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1 Introduction

We propose a method of nonparametrically identifying and estimating cross section

regression models that contain an unobserved binary regressor, or equivalently an un-

observed random effect that can take on two values. No instruments or proxies for

the unobserved binary regressor are observed. Identification is obtained by assuming

that the regression function errors are symmetrically distributed. Moment conditions

are derived based on these assumptions, and are used to construct either an ordinary

generalized method of moments (GMM) estimator, or in the presence of covariates, a

nonparametric local GMM estimator for the model.

The symmetry of errors used for identification here can arise in a number of contexts.

Normal errors are of course symmetric, and normality arises in many models such as

those involving central limit theorems or Gibrat’s law. Differences of independently,

identically distributed errors (or more generally of exchangable errors) are symmetri-

cally distributed. See, e.g., proposition 1 of Honore (1992). So, e.g., two period panel

models with fixed effects will have errors that are symmetric after time differencing.

Our results could therefore be applied in a two period panel where individuals can have

an unobserved mean shift at any time (corresponding to the unobserved binary regres-

sor), fixed effects (which are differenced away) and exchangable remaining errors (which

yield symmetric errors after differencing). Below we give other more specific examples

of models with symmetric errors.

Ignoring covariates for the moment, suppose Y = h + V + U , where V and U are

independent mean zero random variables and h is a constant. The random V equals

either b0 or b1 with unknown probabilities p and 1 − p respectively, where p does not

equal a half, i.e., V is asymmetrically distributed. U is assumed to have a symmetric

distribution. We observe a sample of observations of the random variable Y , and so can

identify the marginal distribution of Y , but we do not observe h, V , or U .
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We first show that the constant h and the distributions of V and U are nonparamet-

rically identified just from observing Y . The only regularity assumption required is that

some higher moments of Y exist.

We also provide estimators for the distributions of V and U . We show that the

constant h, the probability mass function of V , moments of the distribution of U , and

points of the distribution function of U can all be estimated using GMM. Unlike common

deconvolution estimators that can converge at slow rates, we estimate the distributions

of V and U , and the density of U (if it is continuous) at the same rates of convergence

as if V and U were separately observed, instead of just observing their sum.

We do not assume that the supports of V or U are known, so estimation of the

distribution of V means identifying and estimating both of its support points b0 and b1,

as well as the probabilities p and 1− p, respectively, of V equaling b0 or b1.

To illustrate these results, we empirically apply them to the world economy conver-

gence question of whether less developed economies are catching up with the economies

of richer countries over time. Cross country GDP data in different time periods are used

in this application, where p in each time period is an estimate of the fraction of countries

that are poor, b1− b0 provides a measure of the average difference in GDP between rich

and poor countries, and the variance of U is a measure of the dispersion of countries

within each group. Decreases in these numbers over time would indicate different forms

of income convergence. A feature of these estimates is that they do not require an a

priori definition of poor vs. rich, or any assignment of individual countries into the rich

or poor groups.

The remainder of the paper then describes how these results can be extended to

allow for covariates. If h depends on X while V and U are independent of X, then we

obtain the random effects regression model Y = h (X) + V + U , which is popular for

panel data, but which we identify and estimate just from cross section data.
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More generally, we allow both h and the distributions of V and U to depend on X.

This is equivalent to nonparametric identification and estimation of a regression model

containing an unobserved binary regressor. The regression model is Y = g(X, D∗) + U ,

where g is an unknown function, D∗ is an unobserved binary regressor that equals zero

with unknown probability p (X) and one with probability 1− p(X), and U is a random

error with an unknown symmetric mean zero conditional distribution FU (U | X). The

unobserved random variables U and D∗ are conditionally independent, conditioning upon

X. By defining h (x) = E (Y | X = x) = E [g(X, D∗) | X = x], V = g(X,D∗) − h(X)

and U = Y −h (X)−V , this regression model can then be rewritten as Y = h (X)+V +U ,

where h (x) is a nonparametric regression function of Y on X, and the two support points

of V conditional on X = x are then bd (x) = g(x, d)− h(x) for d = 0, 1.

The assumptions this regression model imposes on its error term U are standard,

e.g., they hold if the error U is normal, and allow for the error U to be heteroskedastic

with respect to X. Also, measurement errors are often assumed to be symmetric and U

may be interpreted as measurement error in Y .

One possible application of these extensions is a stochastic frontier model, where Y

is the log of a firm’s output, X are factors of production, and D∗ indicates whether

the firm operates efficiently at the frontier, or inefficiently. Existing stochastic frontier

models obtain identification either by assuming parametric functional forms for both the

distributions of V and U , or by using panel data and assuming that each firm’s individual

efficiency level is a fixed effect that is constant over time. See, e.g., Kumbhakar et. al.

(2007) and Simar and Wilson (2007). In contrast, with our model one could estimate

a nonparametric stochastic frontier model using cross section data, given the restriction

that unobserved efficiency is indexed by a binary D∗.

Another potential class of applications is where individuals are randomly assigned

some treatment D∗, perhaps by a natural experiment, but in our data we do not ob-
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serve who was treated and who wasn’t. Assuming that treatment only induces a mean

shift in outcomes, we would still be able to identify the probability of treatment and

the difference in mean outcomes between treated and untreated in this context. If we

have panel data (two periods of observations) and all treatments occur in one of the

two periods, then as noted above the required symmetry of U errors would result auto-

matically from time differencing the data, given the standard panel model assumption

of individual specific fixed effects plus independently, identically distributed (or more

generally exchangable) errors.

Dong (2008) estimates a model where Y = h (X) + V + U , and applies her results

to data where Y is alcohol consumption, and the binary V is an unobserved indicator

of health consciousness. Our results formally prove identification of Dong’s model, and

our estimator is more general in that it allows V and the distribution of U to depend

in arbitrary ways on X. Hu and Lewbel (2007) also identify some features of a model

containing an unobserved binary regressor. They employ two identification strategies,

both of which differ from ours. One of their strategies uses a type of instrumental

variable, while the other exploits an assumption of conditional independence of low

order moments, including homoskedasticity. They also use different estimators from

ours, and the type of applications they focus on are also different.

Models that allocate individuals into various types, as D∗ does, are common in

the statistics and marketing literatures. Examples include cluster analysis, latent class

analysis, and mixture models (see, e.g., Clogg 1995 and Hagenaars and McCutcheon

2002). Our model resembles a (restricted) finite mixture model, but differs crucially in

that, for identification, finite mixture models require the distributions being mixed to be

parametrically specified, while in our model U is nonparametric. While mixture models

are more flexible than ours in allowing more than two groups, and for U to vary across

groups, ours is more flexible in allowing U to be nonparametric, essentially allowing for
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an infinite number of parameters versus finitely parameterized mixtures.

Also related is the literature on mismeasured binary regressors, where identification

generally requires instruments. An exception is Chen, Hu and Lewbel (2008). Like

our Theorem 1 below, they exploit error symmetry for identification, but unlike this

paper they assume that the binary regressor is observed, though with some measurement

(classification) error, instead of being completely unobserved. A more closely related

result is Heckman and Robb (1985), who like us use zero low order odd moments to

identify a binary effect, though their’s is a restricted effect that is strictly nested in our

results. Error symmetry has also been used to obtain identification in a variety of other

econometric contexts, e.g., Powell (1986).

There are a few common ways of identifying the distributions of random variables

given just their sum. One method of identification assumes that the exact distribution

of one of the two errors is known a priori, (e.g., from a validation sample as is common in

the statistics literature on measurement error; see, e.g., Carroll, et. al. 2006) and using

deconvolution to obtain the distribution of the other one. For example, if U were normal,

one would need to know a priori its mean and variance to estimate the distribution of V .

A second standard way to obtain identification is to parameterize both the distributions

of V and U , as in most of the latent class literature or in the stochastic frontier literature

(see, e.g., Kumbhakar and Lovell 2000) where a typical parameterization is to have V

be log normal and U be normal. Panel data models often have errors of the form V + U

that are identified either by imposing specific error structures or assuming one of the

errors is fixed over time (see, e.g., Baltagi 2008 for a survey of random effects and

fixed effects panel data models). Past nonparametric stochastic frontier models have

similarly required panel data for identification, as described above. In contrast to all

these identification methods, in our model both U and V have unknown distributions,

and no panel data are required.
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The next section contains our main identification result. We then provide moment

conditions for estimating the model, including the distribution of V (its support points

and the associated probability mass function), using ordinary GMM. Next we provide

estimators for the distribution and density function of U . We empirically apply these

results to estimating features of the distribution of per capita GDP across countries

and use the results to examine the convergence hypothesis. This is followed by some

extensions showing how our identification and estimation methods can be augmented to

provide additional moments for estimation, and to allow for covariates.

2 Identification

In this section, we first prove a general result about identification of the distribution of

two variables given only their sum, and then apply it. Later we extend these results to

including regressors X.

ASSUMPTION A1: Assume the distribution of V is mean zero, asymmetric, and

has exactly two points of support. Assume E
(
Ud | V

)
= E

(
Ud

)
exists for all positive

integers d ≤ 9, and E
(
U2d−1

)
= 0 for all positive integers d ≤ 5.

THEOREM 1: Let Assumption A1 hold, and assume the distribution of Y is identi-

fied, where Y = h + V + U . Then the constant h and the distributions of U and V are

identified.

The proof of Theorem 1 is in the Appendix. Assumption A1 says that the first nine

moments of U conditional on V are the same as the moments that would arise if U

were distributed symmetrically and independent of V . Given symmetry of U and an

asymmetric, independent, two valued V , by Assumption A1 the only regularity condition

required for Theorem 1 is existence of E (Y 9).
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It can be readily shown using the method of proof in Theorem 1 that the parameters

defining the distribution of V are generically locally identified using just a few low

order moments of Y . Higher moments going up to the ninth moment are required only

to distinguish amongst a small number of multiple roots and thereby provide global

identification.

Let b0 and b1 denote the two support points of the distribution of V , where without

loss of generality b0 < b1, and let p be the probability that V = b0, so 1 − p is the

probability that V = b1. Note that Theorem 1 assumes asymmetry of V (since otherwise

it would be indistinguishable from U) and hence requires p 6= 1/2. This suggests that

the identification and associated estimation will be weak if the actual p is close to 1/2.

In practice, it would be easy to tell if this problem exists, because if it does then the

observed Y will itself be close to symmetrically distributed. Applying a formal test of

data symmetry such as Ahmed and Li (1997) to the Y data is equivalent in our model

to testing if p = 1/2.

We next consider estimation of h, b0, b1, and p, and then later show how the rest of

the model, i.e., the distribution function of U , can be estimated.

3 Estimation

Our estimator will take the form of the standard Generalized Method of Moments

(GMM, as in Hansen 1982), since given data Y1,...Yn, we will below construct a set

of moments of the form E [G (Y, θ)] = 0, where G is a set of known functions and the

vector θ consists of the parameters interest h, b0, p, as well as u2, u4, and u6, where

ud = E
(
Ud

)
. The parameters u2, u4, and u6 are nuisance parameters for estimating the

V distribution, but in some applications they may be of interest as summary measures

of the distribution of U .
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Let vd = E
(
V d

)
. Then v1 = E (V ) = b0p + b1 (1− p) = 0, so

b1 =
b0p

p− 1
, (1)

and therefore,

vd = E
(
V d

)
= bd

0p +

(
b0p

p− 1

)d

(1− p) . (2)

Now expand the expression E
[
(Y − h)d − (V + U)d

]
= 0 for integers d, noting by As-

sumption A1 that the first five odd moments of U are zero. The results are

E (Y − h) = 0 (3)

E
(
(Y − h)2 − (v2 + u2)

)
= 0 (4)

E
(
(Y − h)3 − v3

)
= 0 (5)

E
(
(Y − h)4 − (v4 + 6v2u2 + u4)

)
= 0 (6)

E
(
(Y − h)5 − (v5 + 10v3u2)

)
= 0 (7)

E
(
(Y − h)6 − (v6 + 15v4u2 + 15v2u4 + u6)

)
= 0 (8)

E
(
(Y − h)7 − (v7 + 21v5u2 + 35v3u4)

)
= 0 (9)

E
(
(Y − h)9 − (v9 + 36v7u2 + 126v5u4 + 84v3u6)

)
= 0 (10)

Substituting equation (2) into equations (3) to (10) gives eight moments we can

write as E [G (Y, θ)] = 0 in the six unknown parameters θ = (h, b0, p, u2, u4, u6),

which we use for estimation via GMM. The proof of Theorem 1 shows that these eight

equations uniquely identify these parameters. As shown in the proof, more equations

than unknowns are required for global identification because of the nonlinearity of these
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equations, and in particular the presence of multiple roots. Given an estimate of θ, the

estimate of b1 is then obtained by equation (1).

Based on Theorem 1, for this estimator we assume that Y1, ...,Yn are identically

distributed (or more precisely, have identical first nine moments), however, the Y ob-

servations do not need to be independent, since GMM estimation theory permits some

serial dependence in the data. To save space we do not write out detailed assumptions

and associated limiting distribution theory for our estimator, because they are com-

pletely standard. Textbook GMM limiting distribution theory applied to our moments

provides root n consistent, asymptotically normal estimates of θ and hence of h and of

the distribution of V , (i.e., the support points b0 and b1 and the probability p, where b̂1

is obtained by b̂1 = b̂0p̂/ (p̂− 1) from equation 1). In a free normalization, we assume

b0 < b1 (if this is violated then the definitions of these two parameters can be switched

to make the inequality hold). This along with E (V ) = 0 implies that b̂0 is negative and

b̂1 is positive, which may be imposed on estimation.

One might anticipate poor empirical results, and extreme sensitivity to outliers,

given the use of such high order moments for estimation. However, we found that these

problems did not arise in our empirical application, as long as Y was scaled appropriately

(to avoid the effects of computer rounding errors based on inverting matrix entries of

varying orders of magnitude). We believe the reason is that local identification and

associated estimates primarily derives from the low order moments. The high order

moments are only needed for global identification to distinguish between a few possible

multiple solutions of the low order polynomials. So, e.g., if low order moments identify a

parameter up to, say, two values, one positive and one negative, then substantial effects

of outliers on estimated higher moments will not matter much if the high moments are

only needed to distinguish between a positive mean and a negative mean.

In an extension section we describe how additional moments can be constructed for
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estimation based on symmetry of U . These alternative moments could be employed in

applications where the polynomial based moments are found to be problematic. Another

possibility would be to remove outliers from the Y data prior to estimation (which can

be interpreted as robustifying higher moment estimates), though we found this to be

unnecessary in our empirical application.

4 The Distribution of U

As noted in the proof of Theorem 1, once the distribution of V is recovered, then

the distribution of U is identified by a deconvolution, in particular we have that the

characteristic function of U is identified by E
(
eiτU

)
= E

(
eiτ(Y−h)

)
/E

(
eiτV

)
, where

i denotes the square root of −1. However, under the assumption that U is symmet-

rically distributed, the following theorem provides a more convenient way to estimate

the distribution function of U . For any random variable Z, let FZ denote the marginal

cumulative distribution function of Z. Also define ε = V + U and define

Ψ (u) =
[Fε (−u + b0)− 1] p + Fε (u + b1) (1− p)

1− 2p
. (11)

THEOREM 2: Let Assumption A1 hold. Assume U is symmetrically distributed.

Then

FU (u) =
Ψ (u)−Ψ (−u) + 1

2
. (12)

Theorem 2 provides a direct expression for the distribution of U in terms of b0, b1,

p and the distribution of ε, all of which are previously identified. This can be used to

construct an estimator for FU (u) as follows.

Let I (·) denote the indicator function that equals one if · is true and zero otherwise,
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and let θ be a vector containing h, b0, b1, and p. Define the function ω (Y, u, θ) by

ω (Y, u, θ) =
[I (Y ≤ h− u + b0)− 1] p + I (Y ≤ h + u + b1) (1− p)

1− 2p
. (13)

Then using Y = h + ε it follows immediately from equation (11) that

Ψ (u) = E (ω (Y, u, θ)) . (14)

An estimator for FU (u) can now be constructed by replacing the parameters in equation

(14) with estimates, replacing the expectation with a sample average, and plugging the

result into equation (12). The resulting estimator is

F̂U (u) =
1

n

n∑

i=1

ω
(
Yi, u, θ̂

)
− ω

(
Yi,−u, θ̂

)
+ 1

2
. (15)

Alternatively, FU (u) for a finite number of values of u, say u1, ..., uJ , can be estimated

as follows. Recall that E [G (Y, θ)] = 0 was used to estimate the parameters h, b0, b1, p

by GMM. For notational convenience, let ηj = FU (uj) for each uj. Then by equations

(12) and (14),

E

[
ηj −

ω (Y, uj, θ)− ω (Y, uj, θ) + 1

2

]
= 0. (16)

Adding equation (16) for j = 1, ..., J to the set of functions defining G, including η1, ..., ηJ

in the vector θ, and then applying GMM to this augmented set of moment conditions

E [G (Y, θ)] = 0 simultaneously yields root n consistent, asymptotically normal estimates

of h, b0, b1, p and ηj = FU (uj) for j = 1, ..., J . An advantage of this approach versus

equation (15) is that GMM limiting distribution theory then provides standard error

estimates for each F̂U (uj).

While p is the unconditional probability that V = b0, given F̂U it is straightforward
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to estimate conditional probabilities as well. In particular,

Pr (V = b0 | Y ≤ y) = Pr (V = b0, Y ≤ y) / Pr (Y ≤ y)

= FU (y − h− b0) /Fy (y)

which could be estimated as F̂U

(
y − ĥ− b̂0

)
/F̂y (y) where F̂y is the empirical distribu-

tion of Y .

