|SY |X(y|x) > 0}, (1)

where the conditional survivor function is SY |X(y|x) = Prob(Y ≥ y|X ≤ x). Sometime,

researchers reports also for a unit operating at the level (x, y), the Farrell-Debreu output

efficiency score λ(x, y) = τ(x)/y = sup{λ|SY |X(λy|x) > 0} ≥ 1. An efficiency score equal to

one, detects a unit on the efficient frontier.

When we want to condition the frontier analysis to some environmental factors (Z, Ft), as

is our setup here, we have rather to define the attainable set Ψz,ft ⊂ R
p+1
+ as the support of

the conditional probability (Cazals et al. 2002):

HX,Y |Z,Ft
(x, y|z, ft) = Prob (X ≤ x, Y ≥ y |Z = z, Ft = ft) . (2)

Accordingly, and following Daraio and Simar (2005), when the output is univariate, the con-

ditional frontier function at input x, facing conditions z and ft (in particular at time t), is

defined as3

τ(x, z, ft) = sup{y|SY |X,Z,Ft
(y|x, z, ft) > 0}, (3)

where SY |X,Z,Ft
(y|x, z, ft) = Prob(Y ≥ y|X ≤ x, Z = z, Ft = ft) (note the difference in the

conditioning forX , the inputs, and for Z and Ft, the environmental and global factors). Again

we can report the Farrell-Debreu conditional efficiency scores as

λ (x, y|z, ft) = τ(x, z, ft)/y = sup{λ|SY |X,Z,Ft
(λy|x, z, ft) > 0}. (4)

The unconditional and conditional attainable sets can be estimated, for the unconditional

set we can plug the empirical version of SY |X in (1) providing the popular FDH (Free Dis-

posal Hull) estimator of Ψ. A nonparametric estimator of the conditional survival function

SY |X,Z,Ft
(y|x, z, ft) could be obtained by using standard smoothing methods where a band-

width h has to be determined for each component of (Z, Ft) (as e.g. in Badin et al., 2010).

In summary, these nonparametric estimators are consistent with rate n1/(p+1) and Weibull

limiting distribution for the unconditional FDH (see Park et al., 2000). For the conditional

case, we have similar results where n is replaced by nhd where d is the dimension of all the

conditioning variables (in our setup, (Z, Ft), so d = r+ p+2) (see Jeong et al., 2010). So the

rates of convergence of the conditional estimators are deteriorated by the dimension d.

In most of the empirical examples, a naive application of these nonparametric techniques

3We only focus the presentation on the output orientation version of the estimators, the same could be
done for any other orientation (input, hyperbolic, directional distance).
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may be problematic because real samples contain in general some anomalous data. In that

case, the estimated frontier is fully determined by these outliers or extreme data points and

the measurement of inefficiencies are totally unrealistic. Whereas most of the practitioners use

a rule of thumb for outliers elimination, better approaches have been proposed in the frontier

literature (Cazals et al., 2002; Daouia and Simar, 2007) to keep all the observations in the

sample but to replace the frontier of the empirical distribution by (conditional) quantiles or

by the expectation of the minimum (or maximum) of a subsample of the data. This latter

method defines the order-m frontier that we will use here. To be short, the partial output-

frontier of order-m is defined for any integer m and for an input x, as the expected value of

the maximum of the output of m units drawn at random from the populations of firms using

less inputs than x. Formally

τm(x) = E [max(Y1, . . . , Ym)] , (5)

where the Yj are independently distributed as SY |X(·|X ≤ x). The same applies for the

conditional order-m frontier τm(x, z, ft) where the Yj are distributed as SY |X,Z,Ft
(·|X ≤ x, Z =

z, Ft = ft). Nonparametric estimators are obtained by plugging the nonparametric estimators

of the survival functions in the formulae.

If m increases and converges to ∞, it has been shown (see Cazals et al., 2002) that the

order-m frontier and its estimator converge to the full frontier, but for a finite m, the frontier

will not envelop all the data points and so is much more robust than the FDH to outliers and

extreme data points (see e.g. Daouia and Gijbels, 2011, for the analysis of these estimators

from a theory of robustness perspective). Another advantage of these estimators is that they

achieve the parametric rate
√
n of convergence and have a normal limiting distribution.

2.2 The Location-Scale models

In this paper, for the conditional measures, we will rather follow the approach suggested

in Florens et al. (2014) which avoids direct estimation of the conditional survival function

SY |X,Z,Ft
(y|x, z, ft). As pointed by Florens et al., the procedure is less impacted by the curse

of dimensionality (of the conditioning variables Z, Ft) and requires smoothing in these variables

in the center of the data cloud and so avoiding smoothing at the frontier where typically the

data are rather sparse and estimators are more sensitive to outliers. Moreover the inclusion

of time factor Ft = (t, X·t, Y·t) enables us to eliminate the common time factor effect, in a

very flexible nonparametric location-scale model. The statistical properties of the resulting

frontier estimators are established in Florens et al. (2014).

We thus assume that the data are generated by the following nonparametric location-scale
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regression model {
Xit = µx(Zit, Ft) + σx(Zit, Ft)εx,it

Yit = µy(Zit, Ft) + σy(Zit, Ft)εy,it
, (6)

where µx, σx and εx have each p components and, for ease of notations, the product of vectors

is componentwise. So the first equation in (6) represents p relations for each component of

X . We assume that each element of εx and εy have mean zero and standard deviation equal

to 1. The model also assume that (εx, εy) is independent of (Z, Ft).

