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Abstract

We generalize results on the monotocity of equilibria for network games with in-

complete information. In those games players know the stochastic process of network

formation and their own degree in the realized network, and decide an action depend-

ing on the strategic interaction in the network between their own action and a statistic

(as the mean, the maximum or the minimum) of neighbors’ actions. We show that,

even under degree independence, not only the distinction between strategic comple-

ments and strategic substitutes is important in determining the nature of Bayesian

Nash equilibria, but also the nature itself of the statistic.

JEL classification: D85.

Keywords: Network Games, sample statistics, substitutes and complements.

1 Introduction

Following the paper “Network Games” by Galeotti et al. (2010) (hencefort: NG), many

recent models on games with local externalities assume that agents are nodes of a network

environment, and that they have to take an action which has local externalities channeled

trough the topology of the network. However, the agents have limited observability on the

structure of the network and even on the identity of their peers. Essentially, nodes know only
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their own degree and have some information about the general network formation process

that generated the whole social network. The realization could be such that the degree of

neighbors is i.i.d., and independent also on the degree of the node itself, as is the case for

example of the recent papers by Galeotti and Rogers (2013) and Konno (2013). However,

more generally, any stochastic process for the realization of the network could be considered,

as is formalized in the recent paper by Acemoglu et al. (2013).

In some sense the nodes, in these network games with limited observability, compute

expected statistics over the sample that they may end up finding in the pool.

From an applied point of view, such models are a good tool for analyzing many complex

social phenomena, as the spread of habits, marketing for goods with externalities, vaccination

policies, and public good contributions, just to name a few. So, this approach is consistent

with the empirical literature on peer effects and reference groups, on which a good survey

is given by Blume et al. (2010). However, it must be noted that the theoretical predictions

of these models are unclear when it comes to assign some correlation between the degree of

nodes and their action: who will endogenously tend to vaccinate more during a flu pandemic,

those with many or those with few links (see Goyal and Vigier, 2010, and again Galeotti and

Rogers, 2013 and Acemoglu et al., 2013 for models and discussion for this environment)?

when a bad habit as smoking spreads in a school, and there are peer effects, who will be more

likely to smoke, those with many or those with few links (see Currarini et al. 2013)? As an

example of this discordance in the theoretical models, Proposition 10 in NG gives different

predictions from the results of Galeotti and Rogers (2013) and Konno (2013). The technical

reason is that they are based on slightly different assumptions about the way externalities

coming from the neighbours are aggregated. So, it becomes important from a theoretical

point of view to study more generally the effects of these kinds of assumptions.

2 The model

Let N = {1, 2, ....n} be a finite set of agents. Each agent i ∈ N obtains some partial

information about the realization of a random network and then chooses an action xi ∈ X ,

where X ⊆ R is a compact set. Payoffs are assigned in a way that depends on the realized

network environment. The structure is the one of a Bayesian game, and we follow the

notation of NG, integrating it with some of the formalization from Acemoglu et al. (2013).

Network: Our realized network environment is represented by a (possibly directed) network

g, in which the set of nodes is the set of agents, and a link ij denotes that the action of
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agent j affects i’s payoff. Network g is obtained from a probability distribution P over all

the 2n(n−1) possible networks. We call P the network formation process. Let us call K the

set of natural numbers {1, 2, . . . , n − 1}. We denote by Ni(g) the set of neighbors of i in g

(excluding i) and we denote by ki,g ∈ K the number of such neighbors (i.e. i’s out–degree in

the network). We call Vk,g the set of nodes that have degree k in network g, and by vk,g the

cardinality of this set.

Before going on, let us consider as benchmarks two simple probability distributions P .

One follows the Erdös and Rényi (1960) model of random networks, where every link between

any two nodes is in place with some i.i.d. distribution which is common knowledge. The other

is a model of random networks where all and only the networks with a pre–specified degree

distribution have positive probability, and this degree distribution is the common prior. In

these simple cases, knowing own degree provides no additional information on the degree

of neighbors. Following NG, we call degree independence this lack of correlation. When

instead, knowing own degree k changes the expectation on the degree of neighbors, we may

have degree assortativity or disassortativity (more on this at end of Section 3).