Let fZ denote the probability density function of any continuously distributed ran-

dom variable Z. So far no assumption has been made about whether U is continuous or

discrete. However, if U is continuous, then ε and Y are also continuous, and then taking

the derivative of equations (11) and (12) with respect to u gives

ψ (u) =
−fε (−u + b0) p + fε (u + b1) (1− p)

1− 2p
, fU (u) =

ψ (u) + ψ (−u)

2
, (17)

which suggests the estimators

ψ̂ (u) =
−f̂ε

(
−u + b̂0

)
p̂ + f̂ε

(
u + b̂1

)
(1− p̂)

1− 2p̂
, (18)

f̂U (u) =
ψ̂ (u) + ψ̂ (−u)

2
, (19)

where f̂ε (ε) is a kernel density or other estimator of fε (ε), constructed using data

ε̂i = Yi−ĥ for i = 1, ...n. Since densities converge at slower than rate root n, the limiting

distribution of this estimator will be the same as if ĥ, b̂0, b̂1, and p̂ were evaluated at

their true values. The above f̂U (u) is just the weighted sum of kernel density estimators,

each one dimensional, and so under standard regularity conditions will converge at the

optimal one dimensional pointwise rate n2/5. It is possible for f̂U (u) to be negative in
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finite samples, so if desired one could replace negative values of f̂U (u) with zero.

A potential numerical problem is that equation (18) may require evaluting f̂ε at a

value that is outside the range of observed values of ε̂i. Since both ψ̂ (u) and ψ̂ (−u)

are consistent estimators of f̂U (u) (though generally less precise than equation (19)

because they individually ignore the symmetry constraint), one could use either ψ̂ (u) or

ψ̂ (−u) instead of their average to estimate f̂U (u) whenever ψ̂ (−u) or ψ̂ (u), respectively,

requires evaluating f̂ε at a point outside the the range of observed values of ε̂i.

This construction also suggests a specification test for the model. Since symmetry of

U implies that ψ̂ (u) = ψ̂ (−u) one could base a test on whether
∫ L
0

[
ψ̂ (u)− ψ̂ (−u)

]2
w (u) du =

0, where w (u) is a weighting function that integrates to one, and L is in the range of

values for which neither ψ̂ (−u) nor ψ̂ (u) requires evaluating f̂ε at a point outside the

the range of observed values of ε̂i. The limiting distribution theory for this type of test

statistic (a degenerate U statistic under the null) based on functions of kernel densities

is standard, and in this case would closely resemble Ahmed and Li (1997).

5 A Parametric U Comparison

It might be useful to construct parametric estimates of the model, which could for

example provide reasonable starting values for the GMM estimation. The parametric

model we propose for comparison assumes that U is normal with mean zero and standard

deviation s.

When U is normal the distribution of Y is finitely parameterized, and so can be

estimated directly by maximum likelihood. The log likelihood function is given by

n∑

i=1

ln




p

s
√

2π
exp


−1

2

(
Yi − h− b0

s

)2

 +

1− p

s
√

2π
exp


−1

2


Yi − h− b0p

p−1

s




2




 . (20)
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Maximizing this log likelihood function provides estimates of h, b0, p, and s. As before,

an estimate of b1 would be given by b̂1 = b̂0p̂/ (p̂− 1). Further, if U is normal then

u2 = s2, u4 = 3s2, and u6 = 15s2. These estimates can be compared to the GMM

estimates, which should be the same if the true distribution of U is indeed normal.

6 An Empirical Application: World Income Distri-

bution

A large literature exists regarding the distribution of income across countries, much

of which deals with the question of convergence, that is, whether poorer countries are

catching up with richer countries as a result of increases in globalization of trade and

diffusion of technology.

To measure the extent of convergence, if any, we propose a simple descriptive model of

the income distribution across countries. Assume that there exist two types of countries,

i.e., poor versus rich, or less developed versus more developed countries. Let Iti denote

the per capita income or GDP of country i in time t, and define Yti to be either income

levels Yti = Iti, or income shares Yti = Iti/ (
∑n

i=1 Iti). Assume that a poor country’s

income in year t is given by Yti = gt0 + Uti, while that of a wealthy country is given by

Yti = gt1 +Uti, where gt0 and gt1 are the mean income levels or mean shares for poor and

rich countries, respectively, and Uti is an individual country’s deviation from its group

mean. Here Uti embodies both the relative ranking of country i within its (poor or rich)

group, and may also include possible measurement errors in Yti. We assume that the

distribution of Uti is symmetric and mean zero with a probability density function ftu.

Let ht = Et (Y ) be the mean income or income share for the whole population of

countries in year t. Then the income measure for country i in year t can be written as

Yti = ht +Vti +Uti, where Vti is the deviation of rich or poor countries’ group mean from
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the grand mean ht. Then Vti equals bt0 = gt0 − ht with probability pt and Vti equals

bt1 = gt1 − ht with probability 1 − pt, so pt is the fraction of countries that are in the

poor group in year t, and bt1 − bt0 is the difference in mean income or income shares

between poor and wealthy countries.

Objections can be easily raised to this simplistic model, e.g., that other indicators

in addition to income exist for grouping countries, that countries could be divided into

more than two groups, and that there is not a strong economic argument for why the

distribution of incomes around group means should be symmetric and the same for both

groups. One could respond that it is common to dichotomize the world into groups

of rich (well developed) and poor (less developed) countries, that Gibrat’s law within

groups could generate the required symmetry, and that the shape of the world income

distribution suggests at least rough appropriateness of the model (including possible

bimodality of Y with estimates of the U distribution close to normal). Still, given these

valid concerns, we interpret our model as primarily descriptive rather than structural.

Our main goal is to verify that the polynomial moments we use for identification and

estimation can produce reasonable estimates with real data and small sample sizes.

Though simple, our model provides measures of a few different possible types of

convergence. Having pt decrease over time would indicate that on average countries are

leaving the poor group and joining the set of wealthy nations. A finding that bt1 − bt0

decreases over time would mean that the differences between rich and poor nations are

diminishing, and a finding that the spread (e.g. the variance) of the density ftu decreases

over time would mean that there is convergence within but not necessarily across the

poor and rich groups.

A feature of this model is that it does not require arbitrarily choosing a threshold

level of Y to demarcate the line between rich and poor countries, and so avoids this

potential source of misspecification. This model also allows for the possibility that a
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poor country has higher income than some wealthy country in a given time period due

to random factors (e.g., natural disaster in a wealthy country i, implying a low draw of

Uti in time t). More generally, the model does not require specifying or estimating the

group to which each country belongs.

Bianchi (1997) applies bimodality tests to the distribution of income across countries

over time, to address questions regarding evidence for convergence. Bimodality versus

unimodality of Y might be interpreted as evidence in favor of a ‘two group’ model,

though note that even if U is unimodal, e.g., normal, then Y can be either unimodal or

bimodal (with possibly large differences in the heights of the two modes), depending on

p and on the magnitudes of b0 and b1. The density for Y can also be quite skewed, even

though U is symmetric.

For comparison we apply our model using the same data as Bianchi, which consists of

Iit defined as annual per capita GDP in constant U.S. dollars for 119 countries, measured

in 1970, 1980 and 1989.

Table 1: Estimates based on the GDP per capita level data (in 10,000 1985 dollars)

p b0 b1 b1-b0 h u2 u4 u6

1970
GMM .8575 -.1105 .6648 .7753 .3214 .0221 .0001$ .0024

(.0352) (.0244) (.0664) (.0590) (.0284) (.0042) (.0002) (.0009)
MLE .8098 -.1334 .5679 .7013 .3213 .0199

(.0362) (.0260) (.0487) (.0477) (.0280) (.0031)

1980
GMM .8081 -.1722 .7252 .8974 .4223 .0294 .0016 .0017∗

(.0371) (.0322) (.0579) (.0491) (.0351) (.0043) (.0004) (.0007)
MLE .8070 -.1692 .7077 .8769 .4222 .0350

(.0393) (.0345) (.0600) (.0544) (.0372) (.0048)

1989
GMM .8125 -.2114 .9159 1.1273 .4804 .0384 .0051 .0028$

(.0380) (.0424) (.1022) (.1111) (.0439) (.0118) (.0104) (.0448)
MLE .7948 -.2192 .8491 1.0683 .4805 .0489

(.0393) (.0413) (.0754) (.0679) (.0441) (.0076)

Note: $ not significant; ∗ significant at the 5% level; all the others are significant at the 1% level.
Standard errors are in parentheses.
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Table 2: Estimates based on the scaled GDP per capita share data

p b0 b1 b1-b0 h u2 u4 u6

1970
GMM .8619 -.1392 .8682 1.0074 .4206 .0417 .0039$ .0057$

(.0361) (.0332) (.1009) (.0985) (.0380) (.0089) (.0068) (.0063)
MLE .8098 -.1744 .7425 .9169 .4202 .0340

(.0383) (.0352) (.0670) (.0629) (.0377) (.0053)

1980
GMM .8080 -.1715 .7217 .8932 .4202 .0291 .0016 .0017

(.0374) (.0334) (.0560) (.0497) (.0364) (.0041) (.0004) (.0006)
MLE .8070 -.1684 .7043 .8727 .4202 .0347

(.0373) (.0322) (.0570) (.0508) (.0353) (.0045)

1989
GMM .8117 -.1848 .7964 .9812 .4203 .0316 .0023 .0020∗

(.0360) (.0344) (.0609) (.0518) (.0388) (.0049) (.0007) (.0009)
MLE .7948 -.1916 .7424 .934 .4202 .0374

(.0387) (.0355) (.0655) (.0589) (.0395) (.0058)

Note: $ not significant; ∗significant at the 5% level; all the others are significant at the 1% level.
Standard errors are in parentheses.

For each of the three years of data we provide two different estimates, labeled GMM

and MLE in Tables 1 and 2. GMM is based on the identifying polynomial moments

(3) to (10) (after substituting in equation (2)), while MLE is a maximum likelihood

estimator that maximizes (20) assuming that U is normal.

Table 1 reports results based on per capita levels, Yti = Iti/10, 000, while Table 2 is

based on scaled shares, Yti = 50Iti/ (
∑n

i=1 Iti). We scale by 10,000 in Table 1 and by 50 in

Table 2 to put the Yti data in a range between zero and two in each case. These scalings

are theoretically irrelevant, but in practice help ensure that the matrices involved in

estimation (particularly the high order polynomial terms in the estimated second stage

GMM weighting matrix) are numerically well conditioned despite computer round off

error.

In both Tables 1 and 2, and in all three years, the GMM and maximum likelihood

estimates are roughly comparable, for the most part lying within about 10% of each

other. Looking across years, both Tables tell similar stories in terms of percentages of
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poor countries. Using either levels or shares, by GMM p is close to .86 in 1970, and

close to .81 in 1980 and 1989, showing a decline in the number of poor countries in the

1970’s, but no further decline in the 1980’s. In contrast, MLE shows p close to .81 in

all years. The average difference between rich and poor, b1 − b0, increases steadily over

time in the levels data, but this may be due in part to the growth of average income

over time, given by h. Share data scales out this income growth over time. Estimates

based on shares in Table 2 show that b1− b0 decreased by a small amount in the 1970’s,

but then increased again in the 1980’s, so by this measure there is no clear evidence of

convergence or divergence.
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Figure 1: The estimated probability density function of U , using 1970 share data

Figure 1 shows f̂u, the estimated density of U , given by equation (19) using the

GMM estimates from Table 2 in 1970. Graphs of other years are very similar, so to save

space we do not include them here. This estimated density is compared to a normal

density with the same mode, f̂u (0). It follows that this normal density has standard

deviation (2π)−1/2
[
f̂u (0)

]−1
. With the same central tendency given by construction,

these two densities can be compared for differences in dispersion and tail behaviors.

As Figure 1 shows, the semiparametric f̂u matches the normal density rather closely
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except near the tails of its distribution where data are sparse. Also shown in Figure 1

is the maximum likelihood estimate of fu, which assumes U is normal. Although close

to normal in shape, the semiparametric f̂u appears to have a larger variance than the

maximum likelihood estimate. The graphs of f̂u in other years are very similar, and they

along with the variance estimates in Table 2 show no systematic trends in the dispersion

of U over time, and hence no evidence of income convergence within groups of rich or

poor countries.

In this analysis of U , note that Y is by construction nonnegative so U cannot literally

be normal; however, the value of U where Y = h + V + U crosses zero is far out in the

left tail of the U distribution (beyond the values graphed in Figure 1), so imposing the

constraint on U that Y be nonnegative (e.g., making the parametric comparison U a

truncated normal) would have no discernable impact on the resulting estimates.

In addition to levels Iti and shares Iti/ (
∑n

i=1 Iti), Bianchi (1997) also considers logged

data, but finds that the log transformation changes the shape of the Yti distribution in

a way that obscures bimodality. We found similar results, in that with logged data our

model yields estimates of p close to .5, which is basically ruled out by our model, as

p = .5 would make V be symmetric and hence unidentifiable relative to U . As noted

earlier, one can readily tell a priori if p is close to .5, because this can happen only if

the observed Y distribution is itself close to symmetric.

7 Extension 1: Alternative Moments For Estima-

tion

Here we provide additional moments that may be used for estimating the parameters h,

b0, b1 and p.
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COROLLARY 1: Let Assumption A1 hold. Assume U is symmetrically distributed

and is independent of V . Assume E [exp (TU)] exists for some positive constant T . Then

for any positive τ ≤ T there exists a constant ατ such that the following two equations

hold:

E

[
exp (τ (Y − h))−

(
p exp (τb0) + (1− p) exp

(
τb0p

p− 1

))
ατ

]
= 0 (21)

E

[
exp (−τ (Y − h))−

(
p exp (−τb0) + (1− p) exp

(−τb0p

p− 1

))
ατ

]
= 0 (22)

Given a set of L positive values for τ , i.e., constants τ 1,...,τL, each of which are less

than T , equations (21) and (22) provide 2L moment conditions satisfied by the set of

L + 3 parameters τ 1,..., τL, h, p, and b0. Although the order condition for identification

is therefore satisfied with L ≥ 3, we do not have a proof analogous to Theorem 1 showing

that the parameters are actually globally identified based on any number these moments.

Note also that Corollary 1 is based on means of exponents, and so requires Y to have

a thinner tailed distribution than estimation based on the polynomial equations (3) to

(10).

In theory, parameter estimates based on GMM just using the moments given by

equations (3), (21) and (22) for various value of τ might not be globally identified, and

hence if these moments are used they should in theory only be employed along with

the polynomial based moments to improve efficiency. However, in some simulations (see

also Dong 2008) we found that estimation based just on moments in Corollary 1, letting

τ 1,...,τL be about a dozen equally spaced values between 1 and 2.5, yielded estimates that

were both reasonable and similar to those based on the identified polynomial moments.

Corollary 1 actually provides a continuum of moments, so rather than just choose

a finite number of values for τ , it would also be possible to efficiently combine all the

moments given by an interval of values of τ using, e.g., Carrasco and Florens (2000).
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8 Extension 2: h depends on covariates

We now extend our results by permitting h to depend on covariates X. Estimators

associated with this extension will take the form of standard two step estimators with a

uniformly consistent first step.

COROLLARY 2: Assume the conditional distribution of Y given X is identified and

its mean exists. Let Y = h (X)+V +U . Let Assumption A1 hold. Assume V and U are

independent of X. Then the function h (X) and distributions of U and V are identified.

Corollary 2 extends Theorem 1 by allowing the conditional mean of Y to nonparamet-

rically depend on X. Given the assumptions of Corollary 2, it follows immediately that

equations (3) to (10) hold replacing h with h (X), and if U is symmetrically distributed

and independent of V and X then equations (21) and (22) also hold replacing h with

h (X). This suggests a couple of ways of extending the GMM estimators of the previous

section. One method is to first estimate h (X) by a uniformly consistent nonparametric

mean regression of Y on X (e.g., a kernel regression), then replace Y −h in equations (3)

to (10) and/or equations (21) and (22) with ε = Y − h (X), and apply ordinary GMM

to the resulting moment conditions (using as data ε̂i = Yi − ĥ (Xi) for i = 1, ..., n) to

estimate the parameters b0, b1, p, u2, u4, and u6. Consistency of this estimator follows

immediately from the uniform consistency of ĥ and ordinary consistency of GMM. This

estimator is easy to implement because it only depends on ordinary nonparametric re-

gression and ordinary GMM. Root n limiting distribution theory may be immediately

obtained by applying generic two step estimation theorems as in Newey and McFadden

(1994).

An alternative estimator is to note that, given the assumptions of Corollary 2, equa-

tions (3) to (10) and/or equations (21) and (22) (the latter assuming symmetry and
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independence of U) hold by replacing h with h (X) and replacing the unconditional

expectations in these equations with conditional expectations, conditioning on X = x.

The resulting set of equations can be written as E [G (Y, θ, h (X)) | X = x] = 0 where G

is a set of known functions and θ is the vector of parameters b0, b1, p, and also includes

u2, u4, and u6 if equations (4) to (10) (after substituting in equation (2)) are included

in the set of moments G, or includes τ 1,...,τL if equations (21) and (22) are used. This

is now in the form of conditional GMM given by Ai and Chen (2003), who provide a

sieve estimator and associated limiting distribution theory. This is also in the form of

the local GMM of Lewbel (2008), which may be applied as described in the next section

and the Appendix.

After replacing ĥ with ĥ (Xi), equation (15) can be used to estimate the distribution

of U , or alternatively equation (16) for j = 1, ..., J , replacing h with h (X), can be

included in the set of functions defining G in the estimated described above. Since ε has

the same properties here as before, the estimator (19) will still work for estimating the

density of U if it is continuous, using as data ε̂i = Yi− ĥ (Xi) for i = 1, ..., n to estimate

the density function fε.

