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Abstract  

In this paper an encompassing empirical strategy is presented which is able to decompose an indicator of industrial structural 

inefficiency into its sources components. The main purpose of the analysis is to bring a number of ideas floating in the efficiency 

literature together in the same empirical industrial organization model and extend them to a more comprehensive definition of 

industry inefficiency. The tool used to reach this goal is the directional distance function (DDF) representation of the data 

envelopment analysis (DEA) data generated technology. As it is standard in the linear activity analysis model, all the discussion is 

based only on the assumption that measures of inputs and outputs quantities are available, without reference to prices. Decomposing 

the industrial structural inefficiency indicator into different components the following effects have been identified: 1) inefficiencies 

arising from firms operating on a large size that can be split into smaller more productive units (size inefficiencies); 2) efficiency 

gains that can be realized thanks to the merger of small firms (merger inefficiencies); 3) re-allocation of inputs and outputs in order to 

bring firms toward an optimal production plan (re-allocation inefficiencies). After defining the static industry inefficiency indicator, a 

dynamic decomposition of productivity change will be proposed. Productivity change itself is decomposed into technical change and 

efficiency components. The methodology is applied to healthcare data on public hospitals in Australia. The empirical results point to 

the fact that technical inefficiency of individual hospitals accounts only for less than 15% of the total inefficiency of the industry. The 

most part of industry inefficiency has been found to be organizational. Size inefficiency is the most prominent component accounting 

for around 40% of the total inefficiency of the industry. 
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1. Introduction  
The measurement of industrial efficiency has important implications in practical terms. As pointed out by the 

industrial organization literature, monopolies, break-ups of monopolies and mergers of firms are all justified 

or opposed on the ground that they can produce (at least in the long run) lower production costs (which is the 

dual to an increase in production efficiency) and increased welfare. Information on the potential gains from 

these operations is particularly important when antitrust authorities and regulators have to approve a merger 

or decide on the break-up of a large firm. Things are even more complicated in the public sector where 

production units respond to non-market incentives and these incentives can lead to strongly sub-optimal 

configurations of the industry. The key point here is that in many public sector industries (such as health and 

education) it is not possible to determine easily output prices, even when output quantities and costs can be 

somehow more precisely defined. In both the market and the non-market scenarios the main question relies 

on what is an efficient configuration of the industry and how we can measure deviations from this optimal 

configuration and attribute it to different sources. 

The empirical strategy here introduced can find application also as an operations research tool. Mutatis 

mutandis, the previous arguments can also be applied to the management of large companies which are 

operating with a number of different production plants. In this last case the phrasing is different but the 

essence is the same: the profit of the company crucially depends on the way its production is allocated across 

the different production plants. In this interpretation the question of which configuration of the company is 

efficient is different in nature from the industry configuration problem but it relies on the same method. 

Therefore the proposed framework can be used to organize efficiently a single large company by assigning 

its total production to an optimal number of production units. This has implication in the restructuring of 

large companies where estimation of potential gains from re-organization is needed and monitoring of the 

actual productivity increase deriving from the re-organization must be assessed. For the sake of simplicity 

the industrial organization phrasing (industry vs firms) will be used, though at any stage of the argument one 

can interpret the industry as a single large company and the firms as its production unit components. 

The empirical strategy presented in this paper builds on previous results stemming from the efficiency 

literature. The method is based only on the knowledge of input and output quantities (no price information is 

required), therefore applicable both to market and non-market oriented industries. Since the seminal work of 

Banker et al (1984) data envelopment analysis (DEA) has been used to provide information on the technical 

efficiency with which individual firms in an industry are operating. This has also been extended to a more 

dynamic framework of productivity measurement more recently (see for example Banker et al, 2005). Many 

of those contributions did not distinguish explicitly between the firm and the industry level. In fact, an 

industry can be inefficiently organized even if all the individual firms which compose it operate efficiently, 

i.e. efficiency of the firms is a necessary but not sufficient condition for the efficiency of the industry. Thus 

the first task of this paper is to define a general measure of industry efficiency as distinguished from the 

efficiency of the firm. Three main research trajectories are relevant to the results here developed. F irst, there 
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are contributions trying to identify if an efficiency gain can be obtained at industry level by splitting large 

firms into an optimal number of smaller firms: this relates to the notion of size efficiency presented by 

Maindiratta (1990), Ray (2007) and Ray and Mukherjee (1998). This approach was also followed by 

Newbery and Pollitt (2007) on their discussion of the restructuring of the electricity sector in the UK. 