This model allows us to capture for any (z, ft), for each input, j = 1, . . . , p and for the

output, the locations µ
(j)
x (z, ft) = E

[
(X(j)|Z = z, Ft = ft)

]
, µy(z, ft) = E [(Y |Z = z, Ft = ft)]

and the scale effects σ
(j),2
x (z, ft) = V

[
(X(j)|Z = z, Ft = ft)

]
, σ2

y(z, t) = V [(Y |Z = z, Ft = ft)]

of the environmental and common factors on the production plans.4

As explained in Florens et al. (2014), εx and εy can be interpreted as “pure” inputs and

output, because due to the independence between the vector (εx, εy) and (Z, Ft), they can be

viewed as “whitened” versions of X and Y respectively. Since no particular assumption is

made on the distribution of (εx, εy), the model remains basically nonparametric. Note also

that in the case where (Z, Ft) would be independent of all the inputs X and of the output

Y , the functions µℓ and σℓ would be constant for ℓ = x, y and (εx, εy) would simply be a

standardized version of the original inputs and output.

The pure efficiency measure - that we derive below - provides a better indicator to assess

the economic performance of production units over time and allows the ranking of produc-

tion units affecting by common shocks (captured by common factors ft) and facing different

environmental factors at different time periods (zit).

To estimate the production frontier we follow the method proposed by Florens et al.

(2014). First we estimate model (6) by using some usual nonparametric techniques (e.g. local

constant or local linear) in two steps: (i) estimation of the location functions µℓ(zit, ft) and

(ii) estimation of the variance functions σ2
ℓ (zit, ft) by regressing the resulting square residuals

of the first step on (z, ft). For the first step we use local linear and for the second step local

constant to avoid negative values of the estimated variances. From this first analysis we obtain

the residuals

ε̂x,it =
Xit − µ̂x(Zit, Ft)

σ̂x(Zit, Ft)
, (7)

ε̂y,it =
Yit − µ̂y(Zit, Ft)

σ̂y(Zit, Ft)
, (8)

where again, for ease of notation, a ratio of two vectors has to be understood component

4Hereafter, for a vector a, a(j) denotes its jth component.
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wise. These are the whitened inputs and output obtained by eliminating the influence of the

external and other environmental variables as common factors. In practice we will need to

test the independence between (ε̂x,it, ε̂y,it) and (Zit, Ft), i.e. the independence of whitened

inputs and output from the external and global effects to validate the location-scale model

(see Florens et al. (2014)).

In the second stage, we can now estimate the production frontier for these whitened output

and inputs and so we obtain for each observation (i, t) a measure of “pure” efficiency. This

approach enables us to accommodate both time and cross-sectional dependence and obtain

more reliable measure of efficiency. To some extent, the first step allows us also to control for

endogeneity due to reverse causation between production process (labour, capital and output)

and external variables (in our case FDI).

Moreover, as pointed by Florens et al. (2014), by cleaning external factors dependence in

the first stage, we avoid the problem of curse of dimensionality due to the dimension of the

external variables when estimating the production frontier. In practice this leads to estimate

the attainable set of pure inputs and output (εx, εy). The latter is defined as

Ψε =
{
(ex, ey) ∈ R

p+1|Hεx,εy(ex, ey) = Prob(εx ≤ ex, εy ≥ ey) > 0
}
.

The nonparametric estimator is obtained by plugging the empirical estimators Ĥεx,εy(ex, ey)

obtained with the observed residuals defined in (7) and (8). As shown in Florens et al. (2014),

replacing the unobserved (εx, εy) by their empirical counterparts (ε̂x, ε̂y) does not change the

usual statistical properties of frontier estimators. So we have the consistency for the full-

frontier FDH estimator and
√
n-consistency and asymptotic normality for the robust order-m

frontiers. It is conjectured in Florens et al. (2014), that if the functions µℓ and σℓ for ℓ = x, y,

are smooth enough, the conditional FDH estimator would keep its usual nonparametric rate

of convergence i.e. n1/(p+1).

A “pure” measure of efficiency can also be obtained by measuring the distance of a partic-

ular point (εx,it, εy,it) to the efficient frontier. Since the pure inputs and output are centered

on zero, they may have negative values and so radial distances are inappropriate. We should

rather use directional distances defined for a particular unit (ex, ey) as

δ(ex, ey; dx, dy) = sup{γ|Hεx,εy(ex − γdx, ey + γdy) > 0}, (9)

where dx ∈ R
p
+ and dy ∈ R+ are the chosen direction. In our case here we choose an output

orientation so that dx = 0 and we can choose dy = 1, for more general cases, see Simar and

Vanhems (2012) (if only some elements of dx = 0 see Daraio and Simar, 2014 for practical

computations). So, for this particular output direction and in the case of univariate output we
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follow here, the optimal production frontier can be described at any value of the pure input

ex ∈ R
p, by the function

ϕ(ex) = sup{ey|Hεx,εy(ex, ey) > 0}, (10)

so that the distance to the frontier of a point (ex, ey), in the output direction, is directly given

by δ(ex, ey) = ϕ(ex)− ey.

