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Abstract

We show that the rearrangement algorithm introduced in Puccetti and Rüschendorf (2012a) to compute
distributional bounds can be used also to compute sharp lower and upper bounds on the expected value
of a supermodular function of d random variables having fixed marginal distributions. Compared to the
analytical methods existing in the literature the algorithm is widely applicable, more easily obtained and
gives insight into the dependence structures attaining the bounds.
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1. Introduction and preliminaries

Let X1, . . . , Xd be d real-valued random variables on some probability space (Ω,A, P). Given
a supermodular function ψ : Rd → R, we compute numerically sharp lower and upper bounds
on E[ψ(X1, . . . , Xd)], where we assume that each X j has known distribution F j(x) = P(X j ≤ x),
1 ≤ j ≤ d, but the dependence structure of the vector (X1, . . . , Xd)

′

is unknown. Thus, we study
the problems

sψ = inf
{
E[ψ(X1, . . . , Xd)] : X j ∼ F j, 1 ≤ j ≤ d

}
,

S ψ = sup
{
E[ψ(X1, . . . , Xd)] : X j ∼ F j, 1 ≤ j ≤ d

}
.
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While it is well known that the upper bound S ψ is attained when the d random variables X1, . . . , Xd

are comonotonic, i.e. similarly ordered, the solution of sψ is in general open for d ≥ 3. For d = 2
the lower bound sψ is attained when the two random variables X1, X2 are countermonotonic, i.e.
oppositely ordered. For d ≥ 2 the value of sψ has been recently given in the paper Wang and
Wang (2011) only for the case of identically distributed risks with monotone densities and for a
restricted class of supermodular functionals.

Puccetti and Rüschendorf (2012a) introduce the rearrangement algorithm (RA in the follow-
ing) in order to compute bounds on the distribution function of ψ(X1, . . . , Xd). In this paper, we
show that the same algorithm can be used to approximate the moment bounds sψ and S ψ for a
broad class of supermodular function ψ. Compared to the analytical method described in Wang
and Wang (2011), the RA is particularly simple, fast and widely applicable: it can handle inho-
mogeneous set of marginal distributions and dimensions d in the several hundreds. The RA turns
out to be relevant for practical applications also in the computation of S ψ which often poses
serious problems in the case of large vectors of inhomogeneous marginals. Moreover, the RA
confirms the results obtained in Wang and Wang (2011) and gives also insight into an analytical
solution of sψ for arbitrary marginal distributions.

1.1. Notation

Let X = (xi, j) ∈ R be a (n × d)-matrix. Let X− j be the (n × (d − 1))-matrix obtained from X
by deleting its j-th column X( j). Denote by +(X) and +(X− j) the n-dimensional vectors having
as components by the componentwise sum of each row of X, respectively X− j. Formally,

+(X) =



x1,1 + · · · + x1,d

...

xi,1 + · · · + xi,d

...

xn,1 + · · · + xn,d


,+(X− j) =



x1,1 + · · · + x1, j−1 + x1, j+1 + · · · + x1,d

...

xi,1 + · · · + xi, j−1 + xi, j+1 + · · · + xi,d

...

xn,1 + · · · + xn, j−1 + xn, j+1 + · · · + xn,d


. (1.1)

Of course, we have that
+(X) = +(X− j) + X( j), 1 ≤ j ≤ d. (1.2)

We define P(X) as the set of all (n × d)-matrices obtained from X by rearranging the elements
within a number of its columns in a different order, that is

P(X) =
{
X̃ = (x̃i, j) : x̃i, j = xπ j(i), j, π1, . . . , πd are permutations of {1, . . . , n}

}
.

We call each matrix in P(X) a rearrangement of X.
Given a vector a ∈ Rn, we denote by a[i] the i-largest component of a (a[n] is the minimal).