Second, it is possible to identify a number of contributions trying to understand when a merger brings 

efficiency gains. Here there are two possible causes of this increase in efficiency: on the one hand the 

merged firms can have stronger incentives towards technical efficiency (see Banal-Estanol, 2008, Weber and 

Camerer, 2003 for a theoretical discussion and Kwoka and Pollitt, 2010 for an empirical investigation); on 

the other hand the merged firms can benefit from scale and scope economies once merged (this is the way 

followed by Bogetoft et al, 2003, Bogetoft and Wand, 2005 and Kristensen et al, 2010). Third, there are two 

contributions which go in the direction of defining an overall measure of performance for the industry: Briec 

et al (2003) define an index of industry efficiency based on the assumption that the number of firms in the 

industry is fixed; Ray and Hu (1997) define a similar index allowing the number of firms to be variable. 

The main purpose of this study is to bring these ideas together in the same empirical model and extend them 

to a more comprehensive definition of industry inefficiency and its components. The tool used to reach this 

goal is the directional distance function (DDF) representation of the production technology. The extension of 

all the previous notions to a multi-period analysis of productivity measurement is introduced. An empirical 

application on health data (hospital level observations) is presented and it is shown that technical efficiency 

accounts for as low as 15% of total industry efficiency, with around 85% of this inefficiency attributable to 

the way the industry is organized. 

The rest of the paper is organized as follow. Section 2 introduces the technology and its functional 

description via the directional distance function. Section 3 defines industry inefficiency and its components. 

Section 4 extends the analysis to a dynamic context in which the industry is compared in different time 

periods. Section 5 introduces an index of overall firm inefficiency based on shadow pricing of inputs and 

outputs. Section 6 presents the empirical application and, finally, section 7 concludes. 

2. Technology  
Consider an industry where  inputs produce  outputs. We assume an unbalanced panel data 

specification: in each time period data on inputs and outputs  are available for a number Kt of firms 

(k=1,...,Kt); the total number of time periods is T and for each time period observations on inputs can be 

collected in a KtxN matrix X t and observations on outputs can be collected in a KtxM matrix Y t: 

        (1) 

This specification is general enough to allow interpreting the industry as a single large firm in which Kt 

separate production units operate in each time period. The production possibility set at time t is the set of all 

feasible combinations of inputs and outputs producible with the technology and can be approximated by data 
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generated technologies. The first technology to be discussed involves assuming the free disposability axiom 

(axioms are independent of time and assumed to hold in each time period): 

A1) Free disposability:  

The associated technology is known as the free disposal hull (FDH) technology and relies only on axiom A1. 

In order to give more structure to the technology the following axiom will also be considered: 

A2) Convexity:  

Based on these two axioms (A1 and A2) the data envelopment analysis (DEA) data generated technology at 

time t is given by the following definition: 

    (2) 

This is a variable returns to scale technology where the intensity vector  is constrained to sum up to one. A 

complete functional representation of this production possibility set is given by the directional distance 

function (DDF) (see Chambers et al, 1996, 1998): 

      (3) 

The DDF is searching the maximum expansion of outputs and contraction of inputs along the direction 

 which is feasible with technology (2). The DDF can be interpreted as a measure of absolute 

technical inefficiency, representing the physical output loss and input waste of the firm measured in terms of 

the numeraire . In other words equation (3) is a measure of deviation of the specific production plan 

used by the firm from the benchmark production frontier: any deviation from the production frontier will 

result in a strictly positive value of function (3). Problem (3) is a standard linear program and can be easily 

solved once data are available. An additional axiom which will come useful in the following analysis is 

(Fare, 1986): 

A3) Additivity:  

Under A1, A2 and A3 the DEA production technology becomes additive and can be written as: 

        (4) 

In this technology the VRS constraint has been replaced by a generic natural number : this guarantees 

additivity of the technology. The subscript A  serves to emphasize that the additive technology is an 

enlargement of the actual VRS technology: . It is possible to associate an additive DDF as a 

description of this enlarged additive technology (4): 

   (5) 
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This last definition of DDF implies solving a mixed integer linear program. The optimal solution will return 

the intensity vector , the value of the DDF  and the optimal level  for the intensity vector constraint. This 

integer value  can be interpreted (as will be shown more clearly in the next section) as the optimal number 

of production plants who would produce a given output efficiently. Since the VRS technology is a subset of 

the additive technology ( ), the following relationship holds in terms of the associated DDFs: 