If desired, this model can be easily compared to a semiparametric specification where

U is normal while h (X) is unknown. In this case the first step would still be to construct

an estimate ĥ (X) by a nonparametric regression of Y on X, and then Yi − h in the

likelihood function (20) would be replaced by Yi− ĥ (Xi) and the result maximized over

b0, p, and s to estimate those parameters.
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9 Extension 3: Nonparametric regression with an

Unobserved Binary Regressor

This section extends previous results to a more general nonparametric regression model

of the form Y = g(X, D∗) + U . Specifically, we have the following corollary.

COROLLARY 3: Assume the joint distribution of Y, X is identified, and that g(X,D∗) =

E(Y | X,D∗) exists, where D∗ is an unobserved variable with support {0, 1}. Assume

that the distribution of g(X, D∗) conditional upon X is symmetric. Define p (X) =

E(1 − D∗ | X) and define U = Y − g(X,D∗). Assume E
(
Ud | X, D∗

)
= E

(
Ud | X

)

exists for all integers d ≤ 9 and E
(
U2d−1 | X

)
= 0 for all positive integers d ≤ 5. Then

the functions g(X, D∗), p (X), and the distribution of U are identified.

Corollary 3 permits all of the parameters of the model to vary nonparametrically with

X. It provides identification of the regression model Y = g(X, D∗) + U , allowing the

unobserved model error U to be heteroskedastic (and have nonconstant higher moments

as well), though the variance and other low order even moments of U can only depend

on X and not on the unobserved regressor D∗. As noted in the introduction and in the

proof of this Corollary, Y = g(X, D∗)+U is equivalent to Y = h (X)+V +U but, unlike

Corollary 2, now V and U have distributions that can depend on X. As with Theorem

1, symmetry of U (now conditional on X) suffices to make the required low order odd

moments of U be zero.

Given the assumptions of Corollary 3, equations (3) to (10), and given symmetry of

U , equations (21) and (22), will all hold after replacing the parameters h, b0, b1, p, uj,

and τ `, and with functions h (X), b0 (X), b1 (X), p (X), uj (X), and τ ` (X) and replacing

the unconditional expectations in these equations with conditional expectations, condi-

tioning on X = x. If desired, we can further replace b0 (X) and b1 (X) with g(x, 0)−h (x)
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and g(x, 1) − h (x), respectively, to directly obtain estimates of the function g (X, D∗)

instead of b0 (X) and b1 (X).

Let q (x) be the vector of all of the above listed unknown functions. Then these

conditional expectations can be written as

E[G (q(x), Y ) | X = x)] = 0 (23)

for a vector of known functions G. Equation (23) is again in the form of conditional

GMM which could be estimated using Ai and Chen (2003), replacing all of the unknown

functions q(x) with sieves (related estimators are Carrasco and Florens 2000 and Newey

and Powell 2003). However, given independent, identically distributed draws of X, Y ,

the local GMM estimator of Lewbel (2008) may be easier to use because it exploits the

special structure we have here where all the functions q(x) to be estimated depend on

the same variables that the moments are conditioned upon, that is, X = x.

We summarize here how this local GMM estimator could be implemented, while

Appendix B provides details regarding the associated limiting distribution theory.

1. For any value of x, construct data Zi = K ((x−Xi) /b) for i = 1, ..., n, where K

is an ordinary kernel function (e.g., the standard normal density function) and b is a

bandwidth parameter. As is common practice when using kernel functions, it is a good

idea to first standardize the data by scaling each continuous element of X by its sample

standard deviation.

2. Obtain θ̂ by applying standard two step GMM based on the moment conditions

E (G (θ, Y ) Z) = 0 for G from equation (23).

3. For the given value of x, let q̂(x) = θ̂.

4. Repeat these steps using every value of x for which one wishes to estimate the

vector of functions q(x). For example, one may repeat these steps for a fine grid of x
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points on the support of X, or repeat these steps for x equal to each data point Xi to

just estimate the functions q(x) at the observed data points.

Note that this local GMM estimator can be used when X contains both continuous

and discretely distributed elements. If all elements of X are discrete, then the estimator

simplifies back to Hansen’s (1982) original GMM, as described in Appendix B.

For comparison, one could also estimate a semiparametric specification where U

is normal but all parameters of the model still vary with x. Analogous to the local

GMM estimator, this comparison model could be estimated by applying the local GMM

estimator described in Appendix B to moment conditions defined as the derivatives of

the expected value of log likelihood function (20) with respect to the parameters, that

is, using the likelihood score functions as moments.

10 Discrete V With More Than Two Support Points

A simple counting argument suggests that it may be possible to extend this paper’s

identification and associated estimators to applications where V is discrete with more

than two points of support, as follows. Suppose V takes on the values b0, b1, ..., bK

with probabilities p0, p1,..., pK . Let uj = E (U j) for integers j as before. Then for any

positive odd integer S, the moments E (Y s) for s = 1, ..., S equal known functions of the

2K + (S + 1) /2 parameters b1, b2,..., bK , p1, p2, ...,pK , u2, u4, ..., uS−1, h.1 Therefore,

with any odd S ≥ 4K + 1, E (Y s) for s = 1, ..., S provides at least as many moment

equations as unknowns, which could be used to estimate these parameters by GMM.

These moments include polynomials with up to S − 1 roots, so having S much larger

than 4K +1 may be necessary for identification, just as the proof of Theorem 1 requires

S = 9 even though in that theorem K = 1. Still, as long as U has sufficiently thin tails,

1Here p0 and b0 can be expressed as functions of the other parameters by probabilities summing to
one and V having mean zero. Also us for odd values of s are zero by symmetry of U .
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E (Y s) can exist for arbitrarily high integers s, thereby providing far more identifying

equations than unknowns.

The above analysis is only suggestive. Given how long the proof is for our model

where V takes on only two values, we do not attempt a proof of identification with more

than two points of support. However, assuming that a model where V takes on more

than two values is identified, the moment conditions for estimation analogous to those

we provided earlier are readily available. For example, as in the proof of Corollary 1 it

follows from symmetry of U that

E [exp (τ (Y − h))] = E [exp (τV )] ατ

with ατ = α−τ for any τ for which these expectations exist, and therefore by choosing

constants τ 1,...,τL, GMM estimation could be based on the 2L moments

E

[
K∑

k=0

[[exp (τ ` (Y − h))]− exp (τ `bk) ατ`
] pk

]
= 0

E

[
K∑

k=0

[[exp (−τ ` (Y − h))]− exp (−τ `bk) ατ`
] pk

]
= 0

for ` = 1, ..., L. The number of parameters bk, pk and ατ`
to be estimated would be

2K + L, so taking L > 2K provides more moments than unknowns.

11 Conclusions

We have proved global point identification and provided estimators for the models Y =

h+V +U , Y = h(X)+V +U , and more generally for Y = g(X,D∗)+U . In these models,

D∗ or V are unobserved regressors with two points of support, and the unobserved U is

drawn from an unknown symmetric distribution. No instruments, measures, or proxies
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for D∗ or V are observed. To illustrate the results, we apply our basic model to the

distribution of income across countries, where the two values V can take on correspond

to country types such as more developed versus less developed countries. The estimates

provide some summary measures for assessing whether income convergence has taken

place over time, and show that our estimator works well with real data and small sample

sizes, despite involving high order data moments.

Interesting work for the future could include derivation of semiparametric efficiency

bounds for the model, and conditions for identification when V can take on more than

two values.
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12 Appendix A: Proofs

PROOF of Theorem 1: First identify h by h = E (Y ), since V and U are mean zero.

Then the distribution of ε defined by ε = Y − h is identified, and ε = U + V . Define

ed = E
(
εd

)
and vd = E

(
V d

)
.

Now evaluate ed for integers d ≤ 9. These ed exist by assumption, and are identified

because the distribution of ε is identified. The first goal will be to obtain expressions

for vd in terms of ed for various values of d. Using independence of V and U , the fact

that both are mean zero, and U being symmetric we have

E
(
ε2

)
= E

(
V 2 + 2V U + U2

)

e2 = v2 + E
(
U2

)

E
(
U2

)
= e2 − v2

E
(
ε3

)
= E

(
V 3 + 3V 2U + 3V U2 + U3

)

e3 = v3

E
(
ε4

)
= E

(
V 4 + 4V 3U + 6V 2U2 + 4V U3 + U4

)

e4 = v4 + 6v2E
(
U2

)
+ E

(
U4

)

E
(
U4

)
= e4 − v4 − 6v2E

(
U2

)

= e4 − v4 − 6v2 (e2 − v2)

E
(
U4

)
= e4 − v4 − 6v2e2 + 6v2

2

E
(
ε5

)
= E

(
V 5 + 5V 4U + 10V 3U2 + 10V 2U3 + 5V U4 + U5

)

e5 = v5 + 10v3E
(
U2

)
= v5 + 10v3 (e2 − v2)

e5 = v5 + 10e3e2 − 10e3v2
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e5 − 10e3e2 = v5 − 10e3v2

Define s = e5 − 10e3e2, and note that s depends only on identified objects and so is

identified. Then s = v5 − 10e3v2,

E
(
ε6

)
= E

(
V 6 + 6V 5U + 15V 4U2 + 20V 3U3 + 15V 2U4 + 6V U5 + U6

)

e6 = v6 + 15v4E
(
U2

)
+ 15v2E

(
U4

)
+ E

(
U6

)

E
(
U6

)
= e6 − v6 − 15v4E

(
U2

)
− 15v2E

(
U4

)

= e6 − v6 − 15v4 (e2 − v2)− 15v2

(
e4 − v4 − 6v2e2 + 6v2

2

)

= e6 − v6 − 15e2v4 − 15e4v2 + 30v2v4 − 90v3
2 + 90e2v

2
2

E
(
ε7

)
= E

(
V 7 + 7V 6U + 21V 5U2 + 35V 4U3 + 35V 3U4 + 21V 2U5 + 7V U6 + U7

)

e7 = v7 + 21v5E
(
U2

)
+ 35v3E

(
U4

)

e7 = v7 + 21v5 (e2 − v2) + 35v3

(
e4 − v4 − 6v2e2 + 6v2

2

)

plug in v5 = s + 10e3v2 and v3 = e3 and expand:

e7 = v7 + 21 (s + 10e3v2) (e2 − v2) + 35e3

(
e4 − v4 − 6v2e2 + 6v2

2

)

= v7 + 21se2 − 21sv2 + 35e3e4 − 35e3v4

Bring terms involving identified objects ed and s left:

e7 − 21se2 − 35e3e4 = v7 − 35e3v4 − 21sv2.

Define q = e7 − 21se2 − 35e3e4 and note that q depends only on identified objects and

so is identified. Then

q = v7 − 35e3v4 − 21sv2.

Next consider e9.

E
(
ε9

)
= E


 V 9 + 9V 8U + 36V 7U2 + 84V 6U3 + 126V 5U4+

126V 4U5 + 84V 3U6 + 36V 2U7 + 9V U8 + U9




e9 = v9 + 36v7E
(
U2

)
+ 126v5E

(
U4

)
+ 84v3E

(
U6

)

e9 = v9 + 36v7 (e2 − v2) + 126v5

(
e4 − v4 − 6v2e2 + 6v2

2

)
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+84v3

(
e6 − v6 − 15e2v4 − 15e4v2 + 30v2v4 − 90v3

2 + 90e2v
2
2

)

Use q and s to substitute out v7 = q + 35e3v4 + 21sv2 and v5 = s + 10e3v2, and use

v3 = e3 to get

e9 = v9 + 36 (q + 35e3v4 + 21sv2) (e2 − v2) + 126 (s + 10e3v2)
(
e4 − v4 − 6v2e2 + 6v2

2

)

+84e3

(
e6 − v6 − 15e2v4 − 15e4v2 + 30v2v4 − 90v3

2 + 90e2v
2
2

)

Expand and bring terms involving identified objects ed, s, and q to the left:

e9 − 36qe2 − 126se4 − 84e3e6 = v9 − 36qv2 − 126sv4 − 84e3v6

Define w = e9 − 36qe2 − 126se4 − 84e3e6 and note that w depends only on identified

objects and so is identified. Then

w = v9 − 36qv2 − 126sv4 − 84e3v6

Summarizing, we have w, s, q, e3 are all identified and

e3 = v3

s = v5 − 10e3v2

q = v7 − 35e3v4 − 21sv2

w = v9 − 84e3v6 − 126sv4 − 36qv2.

Now V only takes on two values, so let V equal b0 with probability p0 and b1 with

probability p1. Probabilities sum to one, so p1 = 1− p0. Also, E (V ) = b0p0 + b1p1 = 0

because ε = V + U and both ε and U have mean zero, so b1 = −b0p0/ (1− p0). Let

r = p0/p1 = p0/ (1− p0), so

p0 = r/ (1 + r) , p1 = 1/ (1 + r) , b1 = −b0r,

and for any integer d

vd = bd
0p0 + bd

1p1 = bd
0

(
p0 + (−r)d p1

)
= bd

0

r + (−r)d

1 + r
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so in particular

v2 = b2
0r

v3 = b3
0r (1− r)

v4 = b4
0r

(
r2 − r + 1

)

v5 = b5
0r (1− r)

(
r2 + 1

)

v6 = b6
0

r + (−r)6

1 + r
= b6

0r
(
r4 − r3 + r2 − r + 1

)

v7 = b7
0r (1− r)

(
r4 + r2 + 1

)

v9 = b9
0

r + (−r)9

1 + r
= b9

0r (1− r)
(
r2 + 1

) (
r4 + 1

)

Substituting these vd expressions into the expression for e3, s, q, and w gives e3 =

b3
0r (1− r),

s = b5
0r (1− r)

(
r2 + 1

)
− 10b3

0r (1− r) b2
0r

s = b5
0r (1− r)

(
r2 − 10r + 1

)

q = v7 − 35e3v4 − 21sv2

= b7
0r (1− r)

(
r4 + r2 + 1

)
− 35b3

0r (1− r) b4
0r

(
r2 − r + 1

)
− 21b5

0r (1− r)
(
r2 − 10r + 1

)
b2
0r

q = b7
0r (1− r)

(
r4 − 56r3 + 246r2 − 56r + 1

)

w = v9 − 84e3v6 − 126sv4 − 36qv2

=




b9
0r (1− r) (r2 + 1) (r4 + 1)− 84 (b3

0r (1− r)) (b6
0r (r4 − r3 + r2 − r + 1))

−126 (b5
0r (1− r) (r2 − 10r + 1)) (b4

0r (r2 − r + 1))

−36 (b7
0r (1− r) (r4 − 56r3 + 246r2 − 56r + 1)) b2

0r




w = b9
0r (1− r)

(
r6 − 246r5 + 3487r4 − 10452r3 + 3487r2 − 246r + 1

)

Summarizing the results so far we have

e3 = b3
0r (1− r)

s = b5
0r (1− r)

(
r2 − 10r + 1

)

q = b7
0r (1− r)

(
r4 − 56r3 + 246r2 − 56r + 1

)
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w = b9
0r (1− r)

(
r6 − 246r5 + 3487r4 − 10452r3 + 3487r2 − 246r + 1

)

These are four equations in the two unknowns b0 and r. We require all four equations

for identification, and not just two or three of them, because these are polynomials in

r and so have multiple roots. We will now show that these four equations imply that

r2 − γr + 1 = 0, where γ is finite and identified.

First we have e3 = v3 6= 0 and r 6= 1 by asymmetry of V . Also r 6= 0 because then

V would only have one point of support instead of two, and these together imply by

e3 = b3
0r (1− r) that b0 6= 0. Applying these results to the s equation shows that if s

(which is identified) is zero then r2− 10r + 1 = 0, and so in that case γ is identified. So

now consider the case where s 6= 0.

Define R = qe3/s
2, which is identified because its components are identified. Then

R =
b7
0r (1− r) (r4 − 56r3 + 246r2 − 56r + 1) b3

0r (1− r)

b5
0r (1− r) (r2 − 10r + 1) b5

0r (1− r) (r2 − 10r + 1)

=
r4 − 56r3 + 246r2 − 56r + 1

(r2 − 10r + 1)2

So

0 =
(
r4 − 56r3 + 246r2 − 56r + 1

)
−

(
r2 − 10r + 1

)2
R

0 = (1−R) r4 + (−56 + 20R) r3 + (246− 102R) r2 + (−56 + 20R) r + (1−R)

Which yields a fourth degree polynomial in r. If R = 1, then (using r 6= 0) this

polynomial reduces to the quadratic 0 = r2− 4r +1, so in this case γ = −4 is identified.

Now consider the case where R 6= 1.

Define Q = s3/e5
3 which is identified because its components are identified. Then

Q =
(b5

0r (1− r) (r2 − 10r + 1))
3

(b3
0r (1− r))

5 =
(r2 − 10r + 1)

3

(r (1− r))2

0 =
(
r2 − 10r + 1

)3 − (r (1− r))2 Q

0 = r6 − 30r5 + (303−Q) r4 + (2Q− 1060) r3 + (303−Q) r2 − 30r + 1

which is a sixth degree polynomial in r. Also define S = w/e2
3 which is identified because
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its components are identified. Then

w

e3
3

= S =
b9
0r (1− r) (r6 − 246r5 + 3487r4 − 10452r3 + 3487r2 − 246r + 1)

(b3
0r (1− r))

3

S =
(r6 − 246r5 + 3487r4 − 10452r3 + 3487r2 − 246r + 1)

(r (1− r))2

0 =
(
r6 − 246r5 + 3487r4 − 10452r3 + 3487r2 − 246r + 1

)
− (r (1− r))2 S

0 = r6 − 246r5 + (3487− S) r4 + (2S − 10452) r3 + (3487− S) r2 − 246r + 1

which is another sixth degree polynomial in r. Subtracting the second of these sixth

degree polynomials from the other and dividing the result by r gives the fourth order

polynomial:

0 = 216r4 + (S −Q− 3184) r3 + (9392 + 2Q− 2S) r2 + (S −Q− 3184) r + 216.