The vector a↑ = (a[1], . . . , a[n])′ is called the increasing rearrangement of a and the vector a↓ =

(a[n], . . . , a[1])′ the decreasing rearrangement of a. We write a ⊥ b to indicate that the components
of the vectors a, b ∈ Rn are oppositely ordered, that is (a j − ak)(b j − bk) ≤ 0 for all 1 ≤ j, k ≤ n.
For example, we have that a↑ ⊥ a↓. Majorization between two vectors a, b ∈ Rn is defined as

a . b iff
j∑

i=1

a[i] ≤

j∑
i=1

b[i], 1 ≤ j ≤ n, and
n∑

i=1

ai =

n∑
i=1

bi.

2



2. A rearrangement problem

In this section we describe a rearrangement problem which will turn out to be strictly con-
nected to the computation of sψ and S ψ. A similar treatment applied to the solution of a multidi-
mensional assignment problem can be found in Rüschendorf (1983a).

For a function ψ : Rd → R and a (n × d)-matrix X, we define the operator E(X) as the sum of
the n values obtained by applying the function ψ to each row of X, i.e.

E(X) =

n∑
i=1

ψ(xi,1, . . . , xi,d).

In this section, we investigate the problem of finding the rearrangements of X which mini-
mize/maximize E(X). Formally, we study the problems

mψ(X) = min
X̃∈P(X)

E(X̃) and Mψ(X) = max
X̃∈P(X)

E(X̃). (2.1)

Throughout the paper we will consider the case that ψ : Rd → R is a supermodular function, i.e.

ψ(x ∧ y) + ψ(x ∨ y) ≥ ψ(x) + ψ(y), for all x, y ∈ Rd, (2.2)

where x∧ (∨) y is the componentwise minimum (maximum) of x and y. The reader is referred to
Marshall et al. (2011, Section 6.D) and Block et al. (1989) for equivalent definitions, properties
and examples of supermodular functions.

A well-known result due to Lorentz (1953) (see also 6.E.1 in Marshall et al. (2011)) shows that
X↑, the comonotonic rearrangement of X having all its columns arranged in increasing order, is
a solution of Mψ(X) if and only if ψ belongs to Sd, the set of all supermodular functions on Rd.
Proposition 2.1 For any (n × d)-matrix X, we have that

E(X) ≤ E(X↑).

if and only if ψ ∈ Sd.
Proposition 2.1 states that Mψ(X) = E(X↑) for any supermodular function ψ. In general it is more
difficult to solve mψ(X).

2.1. Restriction to convex functions of a sum

In this subsection, we restrict to considering the particular class of supermodular functions S+
d

defined as

S+
d =

{
ψ : Rd → R : ψ(x1, . . . , xd) = f (x1 + · · · + xd), for some convex f

}
.

For ψ ∈ S+
d , we have

E(X) =

n∑
i=1

f (xi,1 + · · · + xi,d).

Now define
O+(X) =

{
X̃ ∈ P(X) : X̃( j) ⊥ +(X̃− j), 1 ≤ j ≤ d

}
be the set of those rearrangement X̃ of X having each column oppositely ordered to the sum
of the others. Based on two well-known results on rearrangements, it is possible to restrict the
domain of the min problem in (2.1) to the smaller set O+(X).
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Proposition 2.2 (Day (1972)) For any two vectors x, y ∈ Rn, we have that x↑ + y↓ . x + y.
Proposition 2.3 (Hardy et al. (1929)) For any convex function f , ỹ . x̃ implies that

n∑
i=1

f (ỹi) ≤
n∑

i=1

f (x̃i). (2.3)

Proposition 2.4 If ψ ∈ S+
d , we have that

mψ(X) = min
X̃∈O+(X)

E(X̃).

Proof. For any X̃ < O+(X), it is possible to find an index j so that X̃( j) is not oppositely ordered
to +(X̃− j). Denote by Ỹ ∈ P(X) the matrix obtained from X̃ by rearranging its j-th column
oppositely to the sum of the others. Using Proposition 2.2 and (1.2) we have that

+(Ỹ) = +(X̃− j)↑ + X̃↓( j) . +(X̃− j) + X̃( j) = +(X̃) = x̃.