. An alternative enlargement of the VRS technology is given 

considering the following axiom: 

A4) Divisibility:  

Under A1, A2 and A4 the DEA non-increasing returns to scale technology is considered: 

    (6) 

Associated to the NIRS technology the following DDF is defined: 

   (7) 

Since  then . There is no simple relationship between the 

NIRS and the additive technology and therefore no simple relation between the associated directional 

distance functions. If the last two axioms are considered jointly a further enlargement of the technology set is 

considered: 

A5) Constant returns to scale (CRS):  

It is important to note that axiom A5 is not a primitive axiom: it is the results of the joint satisfaction of 

axioms A3 and A4. In fact, A5 holds if and only if axioms A3 and A4 hold. Using A5 jointly with A1 and 

A2 (i.e. using A1, A2, A3 and A4) the following DEA technology is obtained: 

    (8) 

The CRS technology is an enlargement of all the previous technologies and can be described in a functional 

form by the following DDF: 

      (9) 

Since  and , the following relationships among the four different 

directional distance functions hold: 
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In other words the CRS-DDF is an upper bound and the VRS-DDF is a lower bound, with the other two 

functions being in the middle. All the previous DDFs satisfy the following property (see Fukuyama, 2003 

Chambers et al, 1998 for a full discussion of DDF properties): 

P1)    

The importance of property P1 relies on the fact that the level of the directional vector is not of a substantive 

nature: a re-scaling of the directional vector can be associated to an inflated DDF value. Moreover the 

additive and CRS based DDFs also satisfy the following properties: 

P2)  ,   

P3)  ,   

It should be emphasized that the additive, NIRS and CRS technologies are enlargements of the basic VRS 

technology. In what follows the VRS technology is considered the real technology that firms faces and the 

additive, NIRS and CRS technologies as tools for investigating the structure of the industry (i.e., not all the 

points in the additive, NIRS and CRS are really feasible production plans for a single firm). 

3. Static:  Industry  vs  firm  inefficiency  
Since the DDF (3) is a measure of firm technical inefficiency, it is possible to define an industry aggregate 

technical inefficiency indicator (ITE) as the sum of individual firm technical inefficiencies as measured by 

the DDF: 

     (10) 

This summation operation is allowed due to the additive nature of the DDF (inefficiency is expressed in 

terms of a given numeraire ). This measure of aggregate inefficiency represents the loss in total 

industry outputs and waste in total industry inputs due to technical inefficiencies of individual firms 

composing the industry (firms who do not produce onto the benchmark production frontier). The observed 

industry total inputs and outputs are: . From the perspective of the overall industry, 

technical inefficiency is only one source of inefficiency, the other one having to do with the organization of 

the industry itself. An overall measure of industry structural efficiency (IE) is given by the following mixed 

integer linear program: 

     (11) 

This indicator of industry efficiency considers the total inputs and outputs of the industry as given and is 

trying to benchmark them against an optimal value given by the additive technology: it is equal to zero if the 

industry is operating efficiently and larger than zero if the industry is operating inefficiently. The additive 
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technology is chosen as a benchmark because, from an industry perspective, the number of firms is a variable 

and should be chosen in order to squeeze the maximum output from the available inputs. As a by-product of 

this mixed linear program one also determines the optimal number of firms  which would operate the 

industry most efficiently. Thus, the mixed integer problem (11) returns simultaneously the optimal number 

of firms that should populate the industry and the total loss in output and waste in input of the industry. 

Using property P2 of the additive DDF the industry inefficiency indicator (11) can be written as: 

     (12) 

where   is a scaling of the vector of sample average of inputs and outputs. In other 

words industry inefficiency can also be expressed as a multiple of the inefficiency of a hypothetical firm 

producing the sample average industry outputs using the sample average inputs and benchmarked against the 

actual VRS technology. The point  is particularly important because represents the production plan 

which would maximize industry efficiency if adopted by all the firms of the industry. In fact, Maindiratta 

(1990) showed that any optimal configuration of the industry in which firms use different input and output 

bundles is equivalent to a configuration in which  identical firms produce the same input-output vectors. 

This optimal vector is  and is sitting onto the VRS technology. 

Thus the overall industry inefficiency is a multiple of the inefficiency of a specific optimal point belonging 

to the VRS technology and the purpose of the mixed integer linear program (12) is basically to identify the 

optimal number of firms that should populate the industry. Therefore an industry configuration in which  

identical firms produce according to the production plan  will return an industry which is 

producing efficiently. This optimal configuration is the benchmark for the industry, though it is possible, in 

principle, to find other configurations which give rise to the same level of efficiency. 