Multiply this fourth order polynomial by (1−R), multiply the previous fourth order

polynomial by 216, subtract one from the other. and divide by r to obtain a quadratic

in r:

0 = 216 (1−R) r4 + (1−R) (S −Q− 3184) r3 + (1−R) (9392 + 2Q− 2S) r2

+ (1−R) (S −Q− 3184) r + 216 (1−R)− 216 (1−R) r4 − 216 (−56 + 20R) r3

−216 (246− 102R) r2 − 216 (−56 + 20R) r − 216 (1−R)

0 = ((1−R) (S −Q− 3184)− 216 (−56 + 20R)) r3

+ ((1−R) (9392 + 2Q− 2S)− 216 (246− 102R)) r2

+ ((1−R) (S −Q− 3184)− 216 (−56 + 20R)) r

0 = ((1−R) (S −Q− 3184) + 12096− 4320R) r2

+ ((1−R) (9392 + 2Q− 2S) + 22032R− 53136) r

+ ((1−R) (S −Q− 3184) + 12096− 4320R) .
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which simplifies to

0 = Nr2 − (2 (1−R) (6320 + S −Q) + 31104) r + N

where N = (1−R) (1136 + S −Q) + 7776. The components of N can be written as

1−R = 1− r4 − 56r3 + 246r2 − 56r + 1

(r2 − 10r + 1)2 =
(r2 − 10r + 1)

2 − (r4 − 56r3 + 246r2 − 56r + 1)

(r2 − 10r + 1)2

=
36r3 − 144r2 + 36r

(r2 − 10r + 1)2

1136 + S −Q

=

(
1136 +

(
(r6 − 246r5 + 3487r4 − 10452r3 + 3487r2 − 246r + 1)

(r (1− r))2

)
− (r2 − 10r + 1)

3

(r (1− r))2

)

=
1136 (r (1− r))2 + (r6 − 246r5 + 3487r4 − 10452r3 + 3487r2 − 246r + 1)− (r2 − 10r + 1)

3

(r (1− r))2

=
−216r5 + 4320r4 − 11664r3 + 4320r2 − 216r

(r (1− r))2

so

N =

((
36r3 − 144r2 + 36r

(r2 − 10r + 1)2

) (−216r5 + 4320r4 − 11664r3 + 4320r2 − 216r

(r (1− r))2

)
+ 7776

)

=
(36r3 − 144r2 + 36r) (−216r5 + 4320r4 − 11664r3 + 4320r2 − 216r)

(r2 − 10r + 1)2 (r (1− r))2

+
7776 (r2 − 10r + 1)

2
(r (1− r))2

(r2 − 10r + 1)2 (r (1− r))2

=
15552r3 + 62208r4 + 93312r5 + 62208r6 + 15552r7

(r2 − 10r + 1)2 (r (1− r))2 =
15552r3 (r + 1)4

(r2 − 10r + 1)2 (r (1− r))2

N =
15552r (r + 1)4

(r2 − 10r + 1)2 (1− r)2

The denominator of this expression for N is not equal to zero, because that would imply

s = 0, and we have already considered that case, and ruled it out in the derivation of

the quadratic involving N . Now N could only be zero if 15552r (r + 1)4 = 0, and this

cannot hold because r 6= 0, and r > 0 (being a ratio of probabilities) so r 6= −1 is
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ruled out. We therefore have N 6= 0, so the quadratic involving N can be written as

0 = r2 − γr + 1 where γ = (2 (1−R) (6320 + S −Q) + 31104) /N , which is identified

because all of its components are identified.

We have now shown that 0 = r2 − γr + 1 where γ is identified. This quadratic has

solutions

r =
1

2
γ +

1

2

√
γ2 − 4 and r =

1
1
2
γ + 1

2

√
γ2 − 4

so one of these must be the true value of r. Given r, we can then solve for b0 by

b0 = e
1/3
3 (r (1− r))1/3. Recall that r = p0/p1. By symmetry of the set up of the

problem, if we exchanged b0 with b1 and exchanged p0 with p1 everywhere, all of the

above equations would still hold. It follows that one of the above two values of r must

equal p0/p1, and the other equals p1/p0. The former when substituted into e3 (r (1− r))

will yield b3
0 and the latter must by symmetry yield b3

1. Without loss of generality

imposing the constraint that b0 < 0 < b1, shows that the correct solution for r will be

the one that satisfies e3 (r (1− r)) < 0, and so r and b0 is identified. The remainder of

the distribution of V is then given by p0 = r/ (1 + r), p1 = 1/ (1 + r), and b1 = −b0r.

Finally, given that the distributions of ε and of V are identified, the distribution of U

is identified by a deconvolution, in particular we have that the characteristic function of

U is identified by E
(
eiτU

)
= E (eiτε) /E

(
eiτV

)
.

PROOF of Corollary 1: Y = h + V + U and independence of U and V implies that

E [exp (τ (Y − h))] = E [exp (τV )] E [exp (τU)]

Now E [exp (τV )] = p exp (τb0) + (1− p) exp (τb1). Define ατ = E
(
eτU

)
. By symmetry

of U , ατ = E
(
e−τU

)
also. It follows from these equation that

E [exp (τ (Y − h))] = (p exp (τb0) + (1− p) exp (τb1)) ατ

E [exp (−τ (Y − h))] = (p exp (−τb0) + (1− p) exp (−τb1)) ατ

which with b1 = b0p/ (p− 1) gives equations (21) and (22).

PROOF of Theorem 2: By the probability mass function of the V distribution,

Fε (ε) = (1− p) FU (ε− b1)+pFU (ε− b0). Evaluating this expression at ε = u+b1 gives

Fε (u + b1) = (1− p) FU (u) + pFU (u + b1 − b0) (24)
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and evaluating at ε = −u+b0 gives Fε (−u + b0) = (1− p) FU (−u− b1 + b0)+pFU (−u).

Apply symmetry of U which implies FU (u) = 1−FU (−u) to this last equation to obtain

Fε (−u + b0) = (1− p) [1− FU (U + b1 − b0)] + p [1− FU (u)] (25)

Equations (24) and (25) are two equations in the two unknowns FU (U + b1 − b0) and

FU (U). Solving for FU (U) gives FU (U) = Ψ (U) with Ψ (U) given by equation (11).

It follows from symmetry of U that FU (U) must also equal 1 − Ψ (−U), which gives

equation (12).

PROOF of Corollary 2: First identify h (x) by h (x) = E (Y | X = x), since E (Y − h (X) | X = x) =

E (V + U | X = x) = E (V + U) = 0. Next define ε = Y − h (X) and then the rest of

the proof is identical to the proof of Theorem 1.

PROOF of Corollary 3: Define h (x) = E (Y | X) and ε = Y − h(X). Then h (x)

and the distribution of ε conditional upon X is identified and E (ε | X) = 0. Define

V = g(X,D∗) − h(X) and let bd(X) = g(X, d) − h (X) for d = 0, 1. Then ε = V + U ,

where V (given X) has the distribution with support equal to the two values b0(X) and

b1(X) with probabilities p(X) and 1− p(X), respectively. Also U and ε have mean zero

given X so E (V | X) = 0. Applying Theorem 1 separately for each value x that X can

take on shows that b0(x), b1(x) and p (x) are identified for each x in the support of X,

and it follows that the function g(x, d) is identified by g(x, d) = bd(x) + h (x). Applying

Theorem 1 separately for each value X can take on also directly provides identification

of p (X) and the conditional distribution of U given X.

13 Appendix B: Asymptotic Theory

Most of the estimators in the paper are either standard GMM or well known variants of

GMM. However, we here briefly summarize the application of the local GMM estimator

of Lewbel (2008) to estimation based on Corollary 3, which as described in the text

reduces to estimation based on equation (23). To motivate this estimator, which is

closely related to Gozalo and Linton (2000), first consider the case where all the elements

of X are discrete, or more specifically, the case where X has one or more mass points and

we only wish to estimate q(x) at those points. Let q0(x) denote the true value of q(x),

and let θx0 = q0(x). If the distribution of X has a mass point with positive probability
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at x, then

E[G(θx, Y ) | X = x] =
E[G(θx, Y )I(X = x)]

E[I(X = x)]

so equation (23) holds if and only if E[G(θx0, Y )I(X = x)] = 0. It therefore follows that

under standard regularity conditions we may estimate θx0 = q0(x) using the ordinary

GMM estimator

θ̂x = arg min
θx

n∑

i=1

G(θx, Yi)
′I(Xi = x)Ωn

n∑

i=1

G(θx, Yi)
′I(Xi = x) (26)

for some sequence of positive definite Ωn. If Ωn is a consistent estimator of Ωx0 =

E[G(θx0, Y )G(θx0, Y )′I(X = x)]−1, then standard efficient GMM gives

√
n(θ̂x − θx0) →d N


0,

[
E

(
∂G(θx0, Y )I(X = x)

∂θx
′

)
Ωx0E

(
∂G(θx0, Y )I(X = x)

∂θx
′

)′]−1



Now assume that X is continuously distributed. Then the local GMM estimator

consists of applying equation (26) by replacing the average over just observations Xi = x

with local averaging over observations Xi in the neighborhood of x.

Assumption B1. Let Xi, Yi, i = 1, ..., n, be an independently, identically distributed

random sample of observations of the random vectors X, Y . The d vector X is con-

tinuously distributed with density function f(X). For given point x in the interior of

supp(X) having f(x) > 0 and a given vector valued function G(q, y) where G(q(x), y) is

twice differentiable in the vector q(x) for all q(x) in some compact set Θ(x), there exists

a unique q0(x) ∈ Θ(x) such that E[G(q0(x), Y ) | X = x] = 0. Let Ωn be a finite positive

definite matrix for all n, as is Ω = plimn→∞Ωn.

Assumption B1 lists the required moment condition structure and identification for

the estimator. Corollary 1 in the paper provides the conditions required for Assumption

B1, in particular uniqueness of q0(x). Assumption B2 below provides conditions required

for local averaging. Define e[q(x), Y ], Σ(x), and Ψ(x) by

e[q(x), Y ] = G(q(x), Y )f(x)− E[G(q(x), Y )f(X) | X = x]

Σ(x) = E
[
e(q0(x), Y )e(q0(x), Y )T | X = x

]

Ψ(x) = E

(
∂G[q0(x), Y ]

∂q0(x)T
f(X) | X = x

)

40



Assumption B2. Let η be some constant greater than 2. Let K be a nonnegative sym-

metric kernel function satisfying
∫

K(u)du = 1 and
∫ ||K(u)||ηdu is finite. For all q(x) ∈

Θ(x), E[||G(q(x), Y )f(X)||η | X = x], Σ(x), Ψ(x), and V ar[[∂G(q(x), Y )/∂q(x)]f(X) |
X = x] are finite and continuous at x and E[G(q(x), Y )f(X) | X = x] is finite and twice

continuously differentiable at x.

Define

Sn(q(x)) =
1

nbd

n∑

i=1

G[q(x), Yi]K
(

x−Xi

b

)

where b = b(n) is a bandwidth parameter. The proposed local GMM estimator is

q̂(x) = arg inf
q(x)∈Θ(x)

Sn(q(x))T ΩnSn(q(x)) (27)

The scaling of the kernal estimator Sn(q(x)) by bd is convenient for deriving the properties

of the estimator, but is numerically unnecessary because omitting it leaves the minimized

value q̂(x) unchanged.

THEOREM 3 (Lewbel 2008): Given Assumptions B1 and B2, if the bandwidth b

satisfies nbd+4 → 0 and nbd → ∞, then q̂(x) is a consistent estimator of q0(x) with

limiting distribution

(nb)1/2[q̂(x)−q0(x)] →d N
[
0, (Ψ(x)T ΩΨ(x))−1Ψ(x)T ΩΣ(x)ΩΨ(x)(Ψ(x)T ΩΨ(x))−1

∫
K(u)2du]

]

Applying the standard two step GMM procedure, we may first estimate q̃(x) =

arg infq(x)∈Θ(x) Sn(q(x))T Sn(q(x)), then let Ωn be the inverse of the sample variance of

Sn(q̃(x)) to get Ω = Σ(x)−1, making

(nb)1/2[q̂(x)− q0(x)] →d N
[
0, (Ψ(x)T ΩΨ(x))−1

∫
K(u)2du]

]

where Ψ(x) can be estimated using

Ψn(x) =
1

nbd

n∑

i=1

∂G[q̂(x), Yi]

∂q̂(x)T
K

(
x−Xi

b

)
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At the expense of some additional notation, the two estimators (26) and (27) can be

combined to handle X containing both discrete and continuous elements, by replacing

the kernel function in Sn with the product of a kernel over the continuous elements and

an indicator function for the discrete elements, as in Li and Racine (2003).
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1 Introduction

Consider an observed binary regressor D and an unobserved binary variable D�, both of which affect some
other variable Y . This paper considers nonparametric identi�cation and estimation of the effect of D on
Y , conditioning on a value of the unobserved D� (and possibly on a set of other observed covariates X ).
Formally, what is identi�ed is the function R.D; X/ de�ned by

R.D; X/ D E.Y j D� D 0; D; X/.

This can then be used to evaluate
r.X/ D R.1; X/� R.0; X/

and r D E[r.X/], which are respectively, the conditional and unconditional effects of D on Y , holding D�

�xed. When D� is observed, identi�cation and estimation of R is trivial. Here we obtain identi�cation and
provide estimators when D� is unobserved.
Assuming E.Y j D�; D; X/ exists, de�ne a model H and an error � by

Y D E.Y j D�; D; X/C � D H.D�; D; X/C � (1)

where the function H is unknown and the error � is mean zero and uncorrelated with D, D�, and X . Then,
since D and D� are binary, we may without loss of generality rewrite this model in terms of the unknown
R, r , and an unknown function s as

Y D R.D; X/C s.D; X/D� C � (2)

or equivalently
Y D R.0; X/C r.X/D C s.D; X/D� C �. (3)

This paper provides conditions that are suf�cient to point identify the unknown functions R and r , even
though D� is unobserved. We also show set (interval) identi�cation under weaker assumptions.
For a speci�c example, suppose for a sample of individuals the observed D is one if an individual

claims or is reported to have some college education (and zero otherwise), and the unobserved D� is one
if the individual actually has some college experience. Let Y be the individual's wage rate. Then r is the
difference in average wages Y between those who claim to have a degree when they actually do not, versus
those who honestly report not having a college degree. This paper provides nonparametric identi�cation
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and associated estimators of the function r . We empirically apply these methods to estimate this average
difference in outcomes between truth tellers and liars, when the truth D� is not observed. Notice that we
are not focusing on the effects of misreporting on estimates of returns to schooling, as in, e.g., Ashenfelter
and Krueger (1994), but rather on the direct effects of misreporting on wages.
Only responses and not intent can be observed, so we cannot distinguish between intentional lying and

false beliefs about D�. For example, suppose D� as an actual treatment and D is a perceived treatment (i.e.,
D is the treatment an individual thinks he received, and so is a false belief rather than an intentional lie).
Then r is the average placebo effect, that is, the average difference in outcomes between those who were
untreated but believe they received treatment versus those who correctly perceive that they were untreated.
This paper then provides identi�cation and an estimator for this placebo effect when the econometrician
does not observe who actually received treatment.
Given a Rubin (1974) type unconfoundedness assumption, r will equal the average placebo effect, or

the average returns to lying (which could be positive or negative). Unconfoundedness may be a reasonable
assumption in the placebo example, but is less likely to hold when lying is intentional. Without uncon-
foundedness, the difference r in outcomes Y that this paper identi�es could be due in part to unobserved
differences between truth tellers and liars. For example, r could be positive even if lying itself has no direct
effect on wages, if those who misreport their education level are on average more aggressive in pursuing
their goals than others, or if some of them have spent enough time and effort studying (more on average
than other nongraduates) to rationalize claiming that they have college experience. Alternatively r could be
negative even if the returns to lying itself is zero, if the liars are more likely to arouse suspicion, or if there
exist other negative character �aws that correlate with misreporting. Even with unconfoundedness, r might
not equal the true returns to lying if Y is self reported data and the propensity to misreport D� is correlated
with misreporting Y , e.g., individuals who lie about their education level may also lie about their income.
Given that unconfoundedness may often be implausible in this context, we will call r the "effects of

lying," and use the phrase "returns to lying" only when unconfoundedness is assumed.
The interpretation of r as a placebo effect or as effects or returns to lying also assumes that D� and D

are respectively the true and reported values of the same variable. This paper's identi�cation and associated
estimator does not require D and D� to be related in this way (they can be completely different binary
variables), however, for the purposes of interpreting the required assumptions and associated results, we
will throughout this paper refer to D as the reported value of a true D�.
Discreteness of D and D� is also not essential for this paper's identi�cation method, but it does simplify
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the associated estimators and limiting distribution theory. In particular, if we more generally have a reported
Z and an unobserved Z�, we could apply this paper's identi�cation method for any particular values z and
z� of interest by letting D� D I .Z� 6D z/ and D D I .Z 6D z/, where I is the indicator function. Then
D D 1 when D� D 0 means lying by claiming a value z when the truth is not z. Although our identi�cation
theory still holds in that case, having D or D� be zero could then be zero probability events, resulting in
estimation problems analogous to weak instruments which we do not address here.
When D is a possibly mismeasured or misclassi�ed observation of D�, then D�D� is the measurement

