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Abstract

Most theoretical work on how to calculate the marginal deadweight loss has

been done for linear taxes and for variations in linear budget constraints. How-

ever, most income tax systems are nonlinear, generating nonlinear budget sets. A

usual procedure to calculate the marginal deadweight loss for variations in nonlinear

income taxes has been to linearize the nonlinear budget constraint. Our main the-

oretical result is that the overall curvature of the tax system plays is as important

as the curvature of indifference curves when computing deadweight loss measures.

Using numerical simulations calibrated on US data, we then show that the appar-

ently innocuous linearization may lead to a substantially large overestimation of the

marginal deadweight loss.
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1 Introduction

There is a large literature on the excess burden of taxation (see Auerbach and Hines

(2002) for an excellent survey). A first strand of the literature is devoted to the compar-

ison of different measures of this burden, and looks at variations in linear prices caused

by commodity taxation or a linear wage tax. A second strand of the literature addresses

the issue of redistribution through progressive taxation. The definition of the excess

burden is then even more difficult because there are many ways of varying a nonlinear
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tax. In addition, redistribution only makes sense if agents are heterogeneous, which

leads to the tricky question of how individual effects of taxation should be aggregated.

These serious problems have been very carefully investigated, but a common procedure

has been to locally linearize the budget constraint instead of fully accounting for its

nonlinearity. The present article does not contribute on the alternative ways of defining

the excess burden of taxation or to aggregate individual gains and losses. Taking a given

measure and aggregation procedure, we present a method for properly determining the

marginal deadweight loss and marginal tax revenue for a nonlinear income tax. We con-

trast our method with the linearization approach, explaining how the latter overstates

marginal deadweight losses and underestimates marginal revenues (and thus multiplica-

tively overstates the ratio) when marginal tax rates are increasing with the income level.

We further provide numerical simulations that apply the method and show the extent

of the bias, which is large as a pratical matter.

It is simpler to illustrate the basic ideas under the assumption that the budget

constraints are smooth and convex. The utility curvature tells us that, when a person

starts adjusting (e.g., labor supply), the marginal utility is changing rapidly; hence little

adjustment is needed to restore the first-order conditions. Now, when the budget set has

curvature, that curvature is in essence doing the same: as the person adjusts, the price

is changing more rapidly, so one restores the first-order conditions more quickly, i.e, for

a smaller behavioral change. Consequently, if the budget constraint is linearized, one

sets the curvature to zero and overestimates the change in taxable income. The problem

when linearizing is therefore that one misses the fact that the curvature of the budget

constraint and the curvature of the indifference curve are of equal importance for how

large a change in taxable income will be.

Actual tax systems are usually piecewise linear. We show that, in this case, dead-

weight loss measures critically depend on the overall curvature of the tax system.1. Using

numerical simulations calibrated to reflect to US economy in 1979, 1993 and 2006, we

find that the apparently innocuous linearization may lead to substantially large measure-

ment errors in both the marginal deadweight loss and the marginal tax revenue. These

errors are magnified when one calculates the marginal deadweight loss per marginal tax

dollar. For a low elasticity of taxable income (0.2), we find that the linearization overes-

timates the latter by 4.1% in 2006, 7.2% and 9.3% in 1979. For larger but yet reasonable

elasticities (0.4), the bias is of 10.7% in 2006, 25.3% in 1993 and 24.5% in 1979. However,

1This is due to different errors and optimization frictions which should be accounted for when agents
make their optimal choices. See, e.g., Burtless and Hausman (1978), Hausman (1979), Blomquist (1983)
and Hausman (1985)) and more recently Chetty (2012).
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all these errors were much larger in 1979 and 1993 than in 2006. This is due to the fact

that the overall curvature of the US tax system was much less pronounced in 2006 than

a few decades ago. This evolution has been observed in most developed countries, until

the financial crisis of 2007. In the afternath of the crisis, the marginal tax rates faced

by high income earners have been raised in most countries, and further increases are

vividly discussed. In this context, we believe that it is critical to correctly account for

the curvature of the tax function to correctly assess the impact of potential tax reforms.

The article is organized as follows. In section 3 and 4, we use smooth budget con-

straints to introduce the main idea and show how the marginal deadweight loss and

marginal tax revenue loss should be calculated. Section 3 introduces the basic defini-

tions and Section 4 presents our main theoretical findings. We show that the curvature

of the budget constraint is as important as the curvature of the indifference curves when

computing deadweight loss measures. We also give expressions for how large the bias us-

ing a linearization procedure can be. In Section 5, we present calculations for the US tax

system for three different years and numerically establish that the apparently innocuous

linearization procedure may lead to large estimation errors. Section 6 concludes.