Let ỹ = +(Ỹ). By Proposition 2.3, ỹ . x̃ implies that
n∑

i=1

f (ỹi) ≤
n∑

i=1

f (x̃i),

for any convex function f . It follows that

E(Ỹ) =

n∑
i=1

f (ỹi,1 + · · · + ỹi,d) =

n∑
i=1

f (ỹi) ≤
n∑

i=1

f (x̃i) = E(X̃). (2.4)

As noted at the end of the proof of Theorem 2.1 in Puccetti and Rüschendorf (2012a), being the
set P(X) finite, it is possible to pass from any X̃ < O+(X) to a matrix X∗ ∈ O+(X) in a finite
number of steps. Considering (2.4), we can restrict the domain of the min problem mψ(X) to the
set O+(X). �

At this point, the rearrangement algorithm introduced in Puccetti and Rüschendorf (2012a) can
be used to find elements in O+(X) which are, by Proposition 2.4, candidate solutions to mψ(X).

Rearrangement algorithm to find elements inO+(X). Start with any X̃ ∈ P(X). Define
X̃1 by iteratively rearranging its j-th column X̃( j) such that X̃( j) ⊥ +(X̃− j), for 1 ≤ j ≤ d.
Then, repeat using X̃1 as the initial matrix until an element X∗ ∈ O+(X) is found.

We note that not all the matrices in O+(X) are optimal. As an example one can consider the
matrices

X =



1 1 1

2 2 2

3 3 3

4 4 4

5 5 5


, X̃ =



5 1 2

3 5 1

2 3 4

4 2 3

1 4 5


and Ỹ =



1 5 3

2 3 4

3 1 5

4 4 1

5 2 2


.

Even if X̃, Ỹ ∈ O+(X), the vector x̃ = +(X̃) is strictly larger than the vector ỹ = +(Ỹ) with respect
to .. It follows that for instance for the stop-loss functional ψ(x1, . . . , xd) = [x1 + · · · + xd − 9]+
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we have that E(Ỹ) = 0 < 1 = E(X̃). In this case, the matrix X̃ ∈ O+(X) does not attain mψ(X).
In applications to follow we will however see that in many cases any element in O+(X) gives a
good approximation to the optimal solution.

2.2. Extensions to general supearadditive function ψ

A natural question is whether the method described in Section 2.1 can be extended to find
solutions/approximations of mψ(X) for a general supermodular function ψ. The answer is pos-
itive, provided that ψ satisfies the following extra requirement. We assume that there exist two
measurable supermodular functions ψd−1 : Rd−1 → R and ψ2 : R2 → R such that ψ satisfies

ψ(x1, . . . , xd) = ψ2(x j, ψ
d−1(x1, . . . , x j−1, x j+1, . . . , xn)), 1 ≤ j ≤ d. (2.5)

Relevant cases of supermodular functions ψ satisfying (2.5) are the sum (ψ2(x1, x2) = x1 + x2),
the product (ψ2(x1, x2) = x1x2, for x1, x2 > 0), the min (ψ2(x1, x2) = min{x1, x2}) and the −max
(ψ2(x1, x2) = −max{x1, x2}) operators. Asymmetric functions do not satisfy (2.5).

We now extend to a general function ψ the definitions given in (1.1) in the case of the sum
operator. Denote by Ψ(X) (respectively, Ψ(X− j)) the n-dimensional vectors obtained by applying
the function ψ (resp., ψd−1), to each row of X (resp., X− j). Analogously to (1.1), we have

Ψ(X) =



ψ(x1,1, . . . , x1,d)
...

ψ(xi,1, . . . , xi,d)
...

ψ(xn,1, . . . , xn,d)


,Ψ(X− j) =



ψd−1(x1,1, . . . , x1, j−1, x1, j+1, . . . , x1,d)
...

ψd−1(xi,1, . . . , xi, j−1, xi, j+1, . . . , xi,d)
...