It is then shown in Florens et al. (2014) that for each units in the sample, the “pure”

efficiency estimator is obtained through

δ̂(ε̂x,it, ε̂y,it) = ϕ̂(ε̂x,it)− ε̂y,it, (11)

where ϕ̂(·) is the FDH estimator of the pure efficient frontier in the output direction. It is

simply obtained as

ϕ̂(ex) = sup{ey|Ĥεx,εy(ex, ey) > 0}
= max

{(i,t)|ε̂x,it≤ex}
ε̂y,it. (12)

Similar expressions are derived in Florens et al. (2014) for the robust version of this estimator,

the order-m efficiency estimator. As explained above, the order-m frontier at an input value

ex, is the expected value of the maximum of the outputs of m units drawn at random in the

population of units such that εx,it ≤ ex. The nonparametric estimator is obtained by looking

to its empirical version:

ϕ̂m(ex) = Ê [max (εy,1t, . . . , εy,mt)] , (13)

where the εy,it are drawn from the empirical conditional survival function Ŝεy|εx(ey|ε̂x,it ≤ ex)

(this can be computed by Monte-Carlo approximation or by solving a univariate numerical

integral (for practical details see Simar and Vanhems 2012).

It is also possible to recover the conditional output-oriented frontier in the original units

of the inputs and output. It is directly obtained at any value of (x, z, ft) as

τ(x, z, ft) = µy(z, ft) + ϕ(ex)σy(z, ft), (14)

where ex is the p-vector with components (x−µx(z, ft))/σx(z, ft). In terms of estimates, this

gives for a particular point (xit, zit, ft) the estimated frontier point in the original units

τ̂(xit, zit, ft) = µ̂y(zit, ft) + ϕ̂(ε̂x,it)σ̂y(zit, ft). (15)
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By using (6) and (11) above we see that this can be equivalently written as

τ̂(xit, zit, ft) = yit + δ̂(ε̂x,it, ε̂y,it)σ̂y(zit, ft), (16)

which has a nice interpretation: we see that the directional distance from the observed input-

output point (xit, yit) facing external conditions (zit, ft) to the efficient frontier is given by the

“pure” efficiency measure evaluated at the pure input-outputs (ε̂x,it, ε̂y,it) rescaled by the local

standard deviation σ̂y(zit, ft).

Finally is Farrell-type efficiency estimates are wanted, as in (4), an estimate is given by

λ̂t (xit, yit|zit, ft) =
τ̂(xit, zit, ft)

yit
≥ 1, (17)

with equality to 1 for points on the estimated conditional frontier (having pure efficiency δ̂

equal to zero).

Note that when back to original coordinates, we are back to the curse of dimensionality,

typically the n appearing in the rates for the frontier estimates in the “pure” units is replaced

by nhd where d is the dimension of all the conditioning variables (Z, Ft) (see Florens et al.

(2014) for details).

After estimating the conditional and unconditional ‘pure’ efficiency measure, we can an-

alyze the effects of the global factors (FDI and time specific factors Ft) on the production

process and disentangle the potential effects of these environmental variables on the boundary

(shift of the frontier) and on the distribution of the inefficiencies (as explained in Bădin et al.

2012). The first effect can be investigated by considering the ratios of conditional to uncondi-

tional efficiency measures, which are measures relative to the full frontier of respectively, the

conditional and the unconditional attainable sets. In our setup, we are mainly interested on

the effects of FDI on these ratios5

RO(x, y|z, ft) =
λ(x, y|z, ft)
λ(x, y|ft)

. (18)

By construction, for the output orientation, RO(x, y|z, ft) ≤ 1 (the conditional efficient bound-

ary is below the unconditional one) and RO(x, y|z, ft) = 1 if and only if, at time t, there is

no shift of the efficient boundary of the two attainable sets due to z. Looking to these ratios

as a function of z allows to investigate the effect of the environmental factor (Z = FDI in

our case) on this potential shift. A global tendency of the ratios to increase with the condi-

tioning variables indicates a favorable effect (the conditional efficient frontier moves up to the

5Because we are not interested on the potential effects of X , the analysis of these ratios has to be done for
fixed level of inputs x.
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unconditional one when the variables increase, i.e. the variables act as freely available inputs)

and unfavorable in the opposite case (the conditional efficient boundary moves away form the

marginal one when the variables increase, the variables act as undesirable outputs).

As suggested in Bădin et al. (2012), the full frontier ratios in (18) indicate only the influence

of Z on the shape of the frontier, whereas the the partial frontiers allow to investigate the

effect of Z on the conditional distribution of inefficiencies. The ratios to be analyzed are now

RO,m(x, y|z, ft) =
λm(x, y|z, ft)
λm(x, y|ft)

. (19)

Some potential shifting effect already observed with (18) could be enhanced (or reduced) if

the effect is different with the ratios (19). Here typically we use smaller value of m since we

want to explore the distribution of the output inside the corresponding attainable sets (in the

limit, if m = 1, we analyze to the mean). As explained in Bădin et al. (2012), the ratios are

not bounded by 1, because the order-m efficiency scores are not bounded by 1. The latter

equal to 1 if and only if (x, y) is on the m-frontier, bigger than 1, if they are below the m-

frontier and smaller than 1 if they are above the m-frontier. But, as for the full ratios above,

a tendency of RO,m(x, y|z, ft) to increase with the conditioning variables indicates a favorable

effect of these variables on the distribution of the efficiencies (the conditional distribution is

more concentrated to its upper boundary when the conditioning variables increase) and the

opposite in the case of a unfavorable effect. If this effect is similar to the one shown with the

ratios with full frontier, we can conclude that we have a shift of the frontier while keeping

the same distribution of the efficiencies when the conditioning variable Z change; if the effect

with the partial frontiers is more important than for the full frontier, this indicates that in

addition to a shift of the frontier, we have also an effect on the distribution of the efficiencies.