Since an industry can be organized inefficiently even if all the individual firms which compose it operate 

efficiently onto their production frontier, the following relation between the previous two indicators is 

established  and the discrepancy between the two indicators gives rise to an industry 

organizational inefficiency indicator (IOE): 

      (13) 

Fare et al (2008) showed a result similar to (13) where the number of firms is fixed. An important feature of 

indicator (13) is that it is defined directly in aggregate terms, stressing the fact that the industry perspective 

cannot be fully recovered only by the knowledge of the firms composing it. Our technology allows for 

variable returns to scale and scope economies (i.e., it is non-additive), therefore the indicator of 

organizational inefficiency (13) accounts for three very different sources of inefficiency: first, there are firms 

which are too large and the industry would benefit from splitting these big firms into smaller ones producing 

on a more productive scale; second, there are firms which are producing on a small scale and could benefit 
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from mergers with other small firms, both in terms of scale and scope (synergies in production of different 

outputs); third, there could be reallocations of inputs and outputs among firms which lead to a gain in total 

industry production. As a point of clarification it must be said that this study is not searching for aggregation 

across firms as done in the works of Fare and Primont (2003), Fare and Zelenyuk (2002, 2003) and Zelenyuk 

(2006). It is rather defining an aggregate industry efficiency indicator and then trying to decompose it into 

meaningful components. 

2.1.  Break-­ups  and  size  efficiency  

Break-up of a single large firm can be investigated using the notion of size efficiency introduced by 

Maindiratta (1990) and further developed in Ray and Mukherjee (1998) in a traditional distance function 

formulation. Size efficiency is formally defined as the gap between the additive and the VRS technology at a 

specific point and can be defined in terms of the DDF as: 

   (14) 

If  then a gain in production may be obtained at the industry level by splitting the 

firm into different units, with the optimal number of units given by the solution to the mixed integer linear 

program . Due to the additive nature of the DDF, the individual firm size inefficiencies 

can be summed up into a measure of aggregate industry size efficiency (ISE): 

     (15) 

This last indicator represents the gain in production that could be obtained if all the large firms were to be 

split into an optimal number of smaller units. It should be stressed that the efficiency gain is at the industry 

level because it can be well the case that the objective of the firm is to produce on a large scale: in this 

instance the objective of the firm and the objective of the industry could be conflicting. 



9  
  

x

y

TA

T

Bx Cx Dx

By
Cy
Dy

Cy'

Dy'

  

Figure  1     Example  of  a  one  input-­‐one  output  technology  

 

To provide a better intuition a diagrammatic representation is provided in figure 1. The industry technology 

T and the enlarged additive technology TA are shown in the figure. Firm B is size efficient because no gain in 

production can be obtained at the industry level by splitting this firm into two separate firms. It should be 

noted that firm B is operating in a decreasing returns to scale region, which means decreasing returns are not 

sufficient for size inefficiency to arise. On the contrary firm C is size inefficient; in fact by splitting it into 

two separate firms a gain in production (at industry level) of  can be obtained. Firm D is size 

inefficient as well and industry output can be increased by splitting this firm into 3 separate firms with a gain 

in production of . In this example the industry composed by the 3 firms can obtain a total gain 

in production by allocating the same total amount of inputs among 6 different size efficient firms. 

3.2. Mergers  

A merger between firm A and firm B is efficient if (see Bogetoft and Wand, 2005 for a traditional distance 

function formulation): 

   (16) 

The combined firm has more potential for expansion of outputs and contraction of inputs than the two firms 

taken separately. It is interesting to note that this corresponds to the definition of a (locally) super-additive 

technology. An additional condition needed in order for the merger to be fully efficient is that the resulting 

merged firm is size efficient: 
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      (17) 

Condition (17) is needed because otherwise the merged firm could be split into two separate units obtaining a 

gain in production. It could be that condition (16) holds (the technology is locally super-additive) but 

condition (17) does not hold (the merged firm can be split with a gain in production). This last case is not 

considered a merger, but a simple re-allocation of inputs and outputs between the two original firms, in 

which case: 

 

This last formula point to the fact that the potential efficiency gain of the average firm is larger than the gain 

obtainable by the two original firms and in order to reach this gain a re-allocation of inputs and outputs 

between the two firms must be pursued to push them towards their mean. 