ψd−1(xn,1, . . . , xn, j−1, xn, j+1, . . . , xn,d)


.

Now let

Oψ(X) =
{
X̃ ∈ P(X) : X̃( j) ⊥ Ψ(X̃− j), 1 ≤ j ≤ d

}
,

be the set of those permutation matrices X̃ such that X̃( j) is oppositely ordered to Ψ− j(X̃) for all
1 ≤ j ≤ d. Similarly to Proposition 2.4 we can restrict the domain of the min problem mψ(X)
to the set Oψ(X). We use the following result due to Lorentz (1953); see also 6.E.1 in Marshall
et al. (2011).
Proposition 2.5 (Lorentz (1953)) For any vectors a, b ∈ Rn, we have

n∑
i=1

φ(a[i], b[n−i+1]) ≤
n∑

i=1

φ(ai, bi)

if and only if φ ∈ Sd.
Proposition 2.6 If ψ ∈ Sd is coordinatewise strictly monotonic and satisfies condition (2.5), we
have that

mψ(X) = min
X̃∈Oψ(X)

E(X̃).

Proof. For any X̃ < Oψ(X), it is possible to find an index j so that X̃( j) is not oppositely ordered to
Ψ(X̃− j). Let Ỹ ∈ P(X) be the matrix obtained from X̃ by rearranging its j-th column oppositely
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to Ψ(X̃− j). Applying Proposition 2.5 to the vectors a := Ψ(X̃− j), b := X̃( j) and using (2.5) we
obtain that

E(Ỹ) =

n∑
i=1

ψ(ỹi,1, . . . , ỹi,n) =

n∑
i=1

ψ2(a[i], b[n− j+1]) ≤
n∑

i=1

ψ2(ai, bi)

=

n∑
i=1

ψ2(x̃i, j, ψ
d−1(x̃i,1, . . . , x̃i, j−1, x̃i, j+1, . . . , x̃i,n)) =

n∑
i=1

ψ(x̃i,1, . . . , x̃i,n) = E(X̃). (2.6)

As noted at the end of the proof of Theorem 2.1 in Puccetti and Rüschendorf (2012a), being the
set P(X) finite and ψ strictly monotonic, it is possible to pass from any X̃ < Oψ(X) to a matrix
X∗ ∈ Oψ(X) in a finite number of steps. Considering (2.6), we can restrict the domain of the min
problem mψ(X) to the set Oψ(X). �

The proof of Proposition 2.6 indicates that the rearrangement algorithm can be used with any
supermodular function satisfying the extra condition (2.5).

Rearrangement algorithm to find elements inOψ(X). Start with any X̃ ∈ P(X). Define
X̃1 by iteratively rearranging its j-th column X̃( j) such that X̃( j) ⊥ Ψ(X̃− j), for 1 ≤ j ≤
d. Then, repeat using X̃1 as the initial matrix until an element X∗ ∈ Oψ(X) is found.

Remark 2.7 We conclude this section by summarizing some important points.

(i) Proposition 2.6 is not an extension of Proposition 2.4. Indeed, there exist supermodular
functions ψ ∈ S+

d which do not satisfy condition (2.5). An example is given by the stop-loss
functional ψ(x1, . . . , xd) = [x1 + · · · + xd − k]+, for some k , 0. This also explains why we
need majorization to obtain Proposition 2.4.

(ii) A rearrangement matrix X∗ is a solution of mψ(X) = E(X∗) for some function ψ ∈ S+
d

if and only if X∗ is a solution of mψ(X) = E(X∗) for all functions ψ ∈ S+
d . Analogously,

Mψ(X) = E(X↑) for any ψ ∈ Sd.
(iii) In the general case that ψ ∈ Sd a solution of mψ(X) may depend on the function ψ.
(iv) Proposition 2.6 extends to all ψ ∈ Sd only when d = 2. In this case, condition (2.5) is

automatically satisfied. For d = 2, denote by X↓ a countermonotonic rearrangement of X
having the two columns arranged in opposite order. Proposition 2.5 implies that for any
(n × 2)-matrix X we have that

E(X) ≥ E(X↓).
if and only if ψ ∈ Sd. However, the case d = 2 is seldom relevant in applications.