2.3 Parametric fit of the nonparametric frontiers

It has been argued that parametric models provide much richer interpretations of the pro-

duction process in terms of elasticities, etc. This is true if the chosen parametric model is a

reasonable approximation of the true frontier. On the other hand, and as discussed in details

in Florens and Simar (2005), most of the methods of estimation of these parametric frontier

models suffer from some drawbacks, in case of heterogeneity of the efficiency distribution over

the input values and /or in case of outlying data points.

If indeed a researcher want to fit a particular parametric model to the frontier, Florens and

Simar (2005) suggest an approach that address most of the drawbacks of the usual methods

and provide robust fits of the frontier. Suppose we want to see if a parametric model (e.g.

Cobb-Douglas) is appropriate, Florens and Simar (2005) propose to project all the input-
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output data points on the FDH frontier or even better on the robust order-m frontier and

then adjust the chosen parametric model to this cloud of “efficient” points, e.g. by simple

OLS (ordinary least squares). Florens and Simar (2005) analyze the statistical properties

of the resulting estimators and show that we have consistent estimators of the parameters

of the fitted model to pseudo-true values of the parameters. If we use the order-m robust

version we have even
√
n-consistency and limiting unbiased normal distribution with a given

variance, that can be estimated by bootstrap techniques. The pseudo-true values are the

ones given by best approximation of the true unknown frontier (in some sense, like integrated

squared errors); if the selected parametric model (like Cobb-Douglas) is true, these pseudo-

true values are the true values of the parameters. The analysis of traditional goodness of fit

measures would help the researcher to assess if the chosen parametric model is a reasonable

approximation.

In our case here, we will do so for the frontier in the “pure” inputs-output space (for all

the resins explained in the preceding section). The advantage of the Florens-Simar semipara-

metric approach with respect to a standard parametric one, is that first its relies on a fully

nonparametric model and only search for the best parametric approximation; second, the

method does not require any parametric assumption regarding technology or the distribution

of the inefficiencies. In particular, the assumption of complete homogeneity of considered

economic units is not needed. Therefore the economic units under investigation can poten-

tially consist of different groups of populations governed by different distributional laws of the

generation of input-output mix and on efficiency. This means that, if the sample is formed by

developed and developing countries, as in our case, these groups of countries can have different

distributions of efficiency scores. This enables us to analyze the world production technology

and have a direct economic interpretation in terms of elasticity and technology progress. In

addition when using the order-m approach we are robust to outliers and extreme data points.

We can for example estimate the following Cobb-Douglas parametric frontier model (in a

linear form because we assume units of measurement are already in log)

ε̂δy,it = α + β ′ε̂x,it + ηit (20)

where ε̂x,it and ε̂δy,it = ϕ̂(ε̂x,it) were defined above and ηit is the fitting noise. We obtain the

estimated fitted Cobb-Douglas production frontier ̂̂εδy,it = α̂+ β̂ ′ε̂x,it. If we come back to the

original units, the estimated Cobb-Douglas frontier parametric model is thus given by (we use

the shortcut notation wit = (ft, zi,t)):

ŷδit(xit | wit) = µy(wit) + σy(wit)̂̂ε
δ

y,it (21)
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It can be shown that this can be written as

ŷδit(xit | wit) = α̃(wit) + β̃ ′(wit)xit, (22)

where (using again for ease of notations, the component wise division of vectors)

α̃(wit) = µy(wit) + σy(wit)

[
α̂− β̂ ′µx(wit)

σx(wit)

]
(23)

β̃(wit) = σy(wit)
β̂

σx(wit)
(24)

To assess the characteristics in terms of technology, capital and labour elasticities of the

production frontier, we can look at the exponential of the latter coefficients as a function

of time (see below in the application). Technological changes is captured by α̃(wit) which

indicates if the world frontier itself has moved outward (progress) or inward (regress) over time.

The evaluation over time of the components of β̃(wit) enables us to assess if technology over

time has been more capital or labour deepening and, hence, to appraise policy implications

in favor of capital or labour accumulation in less developed countries to promote convergence

towards richest ones.

3 Empirical Application

Our non parametric approach in constructing the worldwide production frontier does not re-

quire the specification of the production functional form, and also limit the problem of ‘curse

of dimensionality’ at the second stage of our methodology. We consider the simplest produc-

tion model with only three macroeconomic variables: aggregate output and two aggregate

inputs (labour and capital).

The dataset is collected over the period, 1970-2007 (38 years) for a total of 44 countries

using data from the Penn; 26 are developed OECD countries (Australia, Austria, Belgium,

Canada, Chile, Hong Kong, Denmark, Finland, France, Germany, Greece, Ireland, Israel,

Italy, Japan, Korea, Mexico, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden,

Turkey, the United Kingdom and the United States) and 18 are developing countries (Ar-

gentina, Bolivia, Côte d’Ivoire, Dominican Republic, Ecuador, Honduras, Jamaica, Kenya,

Madagascar, Malawi, Morocco, Nigeria, Panama, Philippines, Thailand, Venezuela, Zambia,

Zimbabwe).6

Using data from the Penn World Tables (version 6.3) we calculate as measure of output

6The choice of countries depends on data availability. Developed and developing countries are classified
following the World Bank (2007) classification. See Appendix for data description.
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the real gross domestic product and it is obtained as RGDPCH ∗POP , where RGDPCH is

per capita real GDP computed via the chain method, POP is the population. The resulting

output is GDP measured in million US dollars at 2005 constant prices. For labor input, we use

the number of workers as RGDPCH ∗POP/RGDPWOK, where RGDPWOK is real GDP

per worker. For the capital input, we proceed as follow. Real aggregate investment in million