In order to assess if a merger is efficient formulas (16) and (17) are used: formula (16) will check that the 

technology is locally super-additive and formula (17) will check that the resulting merged firm is size 

efficient. A tree algorithm for the identification of all possible mergers is as follow: 

1. Determine all size inefficient firms and split them in the optimal number of sub-units, obtaining a 

new dataset with  number of firms. 

2. Consider all the possible combinations without repetition of the J firms taken 2 at time; 

3. Compute the following vector of indicators in which each element is computed for each pair of the 

 combinations: 

a)    if     

b) 0   if    

4. Choose the largest value of the vector and merge the two associated firms obtaining J-1 firms and the 

indicator of gain in efficiency from the merger . If the largest value of the vector is equal to 

zero, then there are no mergers that can lead to gain in efficiency, otherwise repeat from 2) with J-1 

firms. 

Summing up all the previous indexes from the mergers returns an industry measure of merger inefficiency 

( ): this index is positive if some gain in efficiency can be obtained at industry level by merging two 

firms and is equal to zero if no gains in efficiency can arise from mergers. 

3.3. Re-­allocation  of  inputs  and  outputs  

After the previous discussion it is possible to think of the industry as structured in a configuration where 

there are no possible mergers or break-ups that can lead to gains in efficiency. Even with such a 

configuration, the industry organizational inefficiency indicator (13) can be positive due to possible re-
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allocations of inputs and outputs among firms. Thus an index of industry reallocation inefficiency (RE) can 

be defined in aggregate terms in a residual way as: 

     (18) 

In fact, any configuration of the industry which deviates from  identical firms producing  can 

give at the most the same level of efficiency as the  identical firms configuration. Thus, at the end of 

break-ups and mergers there can be some space for further improvements thanks to reallocations of inputs 

and outputs among firms. 

The notion of gain in efficiency due to reallocation can be easily illustrated by the following example of an 

industry composed by 2 firms. The total amount of industry input  can produce an output of 

 if input is allocated efficiently among firms. On the contrary with the given allocation the industry is 

producing a sub-optimal output of . This means that reallocating inputs from firm C to firm B will 

increase industry output up to the efficient level. 
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3.4. Structural  decomposition  of  industry  efficiency   

With the previous explanation of single components which induce inefficiency at the aggregate industry 

level, the overall decomposition of industry efficiency (12) will be: 

     (19) 
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The left-hand side is a measure of aggregate loss in outputs and waste in inputs at the industry level and is 

defined in equation (12). The right-hand side attributes this inefficiency to the different sources: ITE is 

inefficiency arising from individual firms technical inefficiencies (firms who do not operate on the 

production frontier); ISE is a measure of inefficiency deriving from individual firm size inefficiencies (i.e., 

firms operating on a too large scale); IME is a measure of potential efficiency gain from mergers of existing 

firms; IRE is accounting for possible reallocations of inputs and outputs among firms in order to move the 

industry configuration towards the efficient one. In decomposition (19) there is a substantial distinction 

between the first component and the last three components: while the first component arises naturally as an 

aggregation from the individual firm level, the last three components pertain to the way the industry is 

organized and are intrinsically related to the objective of the industry of providing an efficient way of 

delivering aggregate production. In fact, an increase in individual firm technical efficiency always leads to an 

increase in aggregate industry technical efficiency; on the contrary aggregate industry improvements in the 

last three components could come to the detriment of individual firm conditions (for example in a break-up 

overall profit of the firm may decrease). Therefore the last three indicators measure the extent to which the 

industry organization is efficient in transforming inputs into outputs. These indicators cannot be defined 

unless the industry perspective is brought into the analysis (i.e., these indicators can only be defined in 

aggregate terms). In order to give a more direct interpretation of the proportion to which the overall 

inefficiency of the industry depends on the different factors it is possible to normalize the right-hand side 

using the left hand side: 

    (20) 

where  , ,  , . 