(v) The rearrangement algorithm can be used also when the function ψ ∈ Sd is non-strictly
monotonic, provided that the set Oψ(X) is nonempty.

6



3. Moment bounds

Given a set of marginal distributions F1, . . . , Fd and a supermodular function ψ : Rd → R, the
aim of this paper is to compute

sψ = inf
{
E[ψ(X1, . . . , Xd)] : X j ∼ F j, 1 ≤ j ≤ d

}
, (3.1a)

S ψ = sup
{
E[ψ(X1, . . . , Xd)] : X j ∼ F j, 1 ≤ j ≤ d

}
. (3.1b)

If each marginal distribution F j is n-discrete, that is uniformly distributed on a set of n real
values xi, j, i = 1, . . . , n, using a rearrangement argument similar to the one given in Puccetti and
Rüschendorf (2012a, Section 3) we obtain that

sψ ' mψ(X)/n and S ψ ' Mψ(X)/n, (3.2)

where X = (xi, j). The approximations in (3.2) hold for n large enough only when each F j is
n-discrete but can be used to compute numerically sψ and S ψ also in the general case of arbitrary
marginals. Indeed, it is always possible to find two n-discrete distributions which approximate
any F j from below and from above. For instance, we define the discrete distributions F j and F j

as

F j(x) =
1
n

n−1∑
r=0

1[qr ,+∞)(x) and F j(x) =
1
n

n∑
r=1

1[qr ,+∞)(x),

where the jump points qr are defined by qr := F−1
j (r/n), 0 ≤ r ≤ n. Since F j ≥ F j ≥ F j, if we

assume that ψ is componentwise increasing we obtain that

sψ ≤ sψ ≤ sψ and S ψ ≤ S ψ ≤ S ψ. (3.3)

where sψ (respectively sψ) is the analogous of (3.1a) when F j = F j (resp. F j = F j). Analogously,

S ψ (resp. S ψ) is the analogous of (3.1b) when F j = F j(resp. F j = F j).

We denote by X = (xi, j) (resp. X = (xi, j)) the (n × d)-matrix having as j-th column the vector
of jump points of the distribution F j (resp. F j) , i.e.

xi, j = F−1
j

(
i − 1

n

)
and xi, j = F−1

j

( i
n

)
, 1 ≤ i ≤ n.

Using (3.2) and (3.3) we obtain, for n large enough, that

mψ(X)/n ≤ sψ ≤ mψ(X)/n, (3.4a)

Mψ(X)/n ≤ S ψ ≤ Mψ(X)/n. (3.4b)

Recalling Proposition 2.1, the following numerical range on S ψ directly follow from (3.4b):

E(X↑)/n ≤ S ψ ≤ E(X
↑
)/n. (3.5)

The rearrangement algorithms described in Section 2 can be used in combination with (3.4a) to
find a numerical range also for sψ. Using Proposition 2.6 or Proposition 2.4 (depending on the
properties of ψ), we obtain that

E(Ỹ)/n ' sψ ≤ E(Z̃)/n, (3.6)

for any Ỹ ∈ Oψ(X) and Z̃ ∈ Oψ(X). Note that the right-hand inequality in (3.6) is always satisfied
but the left-hand one may fail if the matrix Ỹ does not attain mψ(X). However, in practice the
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numerical range in (3.6) always turns out to yield a good approximation of sψ. At this point
two matrices Ỹ ∈ Oψ(X) and Z̃ ∈ Oψ(X) producing a range as in (3.6) can be found using the
rearrangement algorithms described in Section 2.