2 Review of the Literature

The study of the deadweight loss (or excess burden) of taxation has a long tradition in

economics going back as far as Dupuit (1844). Modern type of empirical work on the

deadweight loss of taxation is heavily influenced by the important work of Harberger in

the 1950s and 1960s (see for example Harberger (1962, 1964)). A second generation of

empirical work was inspired by Feldstein (1995, 1999). Feldstein argued that previous

studies had neglected many important margins that are distorted by taxes. By estimat-

ing how total taxable income reacts to changes in the marginal tax, one would be able

to capture distortions of all relevant margins. Feldstein’s own estimates indicated large

welfare losses whereas many later studies arrived at estimates of the welfare loss that

were larger than those obtained in pre-Feldstein studies, but considerably lower than

the estimates obtained by Feldstein. An important ingredient in modern studies of the

deadweight loss of taxes is the estimation of a (Hicksian) taxable income supply func-

tion(Gruber and Saez, 2002; Kopczuk, 2005; Saez, Slemrod, and Giertz, 2012). These

taxable income functions show how taxable income varies as the slope of a linear budget

constraint of individuals is changed at the margin.

Kleven and Kreiner (2006), Eissa, Kleven, and Kreiner (2008) and Gelber and

Mitchell (2012) are recent important articles that employ a linearized budget constraint
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to calculate deadweight losses. Kleven and Kreiner (2006) extend the theory and mea-

surement of the marginal cost of public funds to account for labour force participation

responses. Eissa, Kleven, and Kreiner (2008) embed the participation margin in an

explicit welfare theoretical framework and show that not modelling the participation de-

cision induce large errors. Gelber and Mitchell (2012) examine how income taxes affect

time allocation during the entire day, and how these time allocation decisions interact

with expenditure patterns.

In empirical work estimating behavioral parameters, it is also common to linearize

budget constraints and pursue the analysis with the linearized budget constraints. How-

ever, when doing this, one is well aware that this linearization creates econometric prob-

lems and there is a large literature on methods to handle these problems (see e.g.,

Burtless and Hausman (1978), Hausman (1985) and Blomquist and Newey (2002)).

There are very few studies addressing the problems that arise when one linearizes

budget constraints and use the linearized budget constraints to do welfare analysis. In

an important article, Dahlby (1998) describes the calculation of the social marginal cost

of public funds for a progressive tax system which distorts individuals’ labour supply

decisions. He first notes that a single-person model, as the one used by most of the

theoretical literature on the marginal cost of public funds, is inappropriate for a pro-

gressive tax system. He therefore investigates the case with heterogeneous individuals.

He develops a multi-person framework and derives an expression for the social marginal

cost of public funds for a generic piecewise linear tax system. He then considers more

specific tax reforms and shows that several well-known formulas are obtained as special

cases. We employ a multi-person framework as in Dahlby (1998). However, contrary to

the latter, our analysis starts from a smooth tax system, in which case the curvature

of the budget constraints is shown to play the same part as the curvature of the indif-

ference curves. Introducing errors and optimization frictions, we see that even though

the statutory tax system is piecewise linear, its overall curvature plays a key part when

computing deadweight loss measures.

3 Basic Setting

Statutory tax systems are usually piecewise linear. However, in order to get simple

and clean results, we start our analysis by considering smooth budget constraints. The

main reason is that it is basically the general shape of the tax system and the budget

constraints that determine the average behavior. In the next section, we will consider

a piecewise linear tax schedule and add errors and optimization frictions. We will see

4



that the agents behave as if the tax system were smooth even though the statutory tax

system consists of several linear segments.

3.1 The Tax System

A linear income tax can be varied in two ways. One can change the intercept, which leads

to a pure income effect, or change the proportional tax rate, which leads to a substitution

and an income effect. For a nonlinear income tax, there are many more possible ways to

vary the tax. Break points can be changed, the intercept can be changed and the slope

can also be changed. Moreover, the slope can be changed in different ways. We do not

cover all these different possibilities to vary a nonlinear tax. We focus on a particular

kind of change in the slope, namely a change in the slope such that the marginal tax

changes with the same number of percentage points at all income levels. The general

insight of the article that the comparative statics for the compensated taxable income

depends on the curvature of the budget constraint carries over to variations in other

tax parameters. We could write the tax system as T (A) = g (A, γ), where γ is a tax

parameter the variation of which is under scrutiny. Then, it would be the curvature of

g, ∂2g/∂A2, that would be critical for our results. What we do below is a special case,

which we believe makes the analysis more transparent and directly applicable.