or misclassi�cation error. Virtually all of the literature on mismeasured binary regressors (which goes back
at least as far as Aigner 1973) that attempts to estimate or bound the effect of D� on Y (a treatment effect)
assumes r.X/ D 0, or equivalently, that any misclassi�cation or measurement errors have no effect on the
outcome Y after conditioning on the true D�. Examples include Ashenfelter and Krueger (1994), Kane and
Rouse (1995), Card (1996), Bollinger (1996), Hotz, Mullin, and Sanders (1997), Klepper, (1988), Manski
(1990), Hu (2006), Mahajan (2006), Lewbel (2007a), Chen, Hu, and Lewbel (2008a, 2008b), and Molinari
(2008). The same is true for general endogenous binary regressor estimators when they are interpreted
as arising from mismeasurement. See, e.g., Das (2004), Blundell and Powell (2004), Newey and Powell
(2003), and Florens and Malavolti (2003). The assumption that r.X/ D 0 may be reasonable if the reporting
errors D � D� are due to data collection errors such as accidently checking the wrong box on a survey
form. Having r.X/ D 0 would also hold if the outcome Y could not be affected by the individual's beliefs
or reports regarding D, e.g., if D� were an indicator of whether the individual owns stock and Y is the
return on his investment, then that return will only depend on the assets he actually owns and not on his
beliefs or self reports about what he owns. Still, there are many applications where it is not reasonable to
assume a priori that r.X/ is zero, so even when r.X/ is not of direct interest, it may be useful to apply this
paper's methods to test if it is zero, which would then permit the application of the existing mismeasured or
misclassi�ed binary regressor estimators that require that r.X/ D 0.
We propose two different methods of obtaining nonparametric identi�cation without observing D�. One

is by observing a variable V that has some special properties, analogous to an instrument. The second way
we obtain identi�cation is through restrictions on the �rst three moments of the model error �. Identi�cation
using an instrument V requires V to have some of the properties of a repeated measurement. In particular,
Kane and Rouse (1995) and Kane, Rouse, and Staiger (1999) obtain data on both self reports of educational
attainment D, and on transcript reports. They provide evidence that this transcript data (like the self reports
D) may contain considerable reporting errors on questions like, "Do you have some years of college?"
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These transcript reports therefore cannot be taken to equal D�, but we show these transcripts may satisfy
the conditions we require for use as an instrument V .
The alternative method we propose for identi�cation does not require an instrument V , but is instead

based primarily on assuming that the �rst three moments of the model error � are independent of the
covariates. For example, if � is normal, as might hold by Gibrat's (1931) law for Y being log wages, and
homoskedastic, then � will satisfy this assumption. This second method of identi�cation is similar to Chen,
Hu, and Lewbel (2008a, 2008b), though (as we will show later) those papers could not be used to identify
the effects of lying in our context without additional information.
The next two sections describe identi�cation with and without an instrument. We then propose estima-

tors based on each of these methods of identi�cation, and provide an empirical application estimating the
effects on wages of lying about educational attainment.

2 Identi�cation Using an Instrument

ASSUMPTION A1: The variable Y , the binary variable D, and a (possibly empty) vector of other
covariates X are all observable. The binary variable D� is unobserved. E.Y j D�; D; X/ exists. The
functions H, R, r , s and the variable � are de�ned by equations (1), (2) and (3).

ASSUMPTION A2: A variable V is observed with

E .�V j D; X/ D 0; (4)

E
�
V j D; D� D 1; X

�
D E

�
V j D� D 1; X

�
; (5)

E .V j D D 1; X/ 6D E .V j X/ : (6)

Equation (4) says that the instrument V is uncorrelated with the model error � for any value of the
observable regressors D and X . A suf�cient condition for equation (4) to hold is if E .Y j D�; D; X; V / D
E .Y j D�; D; X/. This is a standard property for an instrument. The following very simple Lemmas are
useful for interpreting and applying the other equations that comprise Assumption A2:

LEMMA 1: Assume E .D j D� D 1; X/ 6D 0. Equation (5) holds if and only if
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Cov
�
D; V j D� D 1; X

�
D 0 (7)

LEMMA 2: Assume E .D j X/ 6D 0. Equation (6) holds if and only if

Cov .D; V j X/ 6D 0. (8)

Proofs of Lemmas and Theorems are in the Appendix. As shown by Lemmas 1 and 2, equations (5)
and (6) say that D and V are correlated, but at least for D� D 1, this relationship only occurs through D�.
Equation (5) means that when D� D 1, the variable D has no additional power to explain V given X . If
V is a second mismeasurement of D�, then (5) or its equivalent (7) is implied by a standard assumption
of repeated measurements, namely, that the error in the measurement D be unrelated to the error in the
measurement V , while equation (6) can be expected to hold because both measurements are correlated
with the true D�. Equation (6) is close to a standard instrument assumption, if we are thinking of V as an
instrument for D (since we are trying to identify the effect of D on Y ). Note that equation (6) or Lemma 2
can be easily tested, since they only depend on observables.
To facilitate interpretation of the identifying assumptions, we discuss them in the context of the example

in which Y is a wage, D� is the true indicator of whether an individual has some college experience, D is
the individual's self report of college experience, and V is transcript reports of educational attainment,
which are an alternative mismeasure of D�. Let X denote a vector of other observable covariates we may
be interested in that can affect either wages, schooling, and/or lying, so X could include observed attributes
of the individual and of her job.
In the college and wages example, equation (4) will hold if wages depend on both actual and self

reported education, i.e., D� and D, but not on the transcript reports V . This should hold if employers rely
on resumes and worker's actual knowledge and abilities, but don't see college transcripts. Equation (5)
or equivalently (7) makes sense, in that errors in college transcripts depend on the actual D�, but not on
what individuals later self report. However, this assumption could be violated if individuals see their own
transcripts and base their decision to lie in part on what the transcripts say. Finally, (6) is likely to hold
assuming transcripts and self reports are accurate enough on average to both be positively correlated with
the truth.
De�ne the function g .X/ by

g .X/ D E
�
V j D� D 1; X

�
.
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THEOREM 1: If Assumptions A1 and A2 hold then R.D; X/ satis�es

R.D; X/ D
E .YV j D; X/� E .Y j D; X/ g .X/

E .V j D; X/� g .X/
: (9)

and r .X/ D R.1; X/� R.0; X/ satis�es

r.X/ D E .Y j D D 1; X/�E .Y j D D 0; X/C
cov .Y; V j D D 0; X/

g .X/� E .V j D D 0; X/
�

cov .Y; V j D D 1; X/
g .X/� E .V j D D 1; X/

:

(10)

We now consider set identi�cation of r.X/ based on equation (10), and then follow that with additional
assumptions that suf�ce for point identi�cation of R.D; X/, and hence of r.X/, based on equation (9).

2.1 Set Identi�cation Bounds Using an Instrument

ASSUMPTION A3: Assume that 0 � E .V j D D 0; X/ < E .V j D D 1; X/ � g .X/

Assumption A3 is a very mild set of inequalities. Having the support of V be nonnegative suf�ces to
make the expectations in Assumption A3 nonnegative. E .V j D D 0; X/ < E .V j D D 1; X/ essentially
means that self reports are positively correlated with the instrument, which should hold since both would
typically be positively correlated with the truth. In the college example, this inequality is equivalent to
Pr .V D 1 j D D 0; X/ < Pr .V D 1 j D D 1; X/, meaning that people reporting going to college are more
likely to have a transcript that says they went to college than people who report not going to college. Given
equation (7), violation of this inequality would require a relatively large fraction of people to reverse lie,
that is, claim to not have college when they have in fact gone to college.
De�ne �� .X/ by

�� .X/ D g .X/� E .V j D D 1; X/

So the last inequality in Assumption A3 is �� .X/ � 0. When V is a mismeasure of D�, having �� .X/ � 0 is
equivalent to Pr .V D 1 j D D 1; X/ � Pr .V D 1 j D� D 1; X/, which basically says that the instrument
is closer to the truth than to the self report. This holds if a transcript is more likely to say you went to
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college when you are in the set of people that actually did go to college than when you are in the set of
people that claimed to have been to college. It can also be readily shown that this last equality holds if
Pr .V D 1 j D D 1; D� D 1; X/ � Pr .V D 1 j D D 1; D� D 0; X/, which means that among people who
claim college, those who actually went to college have a higher chance of their transcript saying they went
to college than those that who's claims to college are misreports. As with some earlier assumptions, this
assumption in any of its forms will hold if people's decision to lie, or accidental misreporting, is unrelated
to transcript errors.

COROLLARY 1.: Let Assumptions A1, A2, and A3 hold. Then r.X/ lies in an identi�ed interval that is
bounded from below if cov .Y; V j D D 0; X/ > 0 and bounded from above if cov .Y; V j D D 0; X/ < 0.
If there exists an identi�ed positive � .X/ such that � .X/ � �� .X/ then r.X/ lies in an identi�ed bounded
interval.

Corollary 1 provides bounds on r .X/ whether an identi�ed � .X/ exists or not, but the bounds are
improved given a � .X/. For an example of a � .X/, suppose that E .V j D� D 1; X/ D E .V j D� D 1/,
that is, the probability that a school produces the transcript error V D 0when D� D 1 is unrelated to an
individual's observed attributes X , e.g., this would hold if all college graduates are equally likely to have the
school lose their �le or otherwise mistakenly report that they are not graduates. Then g.X/ is independent
of X , and � .X/ D supx E .V j D D 1; X D x/�E .V j D D 1; X/which may be strictly positive for many
values of X .
Corollary 1 follows immediately from inspection of equation (10), as does the construction of bounds

for r.X/. All of the terms on the right of equation (10) are moments of observable data, and hence are
identi�ed, except for g .X/. By Assumption A3, a lower bound on g .X/ is E .V j D D 1; X/. An upper
bound of g .X/ is sup

�
supp .V /

�
, since g .X/ is an expectation of V and so cannot exceed the largest value

V can take on. Note that when V is a mismeasure of D� as in the college example, this upper bound of
g .X/ is one. From Assumptions A1 and A2, all of the expectations and covariances on the right of equation
(10) exist. The function g.x/ appears only in the denominators of the last two terms in equation (10). By
Assumption A3, the third term in equation (10) lies in the interval bounded by the two points

cov .Y; V j D D 0; X/
E .V j D D 1; X/� E .V j D D 0; X/

and
cov .Y; V j D D 0; X/

sup
�
supp .V /

�
� E .V j D D 0; X/

Both of which are �nite. Similarly, the last term in equation (10) lies in the interval bounded by the two
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points
cov .Y; V j D D 1; X/

�� .X/
and

cov .Y; V j D D 1; X/
sup

�
supp .V /

�
� E .V j D D 1; X/

The second of these points is �nite. Given only assumptions A1, A2, and A3, �� .X/ � 0 so the �rst of
the above points can be in�nite. Whether it is plus or minus in�nity, and hence whether we only have a
lower or upper bound for r .X/, depends on the sign of cov .Y; V j D D 1; X/. If we have a � .X/ with
0 < � .X/ � �� .X/, then we instead obtain the �nite bound cov .Y; V j D D 1; X/ =� .X/.
To construct the identi�ed interval that contains r .X/, we must consider four cases corresponding to

the four possible pairs of signs that cov .Y; V j D D 0; X/ and cov .Y; V j D D 1; X/ can take on. Note
that the denominators of the last two terms in equation (10) are positive. If cov .Y; V j D D 0; X/ and
cov .Y; V j D D 1; X/ have opposite signs, then r .X/ is strictly increasing or decreasing in g .X/, so the
interval that r .X/ can lie in is bounded by equation (10) evaluated at the lowest and highest values g .X/ can
take on, the highest being sup

�
supp .V /

�
and lowest either E .V j D D 1; X/ or E .V j D D 1; X/C� .X/

if a � .X/ is known. If cov .Y; V j D D 0; X/ and cov .Y; V j D D 1; X/ have the same signs, then these
could still be bounds on r .X/, but it is also possible in that case that r .X/ either �rst increases and then
decreases in g .X/ or vice versa, in which case the point where the derivative of r .X/ with respect to g .X/
equals zero may also be a bound.
Although Assumption A3 is already rather weak, one could similarly obtain a looser bound by replacing

it with the weaker assumption that 0 � E .V j D� D 0; X/ � E .V j D� D 1; X/. This is little more
than the assumption that transcripts be right more often than they are wrong, that is, people with college
education will have a higher probability of transcripts reporting college education than those without college
education.

2.2 Point Identi�cation Using an Instrument

We now consider additional assumptions that permit point identi�cation of r .X/.
COROLLARY 2: Let Assumptions A1 and A2 hold. Assume the function g .X/ is known and E .V j D; X/ 6D

g .X/. Then R.D; X/ is identi�ed by

R.D; X/ D
E .Y .V � g .X// j D; X/
E ..V � g .X// j D; X/

(11)
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Identi�cation of r .X/ is then given by r .X/ D R.1; X/ � R.0; X/. Corollary 2 follows immediately
from Theorem 1 by substituting g .X/ for E .V j D� D 1; X/ in equation (9), and observing that all the
other terms in equation (9) are expectations of observables, conditioned on other observables, and hence
are themselves identi�ed. One way Corollary 2 might hold is if a form of validation data exists. For
example if D and D� refer to graduating from college, then g .X/ could be obtained from a survey of
transcripts just of people known to have graduated college. A special case of this assumption holding is if
V is a mismeasure of D�, as when V is the transcript report, and g .X/ D 1, that is, if transcript errors of
the form V D 0 when D� D 1 are ruled out.
Another example or variant of Corollary 2 is the following.

ASSUMPTION A3: There exists an x1 such that

E
�
V j D� D 1; X

�
D E .V j X D x1/ (12)

and
E .V j D; X/ 6D E .V j X D x1/ (13)

Equation (12) assumes that V has the same mean for people who have X D x1 as for people that have
D� D 1 and any value of X . One set of suf�cient (but stronger than necessary) conditions for equation
(12) to hold is if E .V j D� D 1; X D x1/ D E .V j D� D 1/, so for people having college (D� D 1), the
probability of a transcript error is unrelated to one's personal attribute information X , and if

Pr
�
D� D 1 j X D x1

�
D 1; (14)

so people who have X D x1 are an observable subpopulation that de�nitely have some college. In our
application, we use Corollary 3 below for identi�cation and we take this subpopulation x1 to be individuals
with very high test scores and self reported advanced degrees. Note that if equation (14) holds then equation
(12) would only be violated if colleges systematically made more or fewer errors when producing transcripts
for individuals with attributes X D x1 than for students with other attribute values.
Equation (13) is a technicality that, analogous to the assumption that E .V j D; X/ 6D g .X/ in Corollary

2, will avoid division by zero in Corollary 3 below. It is dif�cult to see why it should not hold in general,
and it is empirically testable since it depends only on observables. However, if both equations (12) and (14)
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hold then equation (13) will not hold for X D x1. This means that R.D; x1/ cannot be identi�ed in this
case, though we still identify R.D; X/ for X 6D x1. This is logical because if all individuals having X D x1
have D� D 1 by equation (14), then none of them can be lying when reporting D D 1.

COROLLARY 3: If Assumptions A1, A2, and A3 hold then R.D; X/ is identi�ed by

R.D; X/ D
E .YV j D; X/� E .Y j D; X/ E .V j X D x1/

E .V j D; X/� E .V j X D x1/
: (15)

Corollary 3 follows Theorem 1, by substituting equation (12) into equation (9) to obtain equation (15),
and equation (13) makes the denominator in equation (15) be nonzero.

Given identi�cation of R.D; X/ by Corollary 2 or 3, the effects of lying r.X/ is also identi�ed by
r.X/ D R.1; X/� R.0; X/.
Although rather more dif�cult to interpret and satisfy than the assumptions in Corollaries 2 and 3, yet

another alternative set of identifying assumptions is equations (4), (6) and Cov .D�; V j D; X/ D 0, which
by equation (3) implies Cov .Y; V j X/ D r.X/Cov .D; V j D; X/which can then be solved for, and hence
identi�es, r.X/.

3 Identi�cation Without an Instrument

We now consider identi�cation based on restrictions on moments of � rather than on the presence of an
instrument. In particular, we will assume that the second and third moments of � do not depend on D�, D,
and X . The method of identi�cation here is similar to that of Chen, Hu, and Lewbel (2008b), though that
paper imposes the usual measurement error assumption that the outcome Y is conditionally independent
of the mismeasure D, conditioning on the true D�, or equivalently, it assumes that r.X/ D 0. One could
modify Chen, Hu, and Lewbel (2008b) to identify our effects of lying model in part by including D in the
list of regressors and treating our V from the previous section as the observed mismeasure of D�. However,
in that case one would need both an instrument V with certain properties and restrictions on higher moments
of �, while in the present paper these are alternative methods of identi�cation.