US dollars at 2005 constant prices is computed as I = RGDPL ∗POP ∗KI, where RDGPL

is the real GDP , and KI is the investment share of real GDP . Capital K which is our chosen

input is then measured in million US dollars at 2005 constant prices and constructed applying

the perpetual inventory method (PIM) by using the real investment series.7 All three variables

are logged and normalized with respect to the median - to ensure homogeneity assumption in

inputs and outputs - before estimation. For globalization factor we identify one of the most

important channels: FDI inflows, measured as net inflows of foreign direct investment, which

are then transformed as a ratio to GDP.8

Our external variable, FDI, might suffer from endogeneity bias. The endogeneity caused

by reverse causality is still an open issue in the empirical studies investigating the relationship

between TFP and FDI. In this paper we explicitly address this issue by eliminating in the

first stage the dependence of the FDI on the production process. Furthermore, the global

economy becomes increasingly integrated, all the individual countries are likely to be exposed

more to global shocks. To this end, we employ a robust estimation procedure dealing with

unobserved factors in nonparametric frontier panel data framework, which enables us, in the

first stage, to better capture the impacts of global shocks (such as FDI, trade policy and cycle

fluctuations) and, hence, CSD on the production frontier and technical efficiency.

Thus, first it is interesting to evaluate whether the effects of our Z variables and global

factors Ft on the production process have been eliminated to verify whether the hypothesis of

the “separability” condition might be not rejected in our ’pure’ data generation process. This

would validate our approach of conditional efficacy scores in evaluating the performance of

different countries when facing different environmental and global conditions with respect to

the standard two-stage procedure (Simar and Wilson 2007). Figure 1 shows the p-value of the

hypothesis of independence following the test suggested by Florens et al. (2014) confirming

that the influence of FDI and the cross section dependence has been removed in our data.

7PIM is necessitated by the lack of capital stock data across all the countries. For an individual country,
the capital stock is constructed as Kt = Kt−1 (1− θ)+It, where It is investment and θ the rate of depreciation
assumed to be 6% (e.g., Hall and Jones, 1999; Iyer et al., 2008). Repair and maintenance are assumed to
keep the physical production capabilities of an asset constant during its lifetime. Initial capital stocks are
constructed, assuming that capital and output grow at the same rate. Specifically, for country with investment
data beginning in 1970, we set the initial stock, K1970 = I1970/ (g + θ), where g is the 10-year output growth
rate from 1970 to 1980. Estimated capital stock includes both residential and non-residential capital.

8FDI is sourced from the World Bank World Development Indicators and Unctad, all the other data from
PWT 6.3. The observation period is selected by the data availability.
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Figure 2 displays the values of the estimated pure inputs ǫ̂X1 and ǫ̂X2 and pure output ǫ̂Y

showing an increasing relationship between production output and labour and capital inputs.

Figure 3 exhibits the values of ǫ̂X1 and ǫ̂X2 with the full frontier φ̂ and order-m frontier φ̂m. We

observe that for the full frontier there are some influential units, whereas the order-m frontier

is not attracted by these extreme data points. We decide to leave out 8.5% of data points

(m=800), and the units are benchmarked against partial frontiers which are less extreme than

the boundary of the support and enables us to estimate frontier and efficiency that are less

sensitive to the extreme or outlying data points (Cazals et al. 2002, Daraio and Simar 2005,

Daouia and Simar 2007). As sensitive analysis, Figure (4) shows percent of points outside the

order m-frontier at each value of m.

The distribution of estimated inefficiency (Fig. 5) reveals most of the OECD countries

under analysis efficient and some rare very inefficiency countries. Table 1 summarises de-

scriptive statistics for ’pure efficiency’ for the 44 countries. We find that the most efficient

countries over the sample period are USA, Japan, Germany and Ivory Coast (CVI), while the

least efficient are Chile, Zambia, Philippines and Nicaragua. Positive performance observed

in Ivory Coast is also documented in other studies (see Koop et al. 2000).

Ivory Coast has, for West Africa region, a relatively high income per capita (USD 1014.4

in 2013) and plays a key role in transit trade for neighboring, landlocked countries. The

country is the world’s largest exporter of Cocoa beans, and the fourth largest exporter of

goods, in general, in sub-Saharan Africa (following South Africa, Nigeria and Angola). As

the second largest economy in West Africa and a top world exporter of cocoa and cashews,

Ivory Coast boasts enormous economic potential. Macroeconomic performance continued to

be impressive in 2013, with economic activity expanding by an estimated 8.7%. Inflation re-

mained subdued at 2.5%. The macroeconomic prospects for 2014 remain positive, especially

given the expectations of a vigorous growth rate and low inflation. Continued strong macroe-

conomic performance and further progress on the governments structural reform program is

necessary in order to support GDP growth, improve living standards for the most vulnerable

populations, and allow Ivory Coast to transform itself into an emerging economy.9

To give a visual impression of the change in ‘pure’ efficiency over time, average ‘pure’

efficiency for each year is displayed in Figure 6 for the USA, Japan, Germany (the best

countries in our analysis) Nicaragua, Philippines, Zambia (the worst performing countries),

Belgium and Italy.