Payoffs: Payoffs are based on the realized network g. Player i’s payoff function when she

chooses xi and her ki,g neighbors choose the action profile ~xi,g = (x1; ...;xki) is:

Πki,g(xi, ~xi,g) = f (xi, s(~xi,g))− c(xi) , (1)

where s is a measure computed on the set of the neighbors’ actions,1 and f(x, s) is continu-

ously differentiable function from R2 to R with:

fx > 0 , fs > 0 , fxx ≤ 0 .

If either fxs ≤ 0 or fxs ≥ 0, we say, respectively, that f has the substitutes or the

complements property. Finally, c(x) is a convex cost function such that cx > 0 and cxx > 0.

Statistic: The effects of local interaction are aggregated by the measure s. Formally s is

a different k–dimensional function for every k ∈ K. So, s is a family of n − 1 functions2

and each of them is anonymous on the arguments, which means that any permutation of

the elements of the sample ~xi,g would give the same result, for any size of ~xi,g. This very

general specification includes measures of central tendency as well as measures of variability

1Formally, s is a function from Rki,g to R.
2In principle we allow them to be even different functions for each k

3



(or dispersion). Measures of central tendency include the mean, median and mode, while

measures of variability include the standard deviation (or variance), the minimum and maxi-

mum values of the variables, kurtosis and skewness. In the following we refer to any measure

s as a statistic.

Information: The only piece of information that an agent i obtains before deciding her

action, on top of the common prior P , is her own degree ki in some realized network g. Then

players play a game of incomplete information described by the quadruple (N,X , (Πk)k∈K , P ).

Bayesian game: A strategy for player i is a mapping σi : K → ∆(X ), where ∆(X ) is

the set of probability distributions on X , i.e. σi = [σik]k∈K where σik is the mixed strategy

played by player i of degree k. Furthermore ~σig is the strategy profile of i’s neighbors in

network g, ~σ = [σi]i∈N is the strategy profile of the game and ~σ−i = [σj]j∈N/i is the set of

strategy profiles of all players excluded i.

We consider symmetric Bayesian Nash equilibria in which every agent with the same infor-

mation and facing the same ex–ante conditions (i.e. each agent i with the same degree k)

chooses the same strategy, i.e. σik = σjk ∀ k ∈ K and ∀ i, j ∈ N .

We say that a strategy profile ~σ is first order stochastic dominance (FOSD) increasing if,

for every k ∈ K\{n − 1} we have that σk+1 FOSD σk (which is to say that the cumulative

distribution of σk+1 is always below the cumulative distribution of σk – in the context of

pure strategies it means that xk+1 ≥ xk). Analogously, ~σ is FOSD decreasing if, for every

k ∈ K\{n− 1} we have that σk FOSD σk+1.

Given a realized network g and a strategy profile ~σ the expected payoff of agent i of

degree k, who know her position and the positions of all other nodes, is given by:

Πe
i,g(σi, ~σig) =

∫
XN

Πki,g(xi, ~xi,g) d~σ . (2)

On this, we have to include also the uncertainty about the realization of the network. Adding

this, the expected payoff of agent i of degree k is

Πe
k(σi, ~σ−i) =

∑
g P (g) ·

∑
i∈Vk,g

Πe
i,g(σi, ~σig)∑

g P (g) · vk,g
. (3)

In words, an agent evaluates all possible nodes i with degree k in any possible realized

network g, updating priors with the information that her degree is actually k.3 For each

3Note that Πe
k(σi, ~σ−i) =

∑
g P (g|k) ·

∑
i∈Vk,g

Πe
ig(σi,~σig)

vk,g
where P (g|k) =

vk,g·P (g)∑
g vk,g·P (g) is the update proba-

bility that network g is in force.
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such node position i and network g, and for each realization of ~σ, there will be a vector ~xi,g

that lists the action of each neighbor, depending on their degree in network g.