ASSUMPTION B2:
E
�
� j D�; D; X

�
D 0; (16)
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E
�
�k j D�; D; X

�
D E

�
�k
�
for k D 2; 3; (17)

there exists an x0 such that

Pr
�
D D 0 j D� D 1; X D x0

�
D 0 and Pr .D D 0 j X D x0/ > 0; (18)

and
E
�
Y j D� D 1; D; X

�
� E

�
Y j D� D 0; D; X

�
(19)

Equation (16) can be assumed to hold without loss of generality by de�nition of the model error �.
Equation (17) says that the second and third moments of the model error � do not depend on D�; D; X , and
so would hold under the common modeling assumption that the error � in a wage equation is independent
of the regressors.
Equation (18) implies that people, or at least those in some subpopulation fX D x0g, will not underreport

and claim to not have been to college if they in fact have been to college. At least in terms of wages, this is
plausible in that it is hard to see why someone would lie to an employer by claiming to have less education
or training than he or she really possesses.
Finally, equation (19) implies that the impact of D� on Y conditional on D and X is known to be

positive. This makes sense when Y is wages and D� is the true education level, since ceteris paribus, higher
education on average should result in higher wages on average.
De�ne

� 2Y jD;X .D; X/ D E
�
Y 2jD; X

�
� [E .Y jD; X/]2 ;

�3Y jD;X .D; X/ D E
�
[Y � E .Y jD; X/]3 jD; X

�
;

�.D; X/ D � 2Y jD;X .D; X/� �
2
Y jD;X .0; x0/;

�.D; X/ D �3Y jD;X .D; X/� �
3
Y jD;X .0; x0/C 2E .Y jD; X/ �.D; X/;


 .D; X/ D �.D; X/2 C [E .Y jD; X/]2 �.D; X/� E .Y jD; X/ �.D; X/:

THEOREM 2: Suppose that Assumptions A1 and B2 hold and that �.D; X/ 6D 0 for .D; X/ 6D .0; x0/.
Then, R.D; X/ and s.D; X/ are identi�ed as follows:
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i) if .D; X/ D .0; x0/, then R.D; X/ D E .Y jD; X/;
ii) if .D; X/ 6D .0; x0/, then

R.D; X/ D
�.D; X/�

p
�.D; X/2 C 4�.D; X/
 .D; X/

2�.D; X/
;

and
s.D; X/ D

�.D; X/
E .Y jD; X/� R.D; X/

C E .Y jD; X/� R.D; X/:

As before given R.D; X/ we may identify the effects of lying r.X/ using r.x/ D R.1; X/ � R.0; X/.
Identi�cation of s.D; X/ in Theorem 2 means that the entire conditional mean function H in equation 1 is
identi�ed.
Some intuition for this identi�cation comes from observing that, conditional on X , the number of equal-

ity constraints imposed by the assumptions equal the number of unknowns. One of these equations is a
quadratic, and the inequality (19) is only needed to identify which of the two roots is correct. Based on
this intuition, identi�cation based on alternative equality restrictions should be possible, e.g., in place of
equation (18) one could consider the constraint that the third moment E

�
�3
�
equal zero. Also, dropping

inequality assumptions like (19) will result in set rather than point identi�cation, where the sets are �nite
and consist of only two or three possible values.

4 Unconfoundedness

By construction the function r.X/ is the difference in the conditional mean of Y (conditioning on D, X , and
on D� D 0) when D changes from zero to one. Assuming D is the reported response and D� is the truth,
here we formally provide the unconfoundedness condition required to have this r.X/ equal the returns to
lying. Consider the weak version of the Rubin (1974) or Rosenbaum and Rubin (1984) unconfoundedness
assumption given by equation (20), interpreting D as a treatment. Letting Y .d/ denote what Y equals given
the response D D d, if

E[Y .d/ j D; D� D 0; X ] D E[Y .d/ j D� D 0; X ] (20)

then it follows immediately from applying, e.g., Heckman, Ichimura, and Todd (1998), that E[Y .1/�Y .0/ j
D� D 0; X ] D r.X/ is the conditional average effect of D, and so is the conditional on X average returns
to lying.
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5 Estimation Using an Instrument

We now provide estimators of R.D; X/ and hence of r.X/ following from Corollary 2 or 3 of Theorem 1.
We �rst describe nonparametric estimators that are based on ordinary sample averages, which can be used if
X is discrete. We then discuss kernel based nonparametric estimation, and �nally we provide a simple least
squares based semiparametric estimator that does not require any kernels, bandwidths, or other smoothers
regardless of whether X contains continuous or discrete elements.

5.1 Nonparametric, Discrete X Estimation

Note that while identi�cation only requires Assumption A3 to hold for a single value of X , that is, x1, it
may be the case that this assumption is known to hold for a range of values of x1. We may then replace
E .V j X D x1/ with the expected value of V conditional on X equalling any value in this range. This
may then improve the accuracy with which we can estimate this conditional expectation. In particular if
X has any continuous components then E .V j X D x1/ for a single value of x1 is conditioning on a zero
probability event, the estimate of which will converge at a slower rate than conditioning on a range of values
X that has nonzero probability. Therefore, de�ne Ui to be a dummy variable such that

Ui D I .X i 2 fx1: Assumption A3 is known to holdg/ ; (21)

where I .:/ is the indicator function. In other words, let Ui equal one if equations (12) and (13) are as-
sumed to hold when replacing x1 in those equations with X i , otherwise let Ui equal zero. It then follows
immediately from Corollary 3 that equation (15) holds replacing E .V j X D x1/ with E .V j U D 1/, so

R.D; X/ D
E .YV j D; X/� E .Y j D; X/ E .V j U D 1/

E .V j D; X/� E .V j U D 1/
: (22)

We �rst consider estimation in the simple case where X is discrete. Replacing the expectations in
equation (22) with sample averages in this case gives the estimators

bR.d; x/ D b�Y;V;X;d �b�Y;X;db�b�V;X;d �b�X;db� , br.x/ D bR.1; x/� bR.0; x/: (23)
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with

b�Y;V;X;d D
1
n

nX
iD1
YiVi I .X i D x; Di D d/, b�Y;X;d D 1

n

nX
iD1
Yi I .X i D x; Di D d/,

b�V;X;d D
1
n

nX
iD1
Vi I .X i D x; Di D d/, b�X;d D 1

n

nX
iD1

I .X i D x; Di D d/,

b�V;U D
1
n

nX
iD1
ViUi , b�U D 1

n

nX
iD1
Ui , b� D b�V;U=b�U

Estimation based on equation (11) is the same replacingb� with g.X/ in equation (23)
One may also consider the unconditional mean wages Rd D E [R .d; X/] and unconditional average

effects of lying r D E [r .X/], which may be estimated by

bRd D 1
n

nX
iD1

bR.d; X i /, br D 1
n

nX
iD1
br.X i /. (24)

Assuming independent, identically distributed draws of fYi ; Vi ; X i ; Di ;Ui g, and existence of relevant
variances, it follows immediately from the Lindeberg-Levy central limit theorem and the delta method
that bR.d; x/,br.x/, bRd , andbr are root n consistent and asymptotically normal, with variance formulas as
provided in the appendix, or that can be obtained by an ordinary bootstrap. Analogous limiting distribution
results will hold with heteroskedastic or dependent data generating processes, as long as a central limit
theorem still applies.

5.2 General Nonparametric Estimation

Letting � D E .V j U D 1/, equation (22) can be rewritten as

R.D; X/ D
E [Y .V � �/ j D; X ]
E [.V � �/ j D; X ]

: (25)

Equation (11) can also be written in the form of equation (25) by replacing � with g .X/.
Assume n independent, identically distributed draws of fYi ; Vi ; X i ; Di ;Ui g. Let X i D .Zi ;Ci / where

Z and C are, respectively, the vectors of discretely and continuously distributed elements of X . Similarly
let x D .z; c/. Let b� D b�V;U=b�U if estimation is based on equation (22), otherwise replace b� with g .x/.
Using equation (25), a kernel based estimator for R.D; X/ is

bR.d; x/ D 6niD1Yi .Vi �b�/ K [.Ci D c/=b]I .Zi D z/I .Di D d/
6niD1 .Vi �b�/ K [.Ci D c/=b]I .Zi D z/I .Di D d/ (26)
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where K is a kernel function and b is a bandwidth that goes to zero as n goes to in�nity. Equation (26)
is numerically identical to the ratio of two ordinary nonparametric Nadaraya-Watson kernel regressions of
Y .V �b�/ and V �b� on X; D, which under standard conditions are consistent and asymptotically normal.
These will have the same slower than root n rate of convergence as regressions that use a known � in
place of the estimator b�, because an estimated b� converges at the rate root n by the law of large numbers.
Alternatively, equation (25) can be rewritten as the conditional moment

E [.Y � R.D; X// .V � �/ j D; X ] D 0 (27)

which may be estimated using, e.g., the functional GMM estimator of Ai and Chen (2003), or by Lewbel's
(2007b) local GMM estimator , with limiting distributions as provided by those references.
Given bR.d; x/ from equation (26) we may as before construct br.x/ D bR.1; x/ � bR.0; x/, and un-

conditional estimates bRd andbr by equation (24). We also construct trimmed unconditional effectsbrt D
1
n
Pn
iD1br.X i /Iti and similarly for bRdt , where Iti is a trimming parameter that equals one for most observa-

tions i , but equals zero for tail observations. Assuming regularity conditions such as Newey (1994) these
trimmed unconditional effects are root n consistent and asymptotically normal estimates of the trimmed
means rt and Rdt .

5.3 Simple Semiparametric Estimation

Assume we have a parameterization R.D; X; �/ for the function R.D; X/ with a vector of parameters � .
The function s.D; X/ and the distribution of the model error � are not parameterized. Then based on the
de�nition of � and equation (27), � and � could be jointly estimated based on Corollary 3 by applying
GMM to the moments

E [.V � �/U ] D 0 (28)

E [ .D; X/ .Y � R.D; X; �// .V � �/] D 0 (29)

for a chosen vector of functions  .D; X/. For estimation based on Corollary 2, the estimator would just
use the moments given by equation (29) replacing � with g .X/.
Let W D

�
1; D; X 0

�0. If R has the linear speci�cation R.D; X; �/ D W 0� then let  .D; X/ D W to
yield moments E

�
W
�
Y �W 0�

�
.V � �/

�
D 0, so � D E

�
.V � �/WW 0

��1 E [.V � �/WY ]. This then
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yields a weighted linear least squares regression estimator

b� D " nX
iD1

.Vi �b�/WiW 0
i

#�1 " nX
iD1

.Vi �b�/WiYi# (30)

based on Corollary 3, or the same expression replacing b� with g .X i / based on Corollary 2. Givenb� we
then have bR.D; X/ D W 0b� . In this semiparametric speci�cation r.x/ is a constant withbr.x/ D br D b�1,
the �rst element ofb� . Note that both GMM based on equation (29) and the special case of weighted linear
regression based on equation (30) do not require any kernels, bandwidths, or other smoothers for their
implementation.

6 Estimation Without an Instrument

We now consider estimation based on Theorem 2. As in the previous section, let K be a kernel function, b be
a bandwidth, and X i D .Zi ;Ci / where Z and C are, respectively, the vectors of discretely and continuously
distributed elements of X . Also let x D .z; c/. For k D 1; 2; 3, de�ne

bE �Y k jD D d; X D x� D 6niD1Y
k
i K [.Ci D c/=b]I .Zi D z/I .Di D d/

6niD1K [.Ci D c/=b]I .Zi D z/I .Di D d/
(31)

This is a standard Nadayara-Watson Kernel regression combining discrete and continuous data, which pro-
vides a uniformly consistent estimator of E

�
Y k jD D d; X D x

�
under standard conditions. De�ne

b� 2Y jD;X .d; x/ D bE �Y 2jD D d; X D x�� �bE .Y jD D d; X D x/�2 ;
b�3Y jD;X .d; x/ D bE ��Y � bE .Y jD D d; X D x/�3 jD D d; X D x� ;

b�.d; x/ D b� 2Y jD;X .d; x/�b� 2Y jD;X .0; x0/;b�.d; x/ D b�3Y jD;X .d; x/� �3Y jD;X .0; x0/C 2bE .Y jD D d; X D x/b�.d; x/;b
 .d; x/ D b�.d; x/2 C �bE .Y jD D d; X D x/�2b�.d; x/� bE .Y jD D d; X D x/b�.d; x/:
Based on Theorem 2 and uniform consistency of the kernel regressions, a consistent estimator of R.d; x/ is
then bR.0; x0/ D bE .Y jD D 0; X D x0/ ,
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bR.d; x/ D b�.d; x/�pb�.d; x/2 C 4b�.d; x/b
 .d; x/
2b�.d; x/ for .d; x/ 6D .0; x0/.

As before, every conditional expectation above that conditions on X D x0 can be replaced by an expec-
tation conditional on X equalling any value x having the property that the assumptions of Theorem 2 hold
replacing x0 with that value x .
If X does not contain any continuously distributed elements, then these estimators are smooth functions

of cell means, and so are root n consistent and asymptotically normal by the Lindeberg Levy central limit
theorem and the delta method. Given bR.d; x/ from equation (26) we may as before construct br.x/ DbR.1; x/ � bR.0; x/, and unconditional effects bRd andbr by equation (24). Also as before, root n consistent,
asymptotically normal convergence of trimmed means of bRd andbr is possible using regularity conditions
as in Newey (1994) for two step plug in estimators.

7 Effects of Misreporting College Attainment

Here we report results of empirically implementing our estimators of r.x/where D is self reports of school-
ing and Y is log wages. In this context, our effects of lying estimates should be interpreted only as the
difference in means between accurate reporters and misreporters of college for a limited sample, rather than
as actual returns to lying about schooling, for many reasons. First, our conditional mean estimates cannot
control for the selection effects that are at the heart of the modern literature on wages and schooling going
back at least to Heckman (1979). Similarly, unconfoundedness with respect to lying based on equation
(20) may not hold. Also, people who misreport college may similarly misreport their wages. Our results
may also differ from actual returns to lying by the fact that both the risks and the returns to misreporting
on a survey are lower than for lying on a job application, though presumably the cost of potentially being
caught in a lie in any context provides some incentive to report the same education level on a survey as was
reported to one's employer. Finally, our sample may not be representative of the general population.

7.1 Preliminary Data Analysis

Kane, Rouse, and Staiger (1999) estimate a model of wages as a function of having either some college, an
associate degree or higher, or a bachelors degree or higher. Their model also includes other covariates, and
they use data on both self reports and transcript reports of education level. Their data is from the National
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Longitudinal Study of High School Class of 1972 (NLS-72) and a Post-secondary Education Transcript
Survey (PETS). We use their data set of n D 5912 observations to estimate the effects of lying, de�ning Y
to be log wage in 1986, D to be one if an individual self reports having "some college" and zero otherwise,
while V is one for a transcript report of having "some college" and zero otherwise (both before 1979). We
also provide estimates where D and V are self and transcript reports of having an associate degree or more,
and reports of having a bachelor's degree or more. We take X to be the same set of other regressors Kane,
Rouse, and Staiger (1999) used, which are a 1972 standardized test score and zero-one dummy variables
for female, black nonhispanic, hispanic, and other nonhispanic.
The means of D and V (which equal the fractions of our sample that report having that level of college

or higher) are 0.6739 and 0.6539 for "some college," 0.4322 and 0.3884 respectively for "Associate degree,"
and 0.3557 and 0.3383 for "Bachelors degree." The average log wage Y is 2.228.

Table 1: Effects of Lying and Schooling Treating Transcripts as True
Some college Associate degree Bachelor's degree

r if V=D� 0.1266 ( 0.03129 ) 0.2322 ( 0.02748 ) 0.1948 ( 0.04451 )
r if V=D�, linear 0.07868 ( 0.02864 ) 0.1681 ( 0.02777 ) 0.1269 ( 0.04082 )
s if V=D� 0.2831 ( 0.01366 ) 0.2958 ( 0.01288 ) 0.3181 ( 0.01280 )
E(DV) 0.6204 0.3794 0.3325
E[D(1-V)] 0.05345 0.05277 0.02317
E[(1-D)V] 0.03349 0.008965 0.005751
E[(1-D)(1-V)] 0.2926 0.5589 0.6385

Standard Errors are in Parentheses

If D� were observed along with Y and D, then the functions r.x/ and s .d; x/ could be immediately
estimated from equation (3). Table 1 provides preliminary estimates of r and s based on this equation, under
the assumption that transcripts have no errors. The row "r if V=D�" in Table 1 is the sample estimates of
E.Y jV D 0; D D 1/� E.Y jV D 0; D D 0/, which would equal an estimate of r D E [r .X/] if V D D�,
that is, if the transcripts V were always correct. The row, "r if V=D�, linear" is the coef�cient of D in a
linear regression of Y on D, V , and X , and so is another estimate of r that would be valid if if V D D� and
given a linear model for log wages.
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The third row of Table 1 is the sample analog of E.Y jV D 1/� E.Y jV D 0/, which if V D D� would
be an estimate of the effects of schooling s D E [s .D; X/] (that is, the difference in conditional means of
log wages between those with D� D 1, versus those with D� D 0, which equals returns to schooling if the
effects of schooling satisfy an unconfoundedness condition). In this and all other tables, standard errors are
obtained by 400 bootstrap replications, and are given in parentheses.
Table 1 also shows the fraction of truth tellers and liars, if the transcripts V were always correct. The

rows labeled E(DV) and E[(1-D)(1-V)] give the fraction of observations where self and transcript reports
agree that the individual respectively either has or does not have the given level of college. The row labeled
E[D(1-V)] gives the fraction of relevant liars if the transcripts are correct, that is, it is the fraction who claim
to have the given level of college, D D 1, while their transcripts say they do not, V D 0. This fraction is a
little over 5% of the sample for some college or Associate degree, but only about half that amount appear
to misreport having a Bachelor's degree.
If V has no errors, then Table 1 indicates a small amount of lying in the opposite direction, given by the

row labeled E[(1-D)V]. These are people who self report having less education than is indicated by their
transcripts, ranging from a little over half a percent of the sample regarding college degrees to almost 3% for
"some college." It is dif�cult to see a motive for lying in this direction, which suggests ordinary reporting
errors in self reports, transcript reports, or both.
Prior to estimating r.x/, we examined equation (6) of Assumption A2, which is testable. A suf�cient

condition for equation (6) to hold is that E.V jD D 1/ � E.V / 6D 0. In our data the t-statistic for the null
hypothesis E.V jD D 1/ D E.V / is over 40 for each of the three levels of schooling considered, which
strongly supports this assumption.