We model the tax in the following way. Let A denote taxable income and the tax

on A be given by T (A). The results below depend on the curvature of the tax func-

tion, ∂2T (A) /∂A2. For simplicity, we show details for a specific formulation T (A)

= g (A) + tA, with g′ (A) > 0, g′′ (A) > 0 and t ≥ 0. Note that in this case ∂2T (A) /∂A2

reduces to g′′ (A). For example, we can think of g (A) as a nonlinear federal tax. There

are several alternative interpretations of tA. It could be a payroll tax, a value added

tax or a proportional state income tax. Within the Scandinavian framework, it could be

interpreted as the local community income tax. What we study is the marginal dead-

weight loss of an increase in t. A change in t implies that the marginal tax is increased

by the same number of percentage points at all income levels.

There are two good reasons why we have parameterized the tax system in the way

described above. When we vary the slope of a linear budget constraint, the intercept

will not change. Hence, a change in t will not change the virtual income but only the

slope, thereby giving an experiment similar to a change in the slope of a linear budget

constraint.2 A second reason is, of course, that g (A) + tA is a good approximation of

actual tax systems.

2This nice feature of the parameterization used was pointed out to us by H̊akan Selin.

5



3.2 The Marginal Deadweight Loss

Consider the utility maximization problem:

max
C,A

U (C,A, v) s.t. C ≤ A− g (A)− tA+B, (P1)

where C is consumption, v an individual specific preference parameter and B lump-sum

income. We assume that the utility function U(C,A, v) has the usual properties. We call

C(t, B, v) and A(t, B, v) the solutions to problem (P1). The form of these two functions

depends on the functional forms of U and g. Sticking C(t, B, v) and A(t, B, v) back into

the utility function, we obtain the indirect utility u(v) := U(C(t, B, v), A(t, B, v), v).

For each individual, the latter is the maximum utility level obtained under the given tax

system. Because individuals have different v’s, they choose different taxable incomes

and have different u (v).

We now study the marginal deadweight loss of a small increase in the tax parameter t.

We also examine the marginal deadweight loss per marginal tax dollar, as this measure

is often used in the literature. We first derive expressions without resorting to any

linearization. For this purpose, we define the expenditure function as:

E (t, v, u) = min
C,A
{C −A+ g (A) + tA−B} s.t. U (C,A, v) ≥ u. (P2)

This problem also defines the compensated demand and supply functions, Ch (t, v, u) and

Ah (t, v, u) respectively, where the superscript h denotes that it is Hicksian functions. It

is important to note that these functions depend on the functional form of U (C,A, v)

and on the functional form of g (A). In almost all empirical and theoretical analyses,

we work with demand and supply functions generated by linear budget constraints. In

contrast, the functions defined by (P1) and (P2) are generated by a nonlinear budget

constraint. In addition, we define the compensated tax revenue function as:

R(Ah (t, v, u)) = g(Ah (t, v, u)) + tAh (t, v, u) (1)

and the marginal tax revenue – whilst keeping utility constant – as:

MTR :=
dR(Ah)

dt
= Ah + (g′(Ah) + t)

dAh

dt
. (2)

The marginal deadweight loss is often measured as the difference between compensated
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changes in expenditure and collected taxes, i.e.,

MDW :=
dE (t, v, u)

dt
− dR(Ah (t, v, u))

dt

= Ah − g′(Ah)
dAh

dt
−Ah − tdA

h

dt
= −(g′

(
Ah
)

+ t)
dAh

dt
, (3)

where we used the envelope theorem to obtain dE (t, v, u) /dt = Ah. We will use this

definition of the marginal deadweight loss in this article. We know that there are al-

ternative definitions in the literature, but our main point is independent of this aspect.

The ratio (3)/(2) corresponds to the marginal deadweight loss per marginal tax dollar.

3.3 Linearization Procedure

When calculating the marginal deadweight loss for a non-linear tax system, it is common

to linearize the budget constraint and proceed as if the budget constraint were linear.

This linearization is done in the following way. Let us consider particular values v∗, t∗

and B∗ and the solution to (P1), C∗ = C (t∗, v∗, B∗) and A∗ = A (t∗, v∗, B∗). We can

linearize the budget constraint around this point with local prices defined by pc = 1 and

pA = g′ (A∗) + t∗ to obtain the linear budget constraint C = A− pAA+M , where M is

defined as M = C∗ −A∗ + pAA
∗. We now consider the problem:

max
C,A

U (C,A, v∗) s.t. C 5 A− pAA+M. (P3)

We call CL (pA, v
∗,M) , AL (pA, v

∗,M) the solution to this problem. Here, we use the

subscript L to show that these are functions generated by a linear budget constraint.