The Bayesian Nash equilibria can be represented simply as a (mixed) strategy profile ~σ∗,

where every agent i, depending on her degree ki, will choose an optimal strategy σ∗k, that

maximizes the individual expected payoff for agent i from (3).

Let φig(s|~σig) be the probability density function of s exactly for node i in network g when

the strategy profile of the i’s neighbors is ~σig. For an agent observing only her own degree k

the posterior distribution for the statistic s will be:

φk(s|~σ, P ) ≡
∑

g P (g) ·
∑

i∈Vk,g
φig(s|~σig)∑

g P (g) · vk,g
, (4)

Therefore, since the Bayesian updating based on the network structure is linear, the expected

value of s for an agent of degree k is

Ek(s|~σ, P ) =

∑
g P (g) ·

∑
i∈Vk,g

Eig (s|~σig)∑
g P (g) · vk,g

, (5)

where Eig (s|~σig) is the expected value of s for node i in network g and when the strategy

profile of the i’s neighbors is ~σig.

We call Φk(s|~σ, P ) the cumulative probability distribution on s from φk(s|~σ, P ). Then

Φk(s|~σ, P ) summarizes all the information provided by P (the network formation process)

and ~σ (the strategy profile). Finally the variance of s for an agent of degree k when the

strategy profile of the game is ~σ and the network formation process is P is denoted by

V ark(s|~σ, P )

Definitions: Given that the type of statistic s(.) affects the individual payoff and sub-

sequently the optimal individual behavior, through the network formation process P and

equilibrium strategy ~σ, we highlight its relevant characteristics.

Definition 1. Let P have degree independence. A statistic s is stable if for every ~σ and

k ∈ K\{n− 1} we have that Ek+1(s|~σ, P ) = Ek(s|~σ, P ).

Definition 2. Let P have degree independence. A statistic s is increasing (or decreasing)

if for every ~σ and k ∈ K\{n − 1} we have that Ek+1(s|~σ, P ) > Ek(s|~σ, P ) (or respectively,

if for every ~σ and k ∈ K\{n− 1} we have that Ek+1(s|~σ, P ) < Ek(s|~σ, P )).

Definition 3. Let P have degree independence. A statistic s is FOSD increasing (or FOSD

decreasing) if for every ~σ, k ∈ K\{n − 1} , and x ∈ R, we have that Φk+1(x|~σ, P ) ≤
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Φk(x|~σ, P ) (or respectively, if for every ~σ, k ∈ K\{n − 1} , and x ∈ R, we have that

Φk+1(x|~σ, P ) ≥ Φk(x|~σ, P )). We say that statistics s is strictly FOSD increasing (or de-

creasing) when all inequalities are stricty satisfied.

Definition 4. Let P have degree independence. A statistic s satisfies second order stochastic

dominance (SOSD): if for every ~σ and y ∈ R we have the following inequality:∫ y

−∞
Φk+1(x|~σ, P ) dx ≤

∫ y

−∞
Φk(x|~σ, P ) dx . (6)

The following two results could be useful to understand the meaning of the assumptions

made in our propositions.. First, it is directly verifiable tht a strictly FOSD increasing

statistic (Definition 3) implies an increasing one (Definition 2). Second, if s is stable and

satisfies SOSD (Definitions 1 and 4), then s is converging, in the sense that for every σ and

k ∈ K\{n− 1}, we have that V ark+1(s|~σ, P ) < V ark(s|~σ, P ) (we prove this in Appendix A

as a corollary to a lemma).

When P has degree independence, for any strategy profile ~σ, many standard statistics

as the mean, the median, or the sample variance, are both stable and converging. Still

under degree independence, examples of increasing and decreasing statistics are instead,

respectively, the maximum and the minimum (whenever the strategy profile ~σ is not the

same constant for each k ∈ K).4

3 Results

In this game context the existence of a symmetric Bayesian Nash equilibrium follows directly

from Kakutani fixed point theorem, as mixed equilibria on a compact set X form themselves

a convex compact set.