7.2 Instrumental Variable Based Estimates

We now report instrumental variable based estimates, speci�cally, Table 2 summarizes estimates of r.x/
based on Corollary 3. We de�ne U in equation (21) to equal one for individual's that both self report
having a masters degree or a PhD and are in the top decile of the standardized test scores. We are therefore
assuming that Assumption A3 holds for x0 equal to any X that includes these attributes of a self reported
advanced degree and a high test score.
In our data the mean of U is 0.03468, so about 3.5% of our sample have both very high test scores and

self report an advance degree. We could have basedU on transcript reports of a graduate degree instead, but
then by construction we would have b�V jU D 1. In our data, b�V jU is .971 for a Bachelor's degree, .981 for
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an Associate degree, and 1.000 for some college. Nonparametric estimates ofbr.x/ D bR.1; x/� bR.0; x/ are
obtained with bR.d; x/ given by equation (26) with these estimates ofb�V jU , and where the variable C in X is
the test score, while Z is the vector of other elements of X . The �rst row of Table 2 contains r , the sample
average ofbr.X/, while the second row has the estimated trimmed mean rt , which is the sample average
ofbr.X/ after removing the highest 5% and lowest 5% ofbr.X/ in the sample. Next are the lower quartile,
middle quartile (median) and upper quartile rq1, rmed , and rq3, ofbr.X/ in the sample. The �nal row, "r semi,
linear" is a semiparametric estimate of r using equation (30). Standard errors, reported in parentheses, are
based on 400 bootstrap replications. One set of suf�cient regularity conditions for bootstrapping here is
Theorem B in Chen, Linton, and Van Keilegom (2003).

Table 2: Effects of Lying, Nonparametric and Semiparametric Corollary 2 IV Estimates
Some college Associate degree Bachelor's degree

r nonparametric 0.07052 ( 0.03420 ) 0.1696 ( 0.3335 ) 0.1250 ( 1.918 )
rt nonparametric 0.07355 ( 0.03166 ) 0.1796 ( 0.04158 ) 0.07109 ( 0.1217 )
rq1 nonparametric -0.05768 ( 0.04930 ) 0.09099 ( 0.06185 ) -0.1654 ( 0.1841 )
rmed nonparametric 0.06447 ( 0.03663 ) 0.1287 ( 0.04903 ) 0.06696 ( 0.1003 )
rq3 nonparametric 0.1421 ( 0.03903 ) 0.3214 ( 0.05156 ) 0.3002 ( 0.1596 )
r semi, linear 0.08008 ( 0.02940 ) 0.1610 ( 0.03362 ) 0.05613 ( 1.138 )

For the nonparametric estimates, the kernel function K is a standard normal density function, with band-
width b = 0.1836 given by Silverman's rule. Doubling or halving this bandwidth changed most estimates
by less than 10%, indicating that the results were generally not sensitive to bandwidth choice. An exception
is that mean and trimmed mean estimates for the Bachelor's degree, which are small in Table 2, become
larger (closer to the median r estimate) when the bandwidth is doubled. The results for the bachelor's de-
gree are also much less precisely estimated than for some college or associate degree, with generally more
than twice as large standard errors. Based on Table 1, we might expect that far fewer individuals misreport
having a bachelor's degree, so the resulting imprecision in the Bachelor's degree estimates could be due to
a much smaller fraction of data points that are informative about misreporting.
The nonparametric mean and median estimates of r are signi�cant in Table 2, except for the Bachelor's

degree. Overall, these results indicate that those who misreport by claiming to have have some college
have about 6% to 8% higher wages than those who tell the truth about not having any college on average,
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and those who misreport by claiming to have an associate degree have about 13% to 18% higher wages.
The point estimates for lying about having a Bachelor's degree are lower, but they also have much larger
standard errors. The variability in these estimated effects is quite large, ranging from a zero or negative
effect at the �rst quartile to effects of 14% for some college to 32% for a degree at the third quartile. The
semiparametric estimates of r are similar to the mean of the nonparametric estimates, though the variation in
the quantiles of the nonparametric estimates suggests that the semiparametric speci�cation, which assumes
r is constant, is not likely to hold.
If transcripts V are very accurate, then V should be close to D�, and the estimates of r in Table 1

should be close to those in Table 2. The linear model estimates in Table 1 are close to the semiparametric
linear model estimates in Table 2 (for some college and associate degrees), however, the nonparametric
estimates of r in Table 1 are much larger than the mean and median nonparametric estimates in Table 2.
In linear models measurement error generally causes attenuation bias, but in contrast here the potentially
mismeasured data estimates appear too large rather than too small. This could be due to nonlinearity, or
because the potentially mismeasured variable V is highly correlated with another regressor, D.
We should expect that the effects of lying would be smaller than the returns to actually having some

college or a degree. These effects of actual schooling are not identi�ed from the assumptions in Corollary
2 or 3. Table 1 gives estimates of the effects of schooling s ranging from 28% for some college to 32%
for a bachelor's degree, though these estimates are only reliable if transcripts V are accurate. These are
indeed higher than the effects of lying, as one would expect. Also, while we would expect the effects of
schooling to increase monotonically with the level of schooling, we do not necessarily expect the effects of
lying to increase in the same way, because those effects depend on other factors like the plausibility of the
misreport.
Kane, Rouse, and Staiger (1999) report some substantial error rates in transcripts, however, those �nd-

ings are based on model estimates that could be faulty, rather than any type of direct veri�cation. It is
possible that transcripts are generally accurate, and in that case the ability of our estimator to produce rea-
sonable estimates of r would not be impressive, since one could then just as easily generate good estimates
of r using regressions or cell means as in Table 1. Therefore, to check the robustness of our methodology,
we reestimated the model after randomly changing 20% of the observations of V to 1 � V , thereby arti�-
cially making V a much weaker instrument. The resulting estimates of the mean and trimmed mean of r
were generally higher than those reported in Tables 1 and 2 (consistent with our earlier result that, in our
application, measurement error in V seems to raise rather than lower estimates of the effects of lying). As
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with the other estimates, the numbers for bachelor's degrees are unstable with very large standard errors.
However, the estimates of the median of r with this noisy V data are very close to the median estimates in
table 2 (though of course with larger standard errors) for some college and associate degree. Speci�cally,
the rmed estimates with substantial measurement error added to V were 0.070, 0.133, and 0.190, compared
to the rmed estimates in Table 2 of 0.064, 0.129, and 0.067.

Table 3: Nonparametric Corollary 3 IV Effects of Lying Linearized Coef�cient Estimates
X Some college Associate degree Bachelor's degree
blacknh -0.09208 (0.1246) -0.2429 (2.674) -0.3735 (2.288)
hispanic 0.01220 (0.1289) -0.1529 (1.627) -0.1541 (1.588)
othernh 0.2176 (0.1304) 0.1444 (1.265) 0.5398 (4.763)
female 0.09291 (0.06570) 0.2306 (0.5377) 0.2876 (3.370)
mscore -0.009755 (0.03807) 0.03345 (0.3496) -0.09489 (2.471)
constant 0.02449 (0.04635) 0.07127 (0.2840) 0.01803 (2.900)

To summarize howbr.x/ varies with regressors x , Table 3 reports the estimated coef�cients from linearly
regressing the nonparametric estimatesbr.x/ on x and on a constant. The results show a few interesting
patterns, including that women appear to have a larger effect of (possibly indicating higher returns to) lying
than men, and that individuals with above average high school test scores also have above average effects
of misreporting a higher degree of education. These results are consistent with the notion that the effects
of lying should be highest for those who can lie most plausibly (e.g., those with high ability) or for those
who may be perceived as less likely to lie (such as women). However, these results should not be over
interpreted, since they are mostly not statistically signi�cant.

8 Alternative Estimates Without IV

To check the robustness of our results to alternative identifying assumptions, in Table 4 we report the
effects of lying using the estimator based on Theorem 2, which does not use data on the instrument V .
These estimates are based only on self reports, and so do not use the transcript data in any way. For these
estimates we assume equation (18) holds for x0 equal to any value of X , which implies the assumption that
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that no one understates their education level by reporting D D 0 when D� D 1 (and hence that transcripts
are wrong for the few observations in the data that have D D 0 and V D 1).

Table 4: Effects of Lying, Nonparametric and Semiparametric Theorem 2 Estimates Without IV
Some college Associate degree Bachelor's degree

r nonparametric -0.4127 ( 28.66 ) 0.1917 ( 2.915 ) 0.1247 ( 18.27 )
rt nonparametric 0.05064 ( 0.1402 ) 0.1684 ( 0.1738 ) 0.09186 ( 0.2489 )
rq1 nonparametric -0.05096 ( 0.1446 ) -0.1065 ( 0.2406 ) -0.5425 ( 0.3659 )
rmed nonparametric 0.1179 ( 0.06115 ) 0.1495 ( 0.06191 ) 0.1958 ( 0.05549 )
rq3 nonparametric 0.2570 ( 0.1019 ) 0.2813 ( 0.1428 ) 0.3308 ( 0.2038 )

As should be expected, the estimates in Table 4 are mostly less precise than those in Table 2, in part
because they do not exploit any transcript information, and they assume no heteroskedasticity in the model
error �, which may not hold in this application. They are also more variable in part because they depend
on higher moments of the data, and so will be more sensitive to outliers in the �rst stage nonparametric
estimates. Still, the estimates in Table 4 are generally consistent with those in Table 2, and in particular
almost all of the differences between Tables 2 and 4 are not statistically signi�cant. Given the substantial
differences in estimators and identifying assumptions between Corollary 3 and Theorem 2, it is reassuring
that the resulting estimates are robust across the two methodologies.
In the Appendix we report the estimates of E [R.d; X/] corresponding to Tables 2 and 4. As one would

expect, these are generally more stable than the estimates of E [r.X/] reported in Tables 2 and 4, since r.X/
is a difference R.1; X/� R.0; X/ rather than a level R.d; X/.

9 Conclusions

We provide identi�cation and associated estimators for the conditional mean of an outcome Y , conditioned
upon an observed discrete variable D and an unobserved discrete variable D�. In particular, we identify
the effects of lying, that is, the average difference in the mean level of Y between individuals having the
unobserved D� D 0 and those having D� D 1 when the observed D D 0. Given an unconfoundedness
assumption this difference in conditional means equals either the returns to lying (if misreports of D are
intentional) or a placebo effect.
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In our empirical application, Y is log wages, while D and D� are self reports and actual levels of
educational attainment. We �nd that wages are on average about 6% to 12% higher for those who lie about
having some college, and from 8% to 20% higher on average for those who lie about having a college
degree, relative to those who tell the truth about not having college or a diploma. Median and trimmed
mean estimates appear to be more reliable and robust than estimates of raw mean returns and returns at
other quantiles. Our results are about the same based on either semiparametric or nonparametric estimation,
and are roughly comparable whether identi�cation and associated estimation is based on using transcript
reports as an instrument, or is based on higher moment error independence assumptions without exploiting
transcript data. Our results are also robust to arti�cially adding a great deal of noise to the instrument.
The plausibility of our particular identifying assumptions may be debated, but we believe much of

the value of this paper is in demonstrating that these effects of misreporting can be identi�ed at all, and
we expect future research will yield alternative assumptions that may be better suited to this and other
applications. It would be particularly useful in the future to investigate how these results may be extended
to handle confounding correlations with the unobserved treatment D�, to obtain returns to lying without
unconfoundedness assumptions.
In this application D and D� refer to the same binary event (educational attainment), with D a self

report of D�. However, our theorems do require having D and D� refer to the same binary event. More
generally, one could estimate the average effect of any binary treatment or choice D (e.g., exposure to
a law, a tax, or an advertisement) on any outcome Y (e.g., compliance with a law, income, expenditures
on a product) where the effect is averaged only over some subpopulation of interest indexed by D� (e.g.,
potential criminals, the poor, or a target audience of potential buyers), and where we do not observe exactly
who is in the subpopulation of interest. Our identi�cation strategy may thereby be relevant to a wide variety
of applications, not just effects of lying.
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10 Appendix

Proof of Lemmas 1 and 2: Consider Lemma 2 �rst:

Cov .D; V j X/ D E .DV j X/� E .D j X/ E .V j X/

D E [DE .V j D; X/ j X ]� E .D j X/ E .V j X/

D Pr .D D 1 j X/ E .V j D D 1; X/� E .D j X/ E .V j X/

D E .D j X/ [E .V j D D 1; X/� E .V j X/]

so Cov .D; V j X/ 6D 0 if and only if the right side of the above expression is nonzero. The proof of Lemma
1 works exactly the same way.

Proof of Theorem 1:
First observe that

E
�
D�V j D; X

�
D

1X
d�D0

Pr
�
D� D d� j D; X

�
E
�
D�V j D� D d�; D; X

�
D Pr

�
D� D 1 j D; X

�
E
�
V j D� D 1; D; X

�
D E

�
D� j D; X

�
E
�
V j D� D 1; X

�
and using this result we have

E .YV j D; X/ D R.D; X/E .V j D; X/C s.D; X/E
�
D�V j D; X

�
C E .�V j D; X/

D R.D; X/E .V j D; X/C s.D; X/E
�
D� j D; X

�
E
�
V j D� D 1; X

�
.

Also
E .Y j D; X/ D R.D; X/C s.D; X/E

�
D�jD; X

�
Use the latter equation to substitute s.D; X/E

�
D�jD; X

�
out of the former equation, and solve what re-

mains for R.D; X/ to obtain equation (9). Equation (10) then follows immediately from equation (9) using
r.X/ D R.1; X/� R.0; X/ and the properties of a covariance.

Proof of Theorem 2: Begin with equation (2), Y D R.D; X/ C s.D; X/D� C � with R.D; X/ D
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R.X/C r.X/D. Assumption B2 implies that

�Y jD;X � E .Y jD; X/ (32)

D E
��
R.D; X/C s.D; X/D�

�
jD; X

�
D R.D; X/C s.D; X/E

�
D�jD; X

�
;

�Y 2jD;X � E
�
Y 2jD; X

�
(33)

D E
��
R.D; X/C s.D; X/D� C �

�2
jD; X

�
D E

��
R.D; X/C s.D; X/D�

�2
jD; X

�
C E�2

D R.D; X/2 C 2R.D; X/s.D; X/E
�
D�jD; X

�
C s.D; X/2E

�
D�jD; X

�
C E�2

D R.D; X/2 C 2R.D; X/
�
�Y jD;X � R.D; X/

�
C s.D; X/

�
�Y jD;X � R.D; X/

�
C E�2

D �Y jD;X R.D; X/C .R.D; X/C s.D; X//
�
�Y jD;X � R.D; X/

�
C E�2;

and

�Y 3jD;X � E
�
Y 3jD; X

�
(34)

D E
��
R.D; X/C s.D; X/D� C �

�3
jD; X

�
D E

h�
R.D; X/C s.D; X/D�

�3
jD; X

i
C 3E

��
R.D; X/C s.D; X/D�

�
jD; X

�
E�2 C E�3

D R.D; X/3 C 3R.D; X/2s.D; X/E
�
D�jD; X

�
C3R.D; X/s.D; X/2E

�
D�jD; X

�
C s.D; X/3E

�
D�jD; X

�
C3�Y jD;X E�2 C E�3:

We now show that assumption B2 implies the identi�cation of E
�
�k
�
for k D 2; 3. This assumption

implies that

E
�
D�jD D 0; X D x0

�
D Pr

�
D� D 1jD D 0; X D x0

�
D Pr

�
D D 0jD� D 1; X D x0

� Pr .D� D 1jX D x0/
Pr .D D 0jX D x0/

D 0;
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and therefore,

�Y j0;x0 � E .Y jD D 0; X D x0/

D R.0; x0/C s.0; x0/E
�
D�jD D 0; X D x0

�
D R.0; x0/;

�Y 2j0;x0 � E
�
Y 2jD D 0; X D x0

�
D R.0; x0/2 C 2R.D; X/s.D; X/E

�
D�jD D 0; X D x0

�
Cs.D; X/2E

�
D�jD D 0; X D x0

�
C E�2

D R.0; x0/2 C E�2

D �2Y j0;x0 C E�
2;

and

�Y 3j0;x0 D E
�
Y 3jD D 0; X D x0

�
D R.0; x0/3 C 3�Y j0;x0E�

2 C E�3

D �3Y j0;x0 C 3�Y j0;x0
�
�Y 2j0;x0 � �

2
Y j0;x0

�
C E�3:

Therefore, we have

E�2 D �Y 2j0;x0 � �
2
Y j0;x0

� � 2Y j0;x0;

and

E�3 D �Y 3j0;x0 C 2�
3
Y j0;x0 � 3�Y j0;x0�Y 2j0;x0

D E
��
Y � �Y j0;x0

�3
jD D 0; X D x0

�
� �3Y j0;x0 :

In the next step, we eliminate s.D; X/ and E .D�jD; X/ in equations 32-34 to obtain a restriction only
containing R.D; X/ and known variables. We will use the following two equations repeatedly.