By applying spectral analysis (Mastromarco and Woitek 2007) we examine the business

cycles of our pure measure of efficiency which gives insights on prevailed cycles of the tech-

nological catch-up process of the countries under analysis. Table (2) describes the relative

9”Country Report 2014, The World Bank Group, web site http://www.worldbank.org/afr/.
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importance of efficiency cycles. The column on share of total variance’ reports the estimated

variance shares in the frequency bands, i.e. the cycles with a length of 3-5 years (the Kitchin

cycle), 5-7 years and 7-10 years (the Jugular cycle).10 The dominant frequencies contain im-

portant information of the structure of efficiency. The efficiency is dominated by the shorter

cycle of 3-5 years and 5-7 years cycle for all countries, except Austria, Ivory Coast, Dominican

Republic, Greece, Jamaica, Morocco, New Zeeland, Panama, Spain, Zambia.

To assess the influence of FDI on the production process, we investigates the ratios of

conditional and unconditional efficiency measures for full and partial frontier. Figure 7 exhibits

the pictures of all the ratios from a marginal point of view (as a function of two inputs and

as a marginal function of FDI). The full frontier ratios (three top panels at 25, 50, 75 percent

of two production inputs - labour and capital -) show an inverted ‘U’ effect of Z=FDI at low

and big values of production inputs (first and third top panels). We might have some shift of

the frontier when FDI increases, but with a decreasing effect at large values of Z. In order

to check the robustness of our result and to inspect if some extreme observations would hide

some effect, we calculate the ratios for partial frontiers - order − m - and we obtain very

similar results, see Figure 7 (bottom panel), i.e., a slight positive effect of Z for small and big

countries (small and large values of labour and capital inputs). This confirms a favourable

effect of FDI which is very similar to the effect detected for the shift of the frontier (full

frontier). So, FDI act on the shift of the boundary. Hence, from this evidence, FDI appear to

play an important role in accelerating the technological change (shifts in the frontier). This

result seems to confirm the theoretical hypothesis that FDI leads to increase in productivity

by spurring competition: foreign firms have to invest even more in innovation in order to keep

up with their technological advantage (Glass and Saggi 1998). To a lesser extent, FDI can also

increase efficiency. This occurs with the adoption of foreign technology through technology

licensing or technology purchase, imports of high technology capital goods, and the skills

acquired by the local labour force as they are trained by the foreign firms (Borensztein et al.

1998, De Mello 1999, Xu 2000). The evidence of decreasing returns of FDI can be easily

explained by the adjustment costs involved in FDI, e.g. Tybout (1992) and Coe and Helpman

(1995).

Another interesting issue is to investigate the channels through which FDI affects the

production process whether through technological change - shifts of the frontier - or through

factor accumulation. This can be assessed by analysing the evolution over time of the pro-

duction frontier. We estimate Cobb-Douglas production frontier by projecting all data point

on the FDH frontier using OLS (see Florens and Simar 2005).

Table 3 reports the estimates of constant (α1) and output elasticities of capital (β1) and

10The traditional business cycle ranges are 3-5 years (Kitchin cycle), 5-7 years and 7-10 years (Juglar cycle).
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labour (β2) of world frontier using Florens and Simar (2005) estimator on the nonparametric

frontier points of order−m - first row - and full FDH frontiers - second row - and parametric

COLS estimator - third row -. The estimates of output elasticities are similar using full

or partial FDH frontier points for Florens and Simar (2005) approach. We relies on the

estimates of order−m frontiers whose asymptotic properties have been established (see Florens

and Simar 2005). Technology at the world frontier production reveals that output is elastic

especially with respect to labour (about 0.70) , while the output elasticity with respect to

capital is lower (around 0.30).11 The sum of the output elasticities is approximately equal to

one indicating constant returns the scale. Given this evidence, we base the following analysis

on the assumption of constant returns to scale technology (CRS), which enables us to interpret

world production technology in the y = Y/L and k = K/L space.

Figure 8 contains the empirically constructed full and partial production world frontiers

- FDH and Cobb-Douglas - in 1970 and 2007, along with scatterplots of labour productivity

and the capital-labour ratios of our observations and, at the bottom panel, the global frontier

for the whole observation period. This figure provides evidence that technology change over

this period has been nonneutral. In particular, Hicks-neutral technological change would

shift the frontier in in the y = Y/L and k = K/L space vertically by the same proportional

amount at all capital-labour ratios. The change in the technologies between 1970 and 2007 is

also inconsistent with Harrod-neutral (labour-augmenting) technological change, which would

shift the frontier radially (i.e., by equal proportional factors along rays from the origin). In

1970 at very low capital-labour ratios, it appears to be technological frontier countries as US

and Canada and, surprisingly, also very poor country as Jamaica. The last year 2007, displays

an outward shift in frontier for higher but still quite low capital-labour ratios as Germany and

the UK, very little change in the frontier for the middle of the distribution of capital-labour

ratios and a sizeable expansion of potential output at very high capital-labour ratios as the

Netherlands (not the large technological-change for the New Zeeland). The frontier countries

- the US, Germany and Canada - indicate that production technology on the frontier is capital

saving (labour using). Global frontier, at the bottom, confirms the evidence that the frontier

production is at low level of capitalization.

Figure 9 displays Cobb-Douglas and non-parametric fit of the full and order−m frontiers

in the original and pure units. As expected, the order −m frontiers are resistant to outlying

data points, which is not the case for the full frontiers estimates. Moreover, the results in

the original units are different because the units are compared to non feasible frontiers: each

country is facing different exogenous conditions determined by external variables (FDI and

11Labours contributions are higher as expected, implying that it is easier to maintain output and profitability
by reducing employment or increasing labour productivity rather than by dismissing capital stocks.