Our main result is about the characterization of Bayesian Nash equilibria in the case P has

degree independence.

Proposition 1. Let the network formation process P be characterized by degree indepen-

dence, then:

4Minimum and maximum contribution from neighbors relate respectively to weakest–link and best–shot
games, as introduced by Hirshleifer (1983) in a non–network context. NG and Boncinelli and Pin (2012)
discuss network best shot games, while classical weakest–link games are those related to contagion, as Galeotti
and Rogers (2013). On this see also the discussion in Jackson and Zenou (2014) about strategic complements
and strategic substitutes. We show in next Proposition 1, however, that a more important distinction is in
the monotonicity of the statistic.
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1. if s is stable and satisfies SOSD, then for any symmetric Bayesian Nash equilibrium σ∗,

(i) if fxss > 0 then σ∗ is FOSD decreasing, if (ii) fxss < 0 then σ∗ is FOSD increasing,

if finally (iii) fxss = 0 then σ∗k = σ∗k′ for each k, k′ ∈ K;

2. if s is FOSD increasing, then for any symmetric Bayesian Nash equilibrium σ∗, (i) if

fxs > 0 then σ∗ is FOSD increasing, if instead (ii) fxs < 0 then σ∗ is FOSD decreasing;

3. if s is FOSD decreasing, then for any symmetric Bayesian Nash equilibrium σ∗, (i) if

fxs > 0 then σ∗ is FOSD decreasing, if instead (ii) fxs < 0 then σ∗ is FOSD increasing.

The formal proof of Proposition 1 is in Appendix B, as all the proofs of following results.

Point (1) follows directly from a result that we show in Lemma 1 in Appendix A. The proof

of Points (2) and (3) is instead analogous to the proof of Proposition 2 in NG.

Note that the assumptions on the properties of statistic s are not so restrictive. Indeed

many of the statistics used in the literature of strategic interaction satisfy these assumption.

Ideally, we would like to take the less restrictive assumption of SOSD in points (2) and (3)

but it requires to have more assumptions on the shape of the function f .

From the analytical derivations obtained in the proofs, it is easy to extend our results

to the cases where P has not degree independence. In the literature on complex networks,

stemming from Newman (2002), a network exhibits degree assortativity or disassortativity,

depending on the sign of the Pearson degree of correlation between degrees in the network.

However, in NG this notion is related to the function that rules the network externalities of

the game (i.e. f), and they talk about positive or negative neighbour affiliation. To obtain

a general result, we also use an inequality that aggregates the function f that determines

payoffs with all the information that we have about the network structure and the statistics

from φk(y|~σ, P ).

Proposition 2. Consider the expected marginal profits given by quantity

Ek(fx|x, ~σ, P ) ≡
∫ ∞
−∞

fx (x, y) · φk(y|~σ, P ) dy (7)

(where fx is the derivative of f with respect to x).

We have the following:

1. if the quantity in (7) is strictly decreasing in k for any ~σ, then in every symmetric

Bayesian Nash equilibrium of the network game the optimal action σ∗k is FOSD de-

creasing in k;
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2. if instead the quantity in (7) is strictly increasing in k for any ~σ, then in every sym-

metric Bayesian Nash equilibrium of the network game the optimal action σ∗k is FOSD

increasing in k.

Proposition 2 provides a general check to see if there is monotonicity in the equilibrium

of the game. Figure 1 provides a visual interpretation of the argument in the proof, which is

classical: from the payoff function (1) the optimal response for a player is when marginal costs

(increasing by assumptions) intersect expected marginal profits (decreasing by assumption)

– so, if an increase/decrease in k has a monotonic effect on those expected marginal profits,

also the intersection point will move monotonically.

xk xk+1 

E( fx | k ) 

E( fx | k+1 ) 

cx 

Figure 1: Intuition for Proposition 2 when x∗(k) ≥ x∗(k + 1).