We define the expenditure function corresponding to this linear budget constraint as

EL (t, v, u) = min
C,A
{C −A+ pAA−M} s.t. U (C,A, v) ≥ u (P4)

and denote its solution by ChL (t, v, u) , AhL (t, v, u), where the subscript L indicates that

it is the solution to a problem where the objective function is linear and the superscript

h that this is Hicksian demand-supply functions. Let us define the compensated rev-

enue function as: R
(
AhL (t, v, u)

)
= g

(
AhL (t, v, u)

)
+ tAhL (t, v, u). Marginal tax revenue,

keeping utility constant, is given by:

MTRL :=
dR(AhL)

dt
= AhL + (g′(AhL) + t)

dAhL
dt

. (4)
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Figure 1: Nonlinear and linearized programmes

We obtain the marginal deadweight loss as:

MDWL :=
dEL(t, v, u)

dt
−
dRL(AhL (t, v, u))

dt

= AhL − g′(AhL)
dAhL
dt
−AhL − t

dAhL
dt

= −(g′
(
AhL

)
+ t)

dAhL
dt

. (5)

The marginal deadweight loss per marginal tax dollar is the ratio (5)/(4).

Figure 1 illustrates the links between the four problems that we have studied. The

optimization problem (P1) maximizes utility given the curved budget constraint C = A−
g (A)− tA+B. Let us consider particular values for the proportional tax and lump-sum

income: t∗ and B∗. Suppressing the dependence on v, we denote the solution by C∗ =

C (t∗, B∗) , A∗ = A (t∗, B∗). This defines the utility level u∗ = U (C∗, A∗) . Optimization

problem (P2) minimizes expenditures to reach the utility level u∗ for the given nonlinear

tax system. By construction, the solution to this problem is also C∗, A∗. Linearizing

around (A∗, C∗) , so that the linear budget constraint is tangent to the indifference

curve at (A∗, C∗) , we have two other optimization problems. Problem (P3) maximizes

utility subject to the linear budget constraint going through (A∗, C∗) and having the

same slope as the indifference curve through (A∗, C∗) . Problem (P4) is to minimize

expenditures given the utility level u∗ and the general shape of the budget constraint
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given by the linear budget constraint. By construction, the four optimization problems

have the same solution. For any t and B, we thus have the identities

A (t, B) ≡ Ah (U (C (t, B) , A (t, B)))

≡ AL (pA (C (t, B) , A (t, B)) ,M (C (t, B) , A (t, B))) ≡ AhL (U (C (t, B) , A (t, B))) . (6)

4 Main Result

In this section, we show that the curvature of the tax system is as important as the

curvature of the indifference curves when computing the marginal deadweight loss. When

we look at the definitions introduced above, expressions (3) and (5) look quite similar,

as do expressions (2) and (4). By construction, it is true that AhL = Ah, implying that

g′
(
AhL
)

+ t = g′
(
Ah
)

+ t. However, dAh/dt and dAhL/dt usually differ, implying a bias

when the linearization procedure is used. To show this, we start with a simple example,

which we then generalize.

4.1 A Simple Example

To simplify notation, we in this example suppress the preference parameter v. We

assume that the utility function takes the quasilinear form U = C − αA − γA2. This

implies that the income effect for the supply of A is zero, so that the Marshallian and

Hicksian supply functions are the same. We assume that the tax is given by T (A) =

tA+ pA+ πA2, where we can interpret tA as the state tax and pA+ πA2 as the federal

tax. This yields a budget constraint C = A − (p+ t)A − πA2 + B, where B is lump-

sum income. Substituting the budget constraint into the utility function, we obtain

U = A − (p+ t)A − πA2 + B − αA − γA2. Maximizing with respect to A, we get

dU/dA = 1−(p+ t)−2πA−α−2γA. We see that a necessary condition for a nonnegative

A is 1− (p+ t)− α ≥ 0. We find that d2U/dA2 = −2 (π + γ) < 0 for π+ γ > 0. Setting

dU/dA = 0 and solving for A, we obtain

A =
1− (p+ t)− α

2 (π + γ)
. (7)

Since we have the quasilinear form, this is also the Hicksian supply. We immediately

have
dAh

dt
= − 1

2 (π + γ)
. (8)
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From (8), we see that the size of the substitution effect depends on the curvatures of the

indifference curve and the budget constraint. We note that it is immaterial whether the

curvature emanates from the indifference curve or from the budget constraint. What

matters is the curvature of the indifference curve in relation to the budget constraint.

The larger the total curvature, given by 2 (π + γ) in our example, the smaller is the

change in taxable income and the smaller is the deadweight loss.