A final remark has to be done on the decomposition of the industry organizational indicator embedded in 

(13). The aggregate definition of this indicator can be considered quite uncontroversial, since the two 

indicators which define it are very well indentified in equations (10) and (11). The decomposition of the 

industry organizational indicator (13) into the three components ISE, IME and IRE is more controversial and 

depends on the definition of break-ups and mergers here adopted. In fact, if one wants to be logically 

consequential, mergers and break-ups may be interpreted in terms of re-allocation of inputs and outputs 

among firms and therefore, from a production theory perspective, those two notions (and the associated 

indicators) are indistinguishable. For example, if firm A and B merge, the merger can be interpreted as a 

transfer of all the inputs and outputs of firm A to B (or viceversa), with A (or B) exiting the industry (which 

is also sometimes defined as an acquisition, but results in the same production unit of the merger). Similarly, 

a break-up of a single large firm into sub-units can be seen as the entry of those units into the industry and a 

re-allocation of inputs and outputs from the large firm to the new firms that entered the industry. Therefore 

all these break-ups and mergers may be thought as transfers of inputs and outputs among firms once entry 
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and exit is allowed. We keep decomposition (19) as our benchmark because it is more directly related to the 

efforts the literature made to identify break-ups and mergers. 

4. Dynamic:  industry  productivity  change  
All the previous discussion assumed a static point of view, focusing on a specific time period. Now, suppose 

there are two time periods, thus two data generated technologies ,  and two industry aggregate inputs 

and outputs , . Interestingly, the two time periods can also be interpreted as different 

groups of firms: one group is facing technology t and the other group technology t+1. With this group 

interpretation the way is also open to apply this proposed framework to meta-frontier analysis, where 

different groups of firms are facing different technologies. Industry performance can improve because of two 

main reasons: first, industry efficiency can increase between the two time periods and, second, the industry 

production frontier itself can shift in time (technical change). A measure of industry structural efficiency 

change can be obtained as the difference between the industry structural inefficiency indicators (11) in the 

two time periods: 

              (21)  

This indicator is higher (lower) than zero if industry efficiency increases (decreases). Since we established 

that the additive technology is the benchmark technology for the industry, technical change can be measured 

as the displacement of the enlarged additive production frontier at the point :  

                 (22)  

This indicator is higher (lower) than zero if there is technical progress (regress). Using property P2 of the 

additive DDF this indicator can also be expressed as the displacement of the VRS technology at the point of 

the hypothetical sample average firm: 

                  (23)  

In other words, this indicator measures how much the VRS production possibility set has expanded or 

contracted at the specific point  which has been identified as a benchmark from an aggregate 

industry perspective. The production possibility set can well collapse at other points (local technical regress) 

but the industry will still benefit from the technical change that happens at the point . Here it 

can be seen clearly that the additive technology is appropriate when benchmarking an industry: the VRS 

technology is the firm technology, while the industry has access to the additive technology (which is 

precluded to a single firm). 

The sum of the efficiency change and the technical change components returns a measure of aggregate 

productivity change for the industry: 
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   (24)  

This indicator takes a value larger (smaller) than zero if industry productivity has improved (deteriorated). 

Once again the benchmark technology is the additive one because, from the industry point of view, the 

number of firms which operate in it is a variable. It should be noted that this indicator of productivity change 

corresponds to the comparison period Luenberger indicator introduced by Chambers et al(1996), evaluated at 

the point where the industry is operating and benchmarked against the additive technology (which is the 

industry technology). The  measure of technical change fixes the input-output industry vector at the 

base period value. Alternatively one could use the comparison period industry input-output quantities 

obtaining a different indicator of industry technical change: 

         (25)  

and the associated base period Malmquist-Luenberger industry productivity indicator becomes: 

      (26)  

As it is standard in this literature, to avoid the arbitrariness of choosing base or comparison period 

benchmarks, one can use the average of the previous Luenberger productivity indicators: 

   (27) 

Since a decomposition of industry efficiency has been provided in the previous section, it is possible to 

decompose industry inefficiency change (21) as: 

               (28)  

where  and . Equation (28) avoids for simplicity the further 

decomposition of the industry organizational efficiency indicator IOE into size efficiency and merger 

efficiency. Inserting expression (28) into (27) provides an overall decomposition of industry productivity 

change: 

     (29) 

The left-hand side of equation (29) is positive (negative) when the productivity of the industry increases 

(decreases). This increase (decrease) of productivity can be attributed to 3 different fundamental factors: 

first, local technological progress (regress) which implies an outward (inward) displacement of the industry 

technology; second, an overall increase (decrease) in the technical efficiency with which the firms in the 

industry are operating; third, a better (worse) configuration of the industry itself. 
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5. Shadow  profit  and  the  Lowe  index  of  firm  inefficiency  
Chambers et al (1998) provided a duality theorem between the DDF and the profit function (see Fare and 

Primont, 2006 for a complete directional duality theory). Given a vector of output prices  and a 

vector of input prices  the profit function is defined as:  

    (30) 

and the following relationship is established between the profit function and the DDF: 

                    (31) 

The left hand side is the Nerlovian profit efficiency indicator. If a vector of prices is available for the overall 

industry, then it makes sense to normalize the directional vector to be equal to one dollar value: 

. Since rescalings of the directional vector corresponds to rescalings of the DDF, this normalization 

is not substantive. With this normalization in place the inefficiency can be interpreted in physical terms (the 

number of units of each input and output expressed in a suitable unit of measurement) and can also be 

interpreted as a dollar loss measure.  