From the next example it is clear that the standard distinction between complements

and substitute is not enough to determine the characterization of equilibria.

Example 1. Consider P such that networks are undirected, nodes can have only degree 1

or 2, and they face ex–ante symmetric probability 0 < p < 1 to find all neighbors of the same

degree, and 1 − p of finding all neighbors of the other degree (so, when p → 1 we have a

network made almost only by circles and disconnected couples, as p decreases we have more
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and more triplets of nodes in a line). Consider for simplicity that nodes play symmetric pure

strategies y1, y2 ∈ X ⊆ R+, and that the statistic s is just the sum of neighbors’ actions.

Proposition 2 tells us that we need to consider the relation between

E1(fx|x, ~σ, P ) = pfx(x, y1) + (1− p)fx(x, y2)

and

E2(fx|x, ~σ, P ) = pfx(x, 2y2) + (1− p)fx(x, 2y1) .

Assume that 1/3 < p < 2/3, so that 2p > (1 − p) and 2(1 − p) > p. Assume also that

fx is increasing (complementarity between x and s) and convex (fxss > 0) in s, so that

fx(x, 2s)− fx(x, 0) > 2
(
fx(x, s)− fx(x, 0)

)
. Then, for any y1, y2 ≥ 0, the following holds

E2(fx|x, ~σ, P ) = p
(
fx(x, 2y2)− fx(x, 0)

)
+ (1− p)

(
fx(x, 2y1)− fx(x, 0)

)
+ fx(x, 0)

≥ 2p
(
fx(x, y2)− fx(x, 0)

)
+ 2(1− p)

(
fx(x, y1)− fx(x, 0)

)
+ fx(x, 0)

> (1− p)
(
fx(x, y2)− fx(x, 0)

)
+ p
(
fx(x, y1)− fx(x, 0)

)
+ fx(x, 0)

= E1(fx|x, ~σ, P )

So, according to Proposition 2, in every symmetric Bayesian Nash equilibrium of the network

game, optimal best responses are such that x∗1 < x∗2.

In the next section we discuss more in depth the relation between our result and those

in the previous literature.

4 Relation with previous literature

The results provided in Propositions 1 and 2 include all the cases that we are aware of in the

literature on Bayesian network games. In particular, they generalize those of NG in several

ways. First, they depend on whatever statistics that enters in the strategic interaction, and

on its relation with the game structure. Then, the classical distinction between substitutabil-

ity and complementarity holds only when the statistic is naturally monotonic, otherwise we

need to check for third cross-derivatives or for monotonicity of expected marginal profits.

Finally, even if all the results of Proposition 1 are proved in the case where the network

structure P has degree independence, Proposition 2 allows to extended them when some

degree assortativity/disassortativity of the network is present (and as Example 1 shows, it

may be possible only when this network bias is not too strong).
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So, what are the analogies with NG? Most of the results in that paper (from Proposition

2 on) are based on what they call Property A: if the statistic is applied to a new vector

obtained from the old one adding a null element, then the statistic provides the same value.5

Also, Property A alone is not enough to guarantee a monotonic equilibrium in the context of

our generalized model. The following example shows that if s is not monotonic with respect

to its arguments, we may not have monotonic equilibria. Then we show that, taking that

monotonicity into account, property A leads to the case of FOSD increasing statistics.

Example 2. Consider the case in which X = {0, 1}, with the statistic s defined on every

vector of at least two elements, as the difference between its two greatest elements. This

statistic clearly satisfies Property A from NG. Since X = {0, 1}, we have that s is 1 if and

only if there is one and only one element 1 in the vector, otherwise it is 0. Consider the case

of degree independence, so that the matching process is i.i.d.. So, if a fraction p of the nodes

play 1, then the probability that s is 1 is

pk = k · p(1− p)k−1 ,

which can be non–monotonic in k. Imagine that the degree distribution is such that a fraction

.15 of the nodes have degree 2, a fraction .7 have degree 3, and the remaining fraction .15

of nodes have degree 4. Utilities are of the form f(x, s) =
√
x+ s (a case of substitutes),

c(0) = 0 and c(1) = .75.