It is important to note that if a distribution F j is unbounded from above, that is F−1
j = +∞, and

also ψ is unbounded from above, we obtain that Mψ(X) = mψ(X) = +∞ so the upper limits of the
ranges in (3.5) and (3.6) are not useful. However, we will see in practice that the corresponding
lower limits turn out to be sufficiently accurate for high values of n. Similar considerations hold
if F j and ψ are unbounded from below.

If E[ψ(X1, . . . , Xd)] is finite, the accuracy of the numerical ranges given in (3.5) and in (3.6)
can be increased by choosing:

– a larger value of n, so that the approximation to F j given by the discrete distributions F j

and F j is more accurate and the transition from continuous to discrete rearrangements
in (3.2) is justified; see Puccetti and Rüschendorf (2012a, Section 3).

– a number of different random starting rearrangement matrices for the RA in order to find
different elements in the set Oψ(X).

Having mainly applications to quantitative risk management in mind, in the following we will
always compute the ranges (3.5) and (3.6) for continuous marginal distributions F j. In these
cases, we always find that the ranges in (3.5) and (3.6) yield a very good approximation of S ψ

and, respectively sψ, with a single starting matrix and a high value for n.

4. Applications

In this section, we compute the numerical ranges in (3.5) and in (3.6) for different increasing,
supermodular functionals ψ and different sets of marginals F j, 1 ≤ j ≤ d. In Table 1, we com-
pute (3.5) and (3.6) for the product (ψ = ×) of d random variables being all uniformly distributed
on [0, 1]. In this case, it is easy to see that S × = 1/(d + 1) while the lower bound s× has been
given analytically in the recent paper Wang and Wang (2011). In Table 1 we report also the com-
putation times of the range (3.6) (the computation of (3.5) is immediate for any dimension d)
obtained on an Apple MacBook Air (2 GHz Intel Core i7, 8 GB RAM) by setting n = 105.

d avg time (secs) s× (RA range) s× (analytical) S × (RA range) S × (analytical)

3 7 5.4800 × 10−2 − 5.4807 × 10−2 5.4803 × 10−2 0.2500-0.2500 0.2500

4 8 1.9096 × 10−2 − 1.9100 × 10−2 1.9098 × 10−2 0.2000-0.2000 0.2000

5 9 6.8594 × 10−3 − 6.8615 × 10−3 6.8604 × 10−3 0.1667-0.1667 0.1667

10 18 4.5385 × 10−5 − 4.5435 × 10−5 4.5410 × 10−5 0.0909-0.0909 0.0909

20 46 2.0553 × 10−9 − 2.0639 × 10−9 2.0612 × 10−9 0.0476-0.0476 0.0476

50 188 1.8865 × 10−22 − 1.9352 × 10−22 1.9287 × 10−22 0.0196-0.0196 0.0196

100 595 3.3851 × 10−44 − 3.745 × 10−44 3.7201 × 10−44 0.0099-0.0099 0.0099

Table 1
Numerical ranges (see (3.5) and (3.6)) and analytical values for s× and S × for the product of d random variables uniformly
distributed on [0, 1]. Numerical ranges are computed via the RA with n = 105, while analytical values are taken from
Table 4.1 in Wang and Wang (2011). Computation times of (3.6) are also reported.
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The aim of this first example was only to show the accuracy of our method, as for the homo-
geneous case illustrated in Table 1 the values of S × and s× can be computed analytically. In the
more general case that the marginal distributions are not homogeneous, the situation is different.
The analytical results in Wang and Wang (2011) only hold for identically distributed random
variables and so far there does not exist a method which allows to compute the lower bound sψ
analytically for any ψ ∈ S in the inhomogeneous case. Apart from some particular cases illus-
trated in Dhaene et al. (2002a), also the computation of S ψ may be numerically cumbersome
when dealing with inhomogeneous marginals. Being entirely numerical, the algorithm described
in this paper can be used with a large number of marginal distributions and for a broad class
of supermodular functionals. In order to illustrate the full potential of the RA, in Table 2 we
compute sharp lower and upper bounds for the expectation of the product of d inhomogeneous
uniformly distributed random variables.