16



global shocks in our case). So, the approach using conditional efficiency scores seems to be

much more appropriate. We observe a very good quality of the Cobb-Douglas fit of our

estimator, better than the FDH ones.

Our FDH estimates of non-parametric frontier and Cobb-Douglas fit of full frontier at

data points are visible in figure 10 that validates our previous conclusion of very good fit of

Cobb-Douglas frontier production technology.

The time variation in the technology and output elasticity of capital and labour is displayed

in Figure 11. More interesting is the time-variant technology and factors output elasticity

dependent on FDI as illustrated in figure 12. The bottom panel of this figure reveals a

positive effect of FDI on constant, this indicates indicates a favourable effect of FDI on the

production process via technological change. This result seems to confirm the theoretical

hypothesis that FDI leads to increase in productivity by spurring competition: foreign firms

have to invest even more in innovation in order to keep up with their technological advantage

(Glass and Saggi 1998).

On the contrary the top left panel demonstrates that FDI does not impact the output

elasticity of labour whereas it is visible a scale effect on capital elasticity - left top panel of

figure 12 - which is higher for high level of FDI. This evidence suggests that high level of

foreign direct investments are complement with high level of domestic capital investments.

This confirms that the separability condition is not reasonable, and so, two stage approaches

are meaningless.

This finding reveals that FDI influences positively the production process through different

channels as technological changes and scale effects. This proves that knowledge embodied in

FDI is transferred for technology externalities (shifts of the frontier). Hence, from this evi-

dence, FDI appears to play an important role in accelerating technological change (shifts in

the frontier). This result corroborates the theoretical hypothesis that FDI increases produc-

tivity by stimulating competition and inducing the foreign firms to invest more in innovation

in order to keep their technological advantage (Glass and Saggi 1998). To a lesser extent, FDI

can also increase factor accumulation by influencing output elasticity. This occurs with the

adoption of foreign technology through technology licensing or technology purchase, imports

of high technology capital goods, and the skills acquired by the local labour force as they are

trained by the foreign firms (Borensztein et al. 1998, De Mello 1999, Xu 2000).

4 Conclusion

We propose the unified non parametric framework for accommodating simultaneously the

problem of model specification uncertainty, potential endogeneity and cross-section depen-
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dence in modelling technical efficiency in frontier models. In particular, we adopt the two-step

procedure advanced by Florens et al. (2014), which enables us to deal with both endogeneity

and cross section dependence jointly by combining location scale model and conditional effi-

ciency estimation to eliminate the dependence of production inputs/outputs on the common

factors. Our non parametric approach to estimate conditional efficiency does not require any

parametric assumption regarding technology or efficiency term. Moreover, the assumption of

complete homogeneity of considered units is not needed. Therefore the economic units under

investigation, can potentially consist of different groups of population governed by different

distributional laws of the generation of input-output mix and on efficiency. This is an ad-

vantage in our sample formed by developed and developing countries which most likely have

different distributions of efficiency scores.

According to the literature (Borensztein et al. 1998, De Mello 1999, Xu 2000, Mastro-

marco and Ghosh 2009, Iyer et al. 2008), one of the main channels through which the foreign

technology diffusion occurs is through foreign direct investment. Our paper extends previous

studies on similar topics by investigating this channel in full nonparametric framework which

avoids some restrictive and often unverifiable prior assumptions on functional relationships

and distributions.

We focus on the effect of FDI on economic performance of 44 countries over the period

1970-2007. In a cross-country framework, production inefficiencies can be identified as the

distance of the individual country’s production from the frontier as proxied by the maximum

output of the reference country (regarded as an empirical counterpart of an optimal production

boundary). Hence, efficiency improvement will represent productivity catch-up via technology

diffusion because inefficiencies generally reflect a sluggish adoption of new technologies (Ahn

and Sickles 2000).

In this paper we aim to assess the diffusion dynamics of a technology (frontier) in the

countries under analysis with respect to FDI. We then intend to redress an important policy

issue of whether the protection-oriented policy will hamper the production efficiency through

limiting FDI by explicitly analysing dynamic interactions between efficiency and openness

factor FDI.

Our empirical evidence reveals that FDI influence production process through different

channels and by enhancing technological changes. We find that FDI has a scale effects on

capital by enhancing capital output elasticity but does not influence the output elasticity of

labour. Our results confirm that knowledge embodied in FDI is transferred for technology

externalities (shift of the frontier) (Cohen and Levinthal 1989). Hence, our findings support

the studies highlighting that lowering barriers to entry of foreign goods and investments have

exerted a significantly positive effects on productivity through efficiency and technology gains,

18



e.g. Borensztein et al. (1998), Cameron et al. (2005).
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Table 1: ‘Pure efficiency’ of 44 countries over 1970 2007 (average over time)