In this case there is an equilibrium in which nodes with degree 2 and 4 contributes with 1,

while nodes with degree 3 free–ride contributing 0. With this strategy profile p = .3, p2 = .42,

p3 = .441 and p4 = .4116. The expected net value of contributing is given by

∆k = pk

(√
2− 1

)
+ (1− pk) ,

and this is above .75 for k ∈ {2, 4}, but not for k = 3, proving that this strategy profile is an

equilibrium.

The following result provides the link between our formulation and the results from NG.

Proposition 3. Suppose that X ⊆ R+, and that 0 ∈ X . Then, if s is monotonic increasing

in all its arguments, and satisfies Property A from NG, then it is FOSD increasing.

Even if in the NG’s payoff function there is not an explicit statistic s but only a vector

of the neighbors’ actions, it is possible to check that the main results in NG are included in

point (2) of our Proposition 1.

5The easiest example of statistic that does not satisfy this property is the average.
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5 Conclusion

In many applications, externalities, peer effects, learning and/or strategic interactions be-

tween individuals adopting a specific action, can all be easily modeled as network games

between agents of a social networks. The network neighbors of a node are in one to one

correspondence with the peers of the individual, and the actions of those neighbors enter in

the payoff function of the individual. The way in which they do so can be the average, as

in most of peer effects framings or non–Bayesian learning models, the maximum, as in local

public goods games, or the minimum, as in vaccination games against the risk of pandemic

contagion. The existing literature points out the influence that the nature of this payoff

function, and in particular whether there is a complementarity or a substitute effect between

own action and the statistic on the actions of neighbors, has on the correlation between de-

gree in the network and action taken in equilibrium. However, in this paper we have shown

that in all the above cases it is as important to know also the nature of the statistics.

As an example, vaccination and acquisition of information are both activities with positive

externalities and the substitute property (i.e. the more my neighbors contribute the less I will,

in equilibrium). However, they differ in the statistic that affects payoffs. In the vaccination

case I am influenced by the minimum contribution in my neighborhood (it is a weakest–link

game), so that having more neighbors increases the probability of finding a non–vaccinated

one, and agents with higher degree will be more likely to vaccinate. In the information

acquisition case I am influenced by the neighbor who knows more (it is a best–shot game),

so that having more neighbors increases the probability of finding a well–informed one,

and agents with higher degree will be more likely to free ride and not acquire information

themselves.

We have also shown that when this statistic is not expected to increase or decrease with

the size of the neighbors sample, then it becomes important to look also at third order

derivatives of the payoff function. We believe that our results will turn out to be useful for

both theorists studying specific models, and for applied researchers studying the interactions

of economic agents.
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We extend results from utility theory (see e.g. section 4.2 in the notes from Levin 2006) to

our context with the following corollary.
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We define by φk(x) a bounded probability distribution function on R that depends on

k ∈ K, and we call Φk(x) its cumulative distribution. Following Definition 4, we say that

φk(x) satisfies second order stochastic dominance (SOSD) if for every y ∈ R we have:∫ y

−∞
Φk+1(x) dx ≤

∫ y

−∞
Φk(x) dx . (8)

Lemma 1. If statistic s is stable and satisfies SOSD, and u(·) is a positive valued concave

function, then ∫
u(s) · φk+1(s) ds ≥

∫
u(s) · φk(s) ds . (9)

If instead u(·) is a positive valued convex function, then∫
u(s) · φk+1(s) ds ≤

∫
u(s) · φk(s) ds . (10)

Proof: Let us start by assuming that φk(x) is stable and satisfies SOSD, and that u is

positive valued and concave, i.e. that u > 0 and uxx ≤ 0. Let us call I(x) ≡
∫ x

−∞Φk(y) dy)−∫ x

−∞Φk+1(y) dy, which is non–negative by inequality (8). Also, integrating by parts∫ x