d avg time (secs) s× (RA range) S × (RA range)

10 18 1.5470 × 10−1 − 1.5473 × 10−1 4.2191 × 100 − 4.2194 × 100

20 46 5.0315 × 10−2 − 5.0333 × 10−2 1.0764 × 102 − 1.0766 × 102

50 188 1.6794 × 10−3 − 1.6794 × 10−3 4.8464 × 106 − 4.8482 × 106

100 595 5.7255 × 10−6 − 5.7362 × 10−6 6.0091 × 1014 − 6.0133 × 1014

Table 2
RA numerical ranges (3.5) and (3.6) for the product of d random variables uniformly distributed on [a j, a j + 1], where
a j = ( j − 1)/d, 1 ≤ j ≤ d. Numerical ranges have been obtained by setting n = 105. Computation times of (3.6) are also
reported.

As a second application, we compute sharp bounds on the expectation of the stop-loss function
ψ(x1, . . . , xd) = [x1 + · · · + xd − k]+ for a number d of Exp(1)-distributed random variables. In
this case it is easy to see that S ψ =

∫ +∞

k/d (dx− k)e−xdx while the lower bound s× can be computed
analytically using Theorem 3.5 in Wang and Wang (2011). The results obtained for n = 105 are
collected in Table 3. In this example, being the marginal distributions and the function under
study unbounded from above, we compute only the lower approximations of the sharp bounds.
Table 3 however shows that these lower approximations are sufficiently accurate. In Table 4 we
treat the case of the stop-loss function of d = 3 inhomogeneous Pareto-distributed risks. In this
latter case analytical values for the sharp bounds are available only for k = 0.

k sψ (numerical lb) sψ (analytical) S ψ (numerical lb) S ψ (analytical)

0 2.9998 3.0000 2.9998 3.000

1 1.9998 2.0000 2.1494 2.1496

2 0.9998 1.0000 1.5401 1.5403

3 0.16939 0.16956 1.1035 1.1036

4 0.057013 0.057159 0.79061 0.79079

5 0.020369 0.020492 0.56645 0.56663

Table 3
Numerical lower bounds (lbs) on sψ and S ψ for the stop-loss function with deductible k for d = 3 random variables being
all Exp(1)-distributed. Numerical ranges are computed via the RA within 7 seconds with n = 105. Analytical values for
sψ and S ψ, computed via Theorem 3.5 in Wang and Wang (2011), are also given.
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k sψ (numerical lower bound) S ψ (numerical lower bound)

0 1.828134 (exact=1.833333) 1.828134 (exact=1.833333)

1 0.8281339 1.149902

2 0.4027471 0.8114906

3 0.2829846 0.6144147

4 0.2181444 0.4877124

5 0.1772537 0.4004565

Table 4
Numerical lower bounds (lbs) on sψ and S ψ for the stop-loss function with deductible k for d = 3 random variables with
distribution X j ∼ Pareto( j + 1). Numerical ranges are computed via the RA within 7 seconds with n = 105.

The computation time of the RA is not affected by the type of marginal distributions chosen
but only depends on their number d and on the accuracy parameter n. The figures obtained in the
tables above for n = 105 can be already considered reasonably accurate. However, an important
feature of the algorithm is that it can handle larger values of n and d without heavy memory
issues. If extra-accuracy is required, with n = 106 one can obtain an estimate of s× in about 3
minutes for the product of d = 3 random variables. If one needs instead less precision, using
n = 104 provides an estimate of s× within 20 minutes for the product of d = 500 (possibly
inhomogeneous) random variables.