If input and output prices are not available, then a shadow profit-maximizing problem will provide a vector 

of shadow prices. Shadow-prices are interpreted as prices which support a specific input-output bundle as 

profit maximizing; thus in the shadow profit maximization problem, prices are a variable and the inputs and 

outputs are fixed, giving rise to the dual of linear program (3) (see Fukuyama, 2003): 

 (32) 

 the optimal solution to this problem. This vector of prices is interpreted as the hypothetical 

vector of prices which supports the observed efficient projection of the industry average total input and 

output as profit maximizing. The vector of shadow prices is a good benchmark also because, if implemented, 

it would lead profit maximizing firms to move to the efficient industry point, by means of mergers, break-ups 

and re-allocations, therefore maximizing the efficiency of production at the industry level. The shadow profit 

formulation (32) has been discussed by Fukuyama (2003) as the dual to the DDF primal formulation (3). 

Another way of interpreting this shadow prices is as follow: inserting the shadow prices into the original 

profit function (30) will return the optimal inputs and outputs associated with those shadow prices and this 

optimal bundle will be the industry average inputs and outputs . 

These shadow prices can be used to build a shadow profit Nerlovian inefficiency measure at the firm level 

using a Lowe (fixed price) formula: 
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This is the total shadow profit inefficiency of firm k when compared to the optimal industry bundle 

. This overall shadow profit inefficiency is always larger than technical inefficiency thanks to 

the Mahler inequality: 

 

The difference between these two measures can be attributed to an activity effect (i.e. a mix of scale and 

scope economies). Therefore overall firm shadow profit efficiency can be decomposed in a technical 

inefficiency component and in an activity efficiency component: 

 

6. Data  and  empirical  results  
The data are drawn from the InfoBank and Casemix databases of Queensland Helath and comprises 116 

public hospitals in the state of Queensland in the years 1996-2004 (balanced panel dataset). These data were 

om the reader should refer for further details. There are 

three outputs (number of outpatient occasions, number of weighted episodes of surgical care, number of 

weighted episodes of medical care) and three inputs (full-time equivalent number of medical officers, full-

time equivalent number of nurses, number of beds). Descriptive statistics are reported in table 1. The 

directional vector chosen for this empirical application is:  and . This means an 

input saving approach has been chosen, which corresponds to ask how much inputs (cost) can be saved 

keeping the level of output (treatments) constant. 

Table 2 and 3 report the results of the industrial efficiency indicator along with its decomposition into the 

various components. Table 3 is particularly useful because it provides the decomposition in percentages 

terms. From this last table emerges quite clearly that technical efficiency represents a small component in the 

efficiency decomposition accounting for less than 15% of the total inefficiency of the industry across all the 

time periods. On the contrary the industry organizational indicator (IOE) (being always above 80% of total 

industrial inefficiency) accounts for the largest part of industrial inefficiency. The decomposition of the 

industrial organization indicator is quite interesting. Mergers and re-allocations of inputs and outputs account 

together for around half of the industry organizational inefficiency; the other half is accounted for by size 

inefficiencies. It should be emphasized once again that mergers and re-allocations are not always feasible 

(for example hospitals can be geographically distant); on the contrary size inefficiencies can be resolved by 

splitting a large hospital into a number of different administrative production units. Therefore the index of 

size inefficiencies (ISE) becomes particularly important in the light of the fact that a splitting is always 

physically possible (and the splitting does not necessarily mean that two different building must be 

constructed; it could mean that in the same building two different hospitals with different administrations are 

operating). Size inefficiency accounts for roughly 40% of total inefficiencies in the sector, pointing to the 



17  
  

fact that a policy of administrative splitting of large hospitals could benefit the overall sector inefficiency, 

helping in reducing the cost of delivering health or increasing the number of treatments for a given cost. 

Finally, table 4 reports the result of the productivity decomposition. Productivity growth has been slightly 

negat

of negative technical change. This effect has been partially compensated by a slight increase in industry 

efficiency. 