−∞
Φk(y) dy = [y · Φk(y)]x−∞ −

∫ x

−∞
y dΦk(y)

Replacing into the expression for I(x) and taking its limit to∞, the stability of φk(x) implies

that

lim
x→∞

I(x) =

∫ ∞
−∞

y dΦk+1(y))−
∫ ∞
−∞

y dΦk(y) = 0 . (11)

Since I(x) is non–negative, also

−
∫ ∞
−∞

uxx(x)I(x)dx ≥ 0 (12)

Integrating by parts, the left hand side of expression (12) is equivalent to

[−ux(x) · I(x)]∞−∞ +

∫ ∞
−∞

ux(x)
(

Φk(x)− Φk+1(x)
)
dx (13)

By (11) the first term is equal to 0. Then again integrating by parts we get[
u(x)

(
Φk(x)− Φk+1(x)

)]∞
−∞
−
∫ ∞
−∞

u(x)
(
φk(x)− φk+1(x)

)
dx (14)

13



It is directly verifiable that the first term is equal to 0. Therefore inequality (12) can be

rewritten as:

−
∫ ∞
−∞

u(x)
(
φk(x)− φk+1(x)

)
dx ≥ 0 , (15)

so
∫
u(x)

(
φk(x)− φk+1(x)

)
dy is non–positive, which proves the statement. With the same

reasoning, the case in which u is positive valued and convex, i.e. that u > 0 and uxx ≥ 0,

leads to the reverse inequality.

Corollary 1. If statistic s is stable and satisfies SOSD, then V ark+1(s|σ, P ) < V ark(s|σ, P ).

Proof: We have that

V ark(s|σ, P ) =

∫
s2 · φk(s) ds− (Ek(s))2 .

So, when s is stable (E(s))2 remains constant, and since s2 is convex we get the result from

previous Lemma 1.

Lemma 2. If the statistic s is FOSD increasing, and u(·) is a positive valued non–decreasing

(non–increasing) function, then∫
u(s) · φk+1(s) ds ≥

(
≤ , respectively)

)∫
u(s) · φk(s)) ds . (16)

If the sample statistic s is FOSD decreasing, and u(·) is a positive non–decreasing (non–

increasing) function, then∫
u(s) · φk+1(s) ds ≤

(
≥ , respectively)

)∫
u(s) · φk(s)) ds . (17)

Proof: An equality found in previous proof is that∫ ∞
−∞

ux(x)
(

Φk(x)− Φk+1(x)
)
dy = −

∫ ∞
−∞

u(x)
(
φk(x)− φk+1(x)

)
dx

So, a sufficient condition to determine the sign of∫ ∞
−∞

u(x)
(
φk+1(x)− φk(x)

)
dx

is the sign of the integral in the left–hand side. When statistc s is FOSD increasing and

u(·) is non-decreasing (non-increasing) we have that
(

Φk(x)− Φk+1(x)
)
≥ 0 and ux(x) ≥ 0

14



(ux(x) ≤ 0) for every x so the integral on the left hand side is non-negative (non-positive).

The second part of the lemma is proved in similar way and it is omitted

Appendix B Proof of the Propositions

We use a reverse approach in proving our propositions. We first prove the technical result

of Proposition 2, and then we use it as a lemma to prove Proposition 1. Finally, we prove

Proposition 3.

Proof of Proposition 2 (page 7): Suppose that the quantity in (7) is strictly decreasing

in k. An agent with degree k compute expected first derivatives, in order to find x∗k that

satisfies first order conditions. That is

E

[
∂

∂x
f (x∗, s(~xi,g))

]
=

∂

∂x
c(x∗) ,

or equivalently ∫ ∞
−∞

fx (x∗, y) · φk(y|~σ, P )) dy = cx(x∗) .