Mean Standard Deviation Change (%) 1970 to 2007

USA 0.761 0.078 -0.077
JPN 0.685 0.055 -0.183
GER 0.680 0.071 0.125
CIV 0.659 0.064 0.259
ISR 0.651 0.097 0.445
FRA 0.650 0.047 0.010
CAN 0.642 0.051 -0.022
ITA 0.637 0.043 -0.049
DOM 0.622 0.068 -0.175
GBR 0.608 0.103 0.428
ESP 0.596 0.041 -0.015
MEX 0.581 0.058 -0.151
HND 0.579 0.117 0.637
NLD 0.572 0.087 0.337
PAN 0.569 0.160 0.091
BOL 0.560 0.120 0.000
IRL 0.544 0.174 -0.506
JAM 0.538 0.143 -0.016
NZL 0.535 0.186 0.919
AUS 0.528 0.073 0.069
MDG 0.525 0.162 0.153
ZWE 0.504 0.093 -0.019
HKG 0.503 0.149 -0.018
BEL 0.498 0.112 0.150
SWE 0.481 0.041 -0.086
ECU 0.480 0.147 -0.043
NOR 0.478 0.166 0.020
ARG 0.471 0.040 -0.046
MWI 0.469 0.139 0.084
AUT 0.466 0.063 -0.274
GRC 0.461 0.099 -0.140
KOR 0.455 0.095 -0.062
KEN 0.452 0.148 0.534
VEN 0.409 0.099 -0.003
DNK 0.402 0.137 -0.032
PRT 0.400 0.045 -0.349
MAR 0.398 0.215 -0.073
FIN 0.387 0.146 -0.022
TUR 0.368 0.043 -0.025
THA 0.363 0.079 0.021
CHL 0.355 0.074 0.043
ZMB 0.344 0.144 -0.357
PHL 0.336 0.033 -0.055
NGA 0.298 0.056 -0.128

Notes: Mean, standard deviation and percentage change of Pure efficiency see Eq. (11) .
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Table 2: Spectral analysis of pure efficiency

Country 7− 10 years 5− 7 years 3− 5 years

A R G 0.0191 0.0611 0.0011
A U S 0.0264 0.0007 0.0394
A U T 0.1842 0.0003 0.0395
B E L 0.0042 0.0869 0.0019
B O L 0.0042 0.0007 0.0088
C A N 0.0045 0.0350 0.0034
C H L 0.0001 0.1763 0.0020
H K G 0.0001 0.0001 0.0016
C I V 0.1132 0.0006 0.0000
D N K 0.0156 0.0818 0.0003
D O M 0.0144 0.0008 0.0004
E C U 0.0167 0.0007 0.0326
F I N 0.0030 0.1622 0.0017
F R A 0.0049 0.0008 0.0361
G E R 0.0108 0.0007 0.0033
G R C 0.0347 0.0007 0.0011
H N D 0.0295 0.0004 0.1649
I R L 0.0566 0.0030 0.0074
I S R 0.0080 0.0190 0.0014
I T A 0.0235 0.0001 0.0274
J A M 0.0568 0.0047 0.0077
J P N 0.0132 0.0231 0.0157
K E N 0.0060 0.0002 0.3042
K O R 0.0011 0.0055 0.0243
M D G 0.0063 0.0811 0.0155
M W I 0.0015 0.0003 0.0154
M E X 0.0040 0.0010 0.0424
M A R 0.1004 0.0005 0.0455
N L D 0.0692 0.0094 0.1219
N Z L 0.0780 0.0057 0.0301
N G A 0.0009 0.0023 0.0849
N O R 0.0108 0.0021 0.0922
P A N 0.2324 0.0020 0.0402
P H L 0.0110 0.0007 0.1333
P R T 0.0041 0.0011 0.2447
E S P 0.1493 0.0025 0.0048
S W E 0.0087 0.0287 0.0031
T H A 0.0076 0.0035 0.0012
T U R 0.0162 0.0022 0.0196
G B R 0.0001 0.0065 0.0960
U S A 0.0007 0.0078 0.2496
V E N 0.0032 0.0108 0.0015
Z M B 0.0235 0.0103 0.0044
Z W E 0.0148 0.0018 0.0324

Notes: The column on share of total variance reports the estimated efficiency variance shares over each

frequency range. 26
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Figure 7: The first three top panels represent the full ratios R̂O(x, y|z, ft) as a marginal func-
tion of FDI at the 25 and 50 and 70 quartiles of the two inputs (labour and capital); the

bottom panels are the conditional ratios - order-m - R̂O,m(x, y|z, ft) for the three quartiles of
production inputs.

Estimator α β1 β2 R2

m 0.3766 0.3145 0.7199 0.89
FDH 0.4335 0.3359 0.7335 0.89
Shifted OLS (COLS) -0.0084 0.2337 0.8133 0.95

Table 3: Estimates of constant (α1) and output elasticities of capital (β1) and labour (β2)
of world frontier using Florens and Simar (2005) estimator on the nonparametric frontier
points of order−m - first row - and full FDH frontiers - second row - and parametric COLS
estimator - third row -.
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Figure 8: 1970 and 2007 Non-parametric and Cobb-Douglas full and order −m frontiers in
pure output per labour and capital per labour units, (top panels); global frontier in pure output
per labour and capital per labour units (bottom panel).28
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Figure 9: The first four top panels represent the Cobb-Douglas and non-parametric fit of full
and order −m frontiers in the original units; the bottom 4 panels are the Cobb-Douglas and
non-parametric fit of full and order −m frontiers in the pure units.
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Figure 10: FDH estimates of non-parametric frontier (top panel) and Cobb-Douglas fit (bottom
panel) of full frontier at data points in pure units.
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Figure 11: Parameters estimates of Cobb- Douglas World Production frontier: output elastici-
ties of capital and labour (top panels) and technological shift captured by the constant parameter
(bottom panel). 31
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Figure 12: Parameters estimates of Cobb- Douglas World Production frontier when fixing the
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