7. Conclusion  
This study introduced a measure of industrial inefficiency. It has been shown that this measure can be 

defined only by taking an aggregate industry production perspective. A

lead to an underestimation of the potential efficiency gains that an industry can realize thanks to 

organizational effects. Decomposing the industrial inefficiency indicator into different components the 

following effects have been identified: 1) inefficiencies arising from firms operating on a large size that can 

be split into smaller more productive units; 2) efficiency gains that can be realized thanks to the merger of 

small firms; 3) re-allocation of inputs and outputs in order to bring firms to the most optimal scale of 

production. The tool used to describe all these components was the directional distance function coupled 

with different types of data generated technologies. After defining the static industry inefficiency indicator, a 

dynamic decomposition of productivity change was proposed. Productivity change itself was decomposed 

into technical change and efficiency components. The methodology has been applied to data on hospitals 

showing that technical efficiency of individual hospitals accounts only for less than 15% of the total 

inefficiency of the industry. The most part of industry inefficiency has been found to be into the way the 

sector is organized, with a prominence of the size inefficiency component of around 40%. This last result in 

particular point to the fact that further investigation should be put into the causes that ingenerate a sub-

additive technology for large hospitals and what is the incentive of hospitals to be on such an inefficient 

production scale. 
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Tables  and  Figures  
  

Table  1     Descriptive  Statistics  

  

  

Table  2     Industrial  efficiency  and  its  static  decomposition  

Year  
IE      

(ITE+IOE)  
ITE  

IOE  
(ISE+IME+IRE)  

ISE   IME   IRE  

1996   1438.8   203.9   1234.9   698.3   177.8   358.8  

1997   1762.7   258.4   1504.3   860.3   181.4   462.6  

1998   1728.8   206.0   1522.8   782.9   242.2   497.7  

1999   1605.9   237.0   1368.9   681.1   321.2   366.7  

2000   1437.8   224.9   1212.9   598.5   247.7   366.8  

2001   1313.9   183.1   1130.8   554.3   206.8   369.6  

2002   1214.1   136.9   1077.2   491.0   117.3   468.8  

2003   1228.0   103.8   1124.2   380.5   385.6   358.1  

2004   2892.2   343.5   2548.6   646.2   1441.1   461.3  
  

Table  3     Percentage  contribution  to  industrial  efficiency  by  the  different  components  

Year  

IE      
(ITE+IOE)  

ITE  
IOE  

(ISE+IME+IRE)  
ISE   IME   IRE  

1996   100.0   14.2   85.8   48.5   12.4   24.9  

1997   100.0   14.7   85.3   48.8   10.3   26.2  

1998   100.0   11.9   88.1   45.3   14.0   28.8  

1999   100.0   14.8   85.2   42.4   20.0   22.8  

2000   100.0   15.6   84.4   41.6   17.2   25.5  

2001   100.0   13.9   86.1   42.2   15.7   28.1  

2002   100.0   11.3   88.7   40.4   9.7   38.6  

2003   100.0   8.5   91.5   31.0   31.4   29.2  

2004   100.0   11.9   88.1   22.3   49.8   16.0  

Outpatients Surgical Medical  
Medical  
officers Nurses Beds

Mean 64226.76 2276.90 3862.86 469.20 114.59 80.23
STD 121707.41 6340.46 7573.42 4119.70 257.52 148.22
Min 806.01 0.01 85.51 0.02 6.10 2.01
Max 1011976.00 44825.50 51536.27 80118.99 1864.19 1138.01
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Table  4     Productivity  growth  and  its  decomposition  

Year  
Prod  

(ITC+IEC)  
ITC  

IEC  
(ITEC+IOEC)  

ITEC   IOEC  

1996/1997   -­‐182.6   141.3   -­‐323.9   -­‐54.5   -­‐269.4  
1997/1998   -­‐32.1   -­‐66.0   33.9   52.4   -­‐18.5  
1998/1999   -­‐119.6   -­‐242.5   122.9   -­‐31.0   153.9  
1999/2000   -­‐134.0   -­‐302.0   168.0   12.0   156.0  
2000/2001   -­‐101.7   -­‐225.6   124.0   41.9   82.1  
2001/2002   19.8   -­‐80.0   99.8   46.2   53.6  
2002/2003   -­‐31.0   -­‐17.1   -­‐13.9   33.2   -­‐47.0  
2003/2004   -­‐2066.6   -­‐402.4   -­‐1664.2   -­‐239.8   -­‐1424.4  

  