Since fx and cx are both strictly positive, and they are both strictly monotone with different

sign, there is a unique x∗k ∈ R that satisfies the equality. If this x∗k ∈ X , then σ∗k = x∗k is a

pure strategy. However, this x∗k could not be an element of X . In this last case the optimal

σ∗k should play one of the two (possibly both), left–most x∗−k or rightmost x∗+k , elements of

X closest to x∗k in R. If x∗−k and x∗+k give different expected payoffs, then σ∗k would be a pure

strategy playing the best one of the two. Only in the case in which x∗−k and x∗+k give the

same payoff, then any randomization σ∗k between those two points would be an optimal best

response.

By assumption, for an agent with degree k + 1, we have that∫ ∞
−∞

fx (x∗, y) · φk+1(y|~σ, P )) dy < cx(x∗) . (18)

Left–hand part of (18) is decreasing in x, right–hand part is increasing, and then to

balance it back we need x∗k+1 < x∗k. Equality of best response strategies may hold only when

x∗k 6∈ X but not when σ∗k is a randomization between two points, because if the expected

payoff of x∗−k and x∗+k is the same for an agent with degree k, then x∗+k will provide a higher

payoff for for an agent with degree k + 1.

This proves that if the quantity in (7) is strictly decreasing in k, for every x ∈ X , then in
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every symmetric Bayesian Nash equilibrium of the network game the optimal action σ∗k is

FOSD decreasing in k.

The reverse inequality can be proved analogously.

Now we are ready to prove the main proposition.

Proof of Proposition 1 (page 6): Point 1. Let s be stable and converging. The derivative

with respect to xi of i’s expected payoff ∂
∂xi

Πe
k(xi, ~σ−i) =

∫∞
−∞ fx (x, s) · φk(s|~σ, P ) ds. If

fxss > 0 by Lemma 1 we have that the derivative is decreasing in k. Then, by Proposition

2, it directly follows that σ∗ is FOSD decreasing. If fxss < 0 by Lemma 1 we have that

the derivative is increasing in k. Then, by Proposition 2 directly follows that σ∗ is FOSD

increasing.

Point 2. Let s be FOSD increasing . The derivative with respect to xi of i’s expected

payoff ∂
∂xi

Πe
k(xi, ~σ−i) =

∫∞
−∞ fx (x, s) · φk(s|~σ, P ) ds. If fxs ≥ 0 by Lemma 2 we have that

the derivative is increasing in k. Then, by Proposition 2 directly follows that σ∗ is FOSD

increasing. If fxs ≤ 0 by Lemma 2 we have that the derivative is decreasing in k. Then, by

Proposition 2 directly follows that σ∗ is FOSD decreasing.

Point 3. Let s be FOSD decreasing . The derivative with respect to xi of i’s expected

payoff ∂
∂xi

Πe
k(xi, ~σ−i) =

∫∞
−∞ fx (x, s) · φk(s|~σ, P ) ds. If fxs ≥ 0 by Lemma 2 we have that

the derivative is decreasing in k. Then, by Proposition 2 directly follows that σ∗ is FOSD

decreasing. If fxs ≤ 0 by Lemma 2 we have that the derivative is increasing in k. Then, by

Proposition 2 directly follows that σ∗ is FOSD increasing.

Finally, we prove Proposition 3, that relates our result with those in NG.

Proof of Proposition 3 (page 10): For every y in R we have that

Φ[y|s, k] = Prob
[
~x ∈ X k : s(~x) ≤ y

]
,

and

Φ[y|s, k + 1] = Prob
[
~x ∈ X k+1 : s(~x) ≤ y

]
,

Consider the operator σ0 : X k+1 → X k+1 that takes a random element of ~x (with uniform

probabilities) and puts it to 0. Then, also E [s ◦ σ0(·)] is a statistic (as it is anonymous),

and by monotonicity of s it is always the case that s(~x) ≥ E [s ◦ σ0(~x)]. Note also that it
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is probabilistically the same to extract with uniform probabilities k elements, or to extract

k + 1 elements, and then remove randomly one of them. So, we have that for every y

Φ[y|s, k + 1] ≤ Φ[y|E [s ◦ σ0(·)] , k + 1] = Φ[y|s, k] ,

which proves the statement.
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