5. Rearrangement structures and dependence

For a given (n × d)-matrix X = (xi, j), any rearrangement X̃ ∈ P(X) can be seen as the support
of a n-discrete, d-variate distribution giving probability mass 1/n to each one of its n row vec-
tors. Under this view, any such X̃ has the same marginal distributions F j, where F j is uniformly
distributed over the n real values xi, j, 1 ≤ i ≤ n. Therefore, any rearrangement matrix represents a
different dependence structure coupling the fixed discrete marginal distributions. In particular, X̃
has a copula belonging to the class of shuffles of Min copulas as introduced in Mikusiński et al.
(1992) and therefore represents a mutually complete dependence between the fixed marginals in
the sense defined in Lancaster (1963). It has been observed that the class of shuffles of Min is
dense in the class of copulas endowed with the L∞-norm. In fact, any copula can be considered
as a generalization to the infinite-dimensional space of such rearrangement matrices (see for in-
stance Kolesárová et al. (2006)). Equivalently, any dependence structure can be approximated
by a the copula of a rearrangement matrix for n large enough. For more details on the link be-
tween the idea of a rearrangement and copulas as dependence structures, we refer to Rüschendorf
(1983b) and the more recent paper Durante and Sánchez (2012) which contains an accurate list
of references.

On the above grounds, it is of interest to investigate the rearrangement matrices yielding the
ranges (3.5) and (3.6). The comonotonic matrix X↑ yielding the range (3.5) represents comono-
tonic dependence between its columns. Since comonotonic dependence has been well studied in
the literature (see for instance Dhaene et al. (2002b) and Rüschendorf (2005)), here it is more in-
teresting to study the structure of the rearrangement matrices yielding the numerical range (3.6).

In the part (A) of Figure 5 we give the matrix X̃ ∈ O+(X) approximating for n = 50 the
minimal expectation of d = 3 homogeneous Exp(1)-marginals. The copula of X̃ approximates
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the optimal copula QP
n defined in Wang and Wang (2011). The copula QP

n describes a structural
dichotomy under which either the marginals are d-completely mixable (see Wang and Wang
(2011) for a definition of complete mixability) or one of the components is large and the others
small. One can check that basically the same dependence structure occurs the rows of X̃: either
all the components of the row are close to each other, and sum up to a value which is around the
threshold 2.7 (e.g. row 14), or one of them is large and the other two are small (e.g. row 23). As
noted in point (ii) of Remark 2.7, the same rearrangement structure characterizes any solution
of mψ(X) when ψ ∈ S+

d . Moreover, Puccetti and Rüschendorf (2012b) show that the copula QP
n

maximize the tail function for the sum of d homogeneous random variables with given marginal
distributions. In the part (B) of Figure 5 we give the matrix Ỹ ∈ O+(X) approximating for n =

50 the miminal expectation of the stop-loss function for the inhomogeneous Pareto portfolio
underlying Table 4. The matrix Ỹ shows a structure of dependence similar to the matrix X̃ given
in the part (A) of the same figure. The structure of the matrix Ỹ suggests that the optimal coupling
results in Wang and Wang (2011) and Puccetti and Rüschendorf (2012b) as well as the concept
of complete mixability could be extended to the inhomogeneous setting. Finally, In the part (C)
of Figure 5 we give the matrix Z̃ ∈ Oψ(X) approximating for n = 50 the miminal expectation
of the product (ψ = ×) of the three uniform marginals underlying Table 1. The matrix Z̃ suggest
that the concept of complete mixability could be extended to a broader class of functionals ψ as
well.

6. Conclusions and forthcoming research

In this paper, we show that the rearrangement algorithm (RA) introduced in Puccetti and
Rüschendorf (2012a) can be used to calculate sharp lower and upper bounds on the expected
value of a supermodular function of dependent random variables having fixed marginals. The
RA is accurate, fast and can be used to handle random variables with inhomogeneous marginals,
in high dimensions. Moreover, the algorithm also gives insight into the dependence structures at-
taining the bounds. We believe that the numerical moment bounds studied in this paper will have
a wide range of application in quantitative risk management. Matthias Scherer (private commu-
nication) suggested that they should be relevant in the computation of bounds on the price of
multi-assets options. We will investigate this application further in future research.
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