.R.D; X/C s.D; X//
�
�Y jD;X � R.D; X/

�
D �Y 2jD;X � E�2 � �Y jD;X R.D; X/ (35)
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s.D; X/E
�
D�jD; X

�
D �Y jD;X � R.D; X/ (36)

Notice that

s.D; X/ D
�Y 2jD;X � �

2
Y jD;X � �

2
Y j0;x0

�Y jD;X � R.D; X/
C �Y jD;X � R.D; X/

which also implies that we can't identify s.0; x0/ because �Y jDD0;x0 D R.0; x0/.
From here on we will for clarity drop the term .D; X/ when it is obvious from context. Consider

�Y 3jD;X � E
�
Y 3jD; X

�
D E

��
R.D; X/C s.D; X/D� C �

�3
jD; X

�
D E

��
R C sD�

�3
jD; X

�
C 3E

��
R C sD�

�
jD; X

�
E�2 C E

�
�3
�

D R.D; X/3 C 3R.D; X/2s.D; X/E
�
D�jD; X

�
C3R.D; X/s.D; X/2E

�
D�jD; X

�
C s.D; X/3E

�
D�jD; X

�
C3
�
R.D; X/C s.D; X/E

�
D�jD; X

��
E�2 C E�3

D R3 C 3R2
�
�Y jD;X � R

�
C 3Rs

�
�Y jD;X � R

�
C s2

�
�Y jD;X � R

�
C 3�Y jD;X E�2 C E�3

D R3 C 3R2
�
�Y jD;X � R

�
C 2Rs

�
�Y jD;X � R

�
C s .R C s/

�
�Y jD;X � R

�
C 3�Y jD;X E�2 C E�3

D R3 C 3R2
�
�Y jD;X � R

�
C 2Rs

�
�Y jD;X � R

�
C s

�
�Y 2jD;X � E�2 � �Y jD;X R

�
C3�Y jD;X E�2 C E�3

Which, with a little algebra can be written as

�Y 3jD;X D R
�
�Y 2jD;X � E�2

�
C .R C s/

�
�Y 2jD;X � E�2 � �Y jD;X R

�
C 3�Y jD;X E�2 C E�3

D R
�
�Y 2jD;X � E�2

�
C
�Y 2jD;X � E�2 � �Y jD;X R�

�Y jD;X � R
� �

�Y 2jD;X � E�2 � �Y jD;X R
�

C3�Y jD;X E�2 C E�3:

That is

0 D
�
�Y 2jD;X � E�2 � �Y jD;X R

�2
C
�
�Y 2jD;X � E�2

� �
�Y jD;X � R

�
R

�
�
�Y 3jD;X �

�
3�Y jD;X E�2 C E�3

�� �
�Y jD;X � R

�
:
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The restrictions on R simplify to the quadratic equation

��R2 C �R C 
 D 0;

where

� D �
�
�2Y jD;X �

�
�Y 2jD;X � E�2

��
;

� D
�
�
�
�Y 2jD;X � E�2

�
�Y jD;X C �Y 3jD;X �

�
3�Y jD;X E�2 C E�3

��
;


 D
�
�Y 2jD;X � E�2

�2
�
�
�Y 3jD;X �

�
3�Y jD;X E�2 C E�3

��
�Y jD;X :

Notice that
� 2Y jD;X D �Y 2jD;X � �

2
Y jD;X ;

�3Y jD;X � E
��
Y � �Y jD;X

�3
jD; X

�
D �Y 3jD;X C 2�

3
Y jD;X � 3�Y jD;X�Y 2jD;X :

We then simplify the expressions of �, �, and 
 as follows:

� D �
�
�2Y jD;X �

�
�Y 2jD;X � E�2

��
D

�
� 2Y jD;X � �

2
Y j0;x0

�
;

� D
�
�
�
�Y 2jD;X � E�2

�
�Y jD;X C �Y 3jD;X �

�
3�Y jD;X E�2 C E�3

��
D

�
�Y 3jD;X � 2�Y jD;X E�2 � E�3 � �Y jD;X�Y 2jD;X

�
D �3Y jD;X � 2�

3
Y jD;X C 3�Y jD;X�Y 2jD;X � 2�Y jD;X E�

2 � E�3 � �Y jD;X�Y 2jD;X
D �3Y jD;X � E�

3 � 2�3Y jD;X � 2�Y jD;X E�
2 C 2�Y jD;X�Y 2jD;X

D �3Y jD;X � E�
3 � 2�3Y jD;X � 2�Y jD;X E�

2 C 2�Y jD;X
�
� 2Y jD;X C �

2
Y jD;X

�
D �3Y jD;X � E�

3 C 2�Y jD;X
�
� 2Y jD;X � E�

2
�

D �3Y jD;X � �
3
Y j0;x0 C 2�Y jD;X

�
� 2Y jD;X � �

2
Y j0;x0

�
D �3Y jD;X � �

3
Y j0;x0 C 2�Y jD;X�;
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 D
�
�Y 2jD;X � E�2

�2
�
�
�Y 3jD;X �

�
3�Y jD;X E�2 C E�3

��
�Y jD;X

D
�
� 2Y jD;X C �

2
Y jD;X � E�

2
�2
�
�
�Y 3jD;X �

�
3�Y jD;X E�2 C E�3

��
�Y jD;X

D �4Y jD;X C 2�
2
Y jD;X

�
� 2Y jD;X � E�

2
�
C
�
� 2Y jD;X � E�

2
�2

��Y 3jD;X�Y jD;X C 3�
2
Y jD;X E�

2 C �Y jD;X E�3

D �4Y jD;X C 2�
2
Y jD;X�

2
Y jD;X C

�
� 2Y jD;X � E�

2
�2
� �Y 3jD;X�Y jD;X C �

2
Y jD;X E�

2 C �Y jD;X E�3

D �4Y jD;X C 2�
2
Y jD;X�

2
Y jD;X C

�
� 2Y jD;X � E�

2
�2

�
�
�3Y jD;X � 2�

3
Y jD;X C 3�Y jD;X�Y 2jD;X

�
�Y jD;X C �

2
Y jD;X E�

2 C �Y jD;X E�3

D �4Y jD;X C 2�
2
Y jD;X�

2
Y jD;X C

�
� 2Y jD;X � E�

2
�2

C2�4Y jD;X � 3�
2
Y jD;X�Y 2jD;X C �

2
Y jD;X E�

2 C �Y jD;X
�
E�3 � �3Y jD;X

�
D �4Y jD;X C 2�

2
Y jD;X�

2
Y jD;X C

�
� 2Y jD;X � E�

2
�2

C2�4Y jD;X � 3�
2
Y jD;X

�
� 2Y jD;X C �

2
Y jD;X

�
C �2Y jD;X E�

2 C �Y jD;X
�
E�3 � �3Y jD;X

�
D

�
� 2Y jD;X � E�

2
�2
� �2Y jD;X

�
� 2Y jD;X � E�

2
�
� �Y jD;X

�
�3Y jD;X � E�

3
�

D
�
� 2Y jD;X � �

2
Y j0;x0

�2
� �2Y jD;X

�
� 2Y jD;X � �

2
Y j0;x0

�
� �Y jD;X

�
�3Y jD;X � �

3
Y j0;x0

�
D �2 � �2Y jD;X� � �Y jD;X

�
� � 2�Y jD;X�

�
D �2 C �2Y jD;X� � �Y jD;X�:

In summary, we have
��R2 C �R C 
 D 0

� D � 2Y jD;X � �
2
Y j0;x0

� D �3Y jD;X � �
3
Y j0;x0 C 2�Y jD;X�


 D �2 C �2Y jD;X� � �Y jD;X�

That means

R D
� C

p
�2 C 4�

2�

or
� �

p
�2 C 4�

2�

:
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In fact, we may show that equations 36 and 35 implies

� � 0

Consider

s D
�Y 2jD;X � �

2
Y jD;X � E�

2

�Y jD;X � R
C �Y jD;X � R

D
�

�Y jD;X � R
C �Y jD;X � R

and

E
�
D�jD; X

�
D

�Y jD;X � R
s

D

�
�Y jD;X � R

�2�
�Y jD;X � R

�2
C �

:

Therefore, 0 � E .D�jD; X/ � 1 implies that � � 0.
The last step is to eliminate one of the two roots to achieve point identi�cation. Notice that

E
�
Y jD�; D; X

�
D R.D; X/C s.D; X/D�:

Assumption B2 implies that
s.D; X/ � 0:

Consider

�Y jD;X D R C sE
�
D�jD; X

�
D R

�
1� E

�
D�jD; X

��
C .R C s/ E

�
D�jD; X

�
:

Therefore, 0 � E .D�jD; X/ � 1 and s.D; X/ � 0 imply

R � �Y jD;X � s C R;

Thus, we may identify R as the smaller root if �Y jD;X is between the two roots. , i.e.,

���2Y jD;X C ��Y jD;X C 
 � 0;
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which holds because

���2Y jD;X C ��Y jD;X C 


D ���2Y jD;X C ��Y jD;X C �
2 C �2Y jD;X� � �Y jD;X�

D �2 � 0:

Therefore, we have

R.D; X/ D
� �

p
�2 C 4�

2�

:

Notice that R equals the larger root if s.D; X/ � 0. The function s.D; X/ then follows.

Discrete Limiting Distributions for equation (15). Let

b�.x/ D
�b�Y;V;X;1;b�Y;V;X;0;b�Y;X;1;b�Y;X;0;b�V;X;1;b�V;X;0;b�X;1;b�X;0;b�VU ;b�U �T ;

�0 D E [b�.x/] ;
bR.d;b�.x// �

�b�dY;V;X;1b�1�dY;V;X;0

�b�U � �b�dY;X;1b�1�dY;X;0

�b�VU�b�dV;X;1b�1�dV;X;0

�b�U � �b�dX;1b�1�dX;0

�b�VU ;

br.x/ D bR.1;b�.x//� bR.0;b�.x//;

 D

@

@t
R .d; �0 C t .b� � �0//����

tD0

� G .d; �0/T .b� � �0/ ;
V .b�.x// D n � E �.b� � �0/ .b� � �0/T � .

Assuming independent, identically distributed draws and existence of V .b�.x//, by the Lindeberg-Levy
central limit theorem and the delta method

p
n
�bR.d; x/� R.d; x/� ! dN .0; �R/

�R D G .d; �0.x//T V .b�.x//G .d; �0.x//
and

p
n [br.x/� r.x/] ! dN .0; �r /

�r D [G .1; �0.x//� G .0; �0.x//]T V .b�.x// [G .1; �0.x//� G .0; �0.x//] :
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Table 5: R(0,X), Nonparametric and Semiparametric Corollary 3 IV Estimates
Some college Associate degree Bachelor's degree

R0 nonparametric 2.072 ( 0.01514 ) 2.125 (0.009665 ) 2.143 (0.007997 )
R0t nonparametric 2.065 ( 0.01536 ) 2.125 ( 0.01016 ) 2.144 (0.008579 )
R0q1 nonparametric 1.863 ( 0.02520 ) 1.939 ( 0.01940 ) 1.975 ( 0.01834 )
R0med nonparametric 2.003 ( 0.03859 ) 2.089 ( 0.03225 ) 2.143 ( 0.02788 )
R0q3 nonparametric 2.309 ( 0.02681 ) 2.326 ( 0.01763 ) 2.319 ( 0.01665 )
R0 semi, linear 2.025 ( 0.01174 ) 2.094 (0.008754 ) 2.114 (0.007451 )

Table 6: R(1,X), Nonparametric and Semiparametric Corollary 3 IV Estimates
Some college Associate degree Bachelor's degree

R1 nonparametric 2.142 ( 0.03011 ) 2.295 ( 0.3326 ) 2.268 ( 1.918 )
R1t nonparametric 2.152 ( 0.02986 ) 2.319 ( 0.04103 ) 2.223 ( 0.1219 )
R1q1 nonparametric 1.997 ( 0.04430 ) 2.181 ( 0.06094 ) 2.092 ( 0.1694 )
R1med nonparametric 2.173 ( 0.04633 ) 2.380 ( 0.04084 ) 2.189 ( 0.1026 )
R1q3 nonparametric 2.340 ( 0.04635 ) 2.449 ( 0.04508 ) 2.397 ( 0.1731 )
R1 semi, linear 2.188 ( 0.02898 ) 2.341 ( 0.03397 ) 2.267 ( 1.149 )
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Table 7: R(0,X), Nonparametric and Semiparametric Theorem 2 Estimates Without IV
Some college Associate degree Bachelor's degree

R0 nonparametric 2.078 ( 0.01383 ) 2.126 (0.009571 ) 2.144 (0.007897 )
R0t nonparametric 2.074 ( 0.01447 ) 2.123 ( 0.01025 ) 2.148 (0.008459 )
R0q1 nonparametric 1.891 ( 0.02270 ) 1.942 ( 0.01916 ) 1.974 ( 0.01820 )
R0med nonparametric 2.022 ( 0.03761 ) 2.095 ( 0.03227 ) 2.146 ( 0.02767 )
R0q3 nonparametric 2.288 ( 0.02247 ) 2.321 ( 0.01708 ) 2.324 ( 0.01620 )

Table 8: R(1,X), Nonparametric and Semiparametric Theorem 2 Estimates Without IV
Some college Associate degree Bachelor's degree

R1 nonparametric 1.666 ( 28.66 ) 2.318 ( 2.915 ) 2.269 ( 18.27 )
R1t nonparametric 2.141 ( 0.1418 ) 2.310 ( 0.1719 ) 2.227 ( 0.2483 )
R1q1 nonparametric 1.832 ( 0.1459 ) 2.069 ( 0.2132 ) 1.525 ( 0.3052 )
R1med nonparametric 2.223 ( 0.07273 ) 2.247 ( 0.08727 ) 2.222 ( 0.07330 )
R1q3 nonparametric 2.419 ( 0.09065 ) 2.501 ( 0.1239 ) 2.552 ( 0.2033 )

References

[1] AI, C. AND X. CHEN (2003), "Ef�cient Estimation of Models With Conditional Moment Restrictions
Containing Unknown Functions," Econometrica, 71, 1795-1844.

[2] AIGNER, D. J. (1973), "Regression With a Binary Independent Variable Subject to Errors of Oberva-
tion," Journal of Econometrics, 1, 249-60.

[3] ASHENFELTER, O. AND A. KRUEGER (1994), "Estimates of the Economic Return to Schooling from
a New Sample of Twins," The American Economic Review, 84, 1157-1173

[4] BLUNDELL, R. AND J. L. POWELL, (2004), "Endogeneity in Semiparametric Binary Response Mod-
els" Review of Economic Studies, 71, 655-679.

35



[5] BOLLINGER, C. R. (1996), "BoundingMean RegressionsWhen a Binary Regressor is Mismeasured,"
Journal of Econometrics, 73, 387-399.

[6] CARD, D. (1996), "The Effect of Unions on the Structure of Wages: A Longitudinal Analysis,"
Econometrica, 64, 957-979.

[7] CHEN, X., Y. HU AND A. LEWBEL, (2008a), �Nonparametric Identi�cation of Regression Models
Containing a Misclassi�ed Dichotomous Regressor Without Instruments," Economics Letters, 100,
381-384.

[8] CHEN, X., Y. HU AND A. LEWBEL, (2008b), �A Note on the Closed-form Identi�cation of Regres-
sion Models with a Mismeasured Binary Regressor,� Statistics and Probability Letters, 78, 1473-1479.

[9] CHEN, X., O. LINTON, AND I. VAN KEILEGOM, (2003) "Estimation of Semiparametric Models
when the Criterion Function Is Not Smooth," Econometrica, 71, 1591-1608,

[10] DAS, M., (2004), "Instrumental Variables Estimators of Nonparametric Models With Discrete En-
dogenous Regressors," Journal of Econometrics, 124, 335-361.

[11] FLORENS, J.-P. AND L. MALAVOLTI, (2003), "Instrumental Regression with Discrete Variables,"
unpublished manuscript.

[12] GIBRAT, R. (1931), Les Inegalites Economiques, Librairie du Recueil Sirey, Paris

[13] HECKMAN, J. J. (1979), "Sample selection bias as a speci�cation error," Econometrica, 47, 153�161.

[14] HECKMAN, J. J., H. ICHIMURA AND P. TODD, (1998), "Matching as an Econometric Evaluations
Estimator, Review of Economic Studies, 65, 261-294.

[15] HOTZ, V. J., C. MULLIN, AND S. SANDERS, (1997), "Bounding Causal Effects Using Data from a
Contaminated Natural Experiment: Analyzing the Effects of Teenage Childbearing," Review of Eco-
nomic Studies, 64, 575-603.

[16] HU, Y. (2006), "Identi�cation and estimation of nonlinear models with misclassi�cation error using
instrumental variables," U. Texas at Austin unpublished manuscript.

36



[17] KANE, T. J., AND C. E. ROUSE, (1995), "Labor market returns to two- and four- year college,"
American Economic Review, 85, 600-614

[18] KANE, T. J., C. E. ROUSE, AND D. STAIGER, (1999), �Estimating Returns to Schooling When
Schooling is Misreported,� NBER working paper #7235.

[19] KLEPPER, S., (1988), "Bounding the Effects of Measurement Error in Regressions Involving Di-
chotomous Variables," Journal of Econometrics, 37, 343-359.

[20] LEWBEL, A., (2007a), �Estimation of Average Treatment Effects With Misclassi�cation,� Economet-
rica, 75, 537-551forthcoming.

[21] LEWBEL, A., (2007b), "A Local Generalized Method of Moments Estimator,� Economics Letters, 94,
124-128.

[22] MAHAJAN, A. (2006) �Identi�cation and Estimation of Regression Models with Misclassi�cation,"
Econometrica, 74, 631-665.

[23] MANSKI, C. F. (1990) "Nonparametric Bounds on Treatment Effects," American Economic Review
Papers and Proceedings, 80, 319-323.

[24] NEWEY, W. K., (1994), �Kernel Estimation of Partial Means and a General Variance Estimator,�
Econometric Theory, 10, 233-253.

[25] NEWEY, W. K. AND J. L. POWELL, (2003), �Instrumental Variable Estimation of Nonparametric
Models,� Econometrica, 71, 1565-1578.

[26] MOLINARI, F. (2008), "Partial Identi�cation of Probability Distributions with Misclassi�ed Data,"
Journal of Econometrics, 144, 81-117.

[27] ROSENBAUM, P. AND D. RUBIN, (1984), �Reducing Bias in Observational Studies Using Subclassi-
�cation on the Propensity Score,� Journal of the American Statistical Association, 79, 516-524.

[28] RUBIN, D. B. (1974), �Estimating Causal Effects of Treatments in Randomized and Non-Randomized
Studies, � Journal of Educational Psychology, 76, 688-701.

37