Suppose that we have particular values for the parameters of the problem and de-

note the solution (C∗, A∗). We can linearize the budget constraint around this point

and get the budget constraint C = A − [(p+ t) + 2πA∗]A + M , where M = C∗ −
[1− (p+ t)− 2πA∗]A∗. Given this linearization, an individual solves:

max
C,A

{
C − αA− γA2

}
s.t. C 5 A− [(p+ t) + 2πA∗]A+M. (9)

Substituting the binding budget constraint into the utility function, we want to maximize

A − [(p+ t) + 2πA∗]A + M − αA − γA2. Denoting this expression by Ũ , we obtain

dŨ/dA = 1−(p+ t)−2πA∗−α−2γA and d2Ũ/dA2 = −2γ. The second-order condition

is satisfied for γ > 0. Setting dŨ/dA = 0 and solving for A, we get AhL = [1− (p+ t) −
2πA∗ − α]/ (2γ) and

dAhL
dt

= − 1

2γ
. (10)

We see that a marginal increase in the tax rate t induces a smaller response in taxable

income when the budget constraint is linearized. Given the definitions introduced in

Section 3, this implies that the linearization procedure overestimates the marginal dead-

weight loss and underestimates the marginal tax revenue. To get an order of magnitude,

suppose for example that π = γ = 0.1. We then have dAh/dt = −2.5 while using the

supply function generated by the linearized budget constraint gives dAhL/dt = −5. This

means that the linearization procedure overestimates the deadweight loss with a factor

2. If we choose π = 0.05 and set all other parameters equal to 0.1, then the linearization

procedure overestimates the correct deadweight with a factor 1.5 (1.5 instead of 1.0),

underestimates the correct marginal tax revenue with a factor 1.6 (0.83 instead of 1.33)

and overestimates the marginal deadweight loss per marginal tax dollar with a factor

2.4 (1.8 instead of 0.75).

In Figure 2, we illustrate the deadweight loss of a discrete change in t, from t = 0

to t = 0.3, for parameter values of α = γ = 0.1, p = 0.2, π = 0.05 and B = 1. In

the left panel, we show the correct calculation using a variation in the nonlinear budget
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Figure 2: Deadweight loss when the budget constraint is nonlinear (left panel) and
linearized (right panel)
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constraint. The bundle chosen prior to the tax change is A, at the tangency point

between the budget constraint and the highest feasible indifference curve. The increase

in t shifts the nonlinear budget constraint in such a way that A′ is now chosen instead

of A. The deadweight loss corresponds to the difference between the equivalent variation

and the variation in tax revenue, labelled MTR. It is thus shown by the thick vertical

line MDW below A′. In the right panel, we show the standard procedure which employs

a variation in the linearized budget constraint. The nonlinear budget constraint through

A is linearized around this point. The increase in t induces a rotation of the linearized

budget constraint around the intercept. The bundle AL is now chosen instead of A. We

see that the deadweight loss, shown by the thick vertical MDW line below AL, is much

larger than when the correct procedure is used. The change in tax revenue is given

by the line MTR. Regarding the deadweight loss per tax dollar (given by the ratio of

MDW and MTR), we see that the figure obtained when linearizing is very different from

the correct one. Hence, the error made for the change in the deadweight loss and the

error made for the change in tax revenue are magnified when one calculates the marginal
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deadweight loss per marginal tax dollar.

4.2 Generalization of the Example

We can easily generalize the example above. Let us consider the general utility function

U (C,A, v). The Hicksian supply function for taxable income is defined by problem

(P2). We will reformulate this problem. The constraint U (C,A, v) ≥ u is binding at

the optimum and can thus be rewritten as C = f (A, v, u), where the function f is

defined by U (f (A, v, u) , A, v) = u. Substituting the constraint C = f (A, v, u) into

the objective function, we obtain the minimization problem minA f (A, v, u)−A+ tA+

g (A)−B. Let us for convenience use the notation f ′(·) to denote ∂f/∂A. The first order

condition f ′ (A, v, u)−1+ t+g′ (A) = 0 defines the Hicksian supply function Ah (t, v, u).

Differentiating it implicitly yields:

dAh

dt
= − 1

g′′ + f ′′
. (11)

In the analysis above, f ′ (A, v, u) is the slope of the indifference curve. Hence, f ′′ (A, v, u)

shows how the slope of the indifference curve changes as A is increased along the indiffer-

ence curve and, thus, gives the curvature of the indifference curve. For the special case

of a quasilinear utility function, with zero income effects for the taxable income function,

u would not be an argument in the f(·) function. From (11), we see that the curvature

of the budget constraint is as important for the size of the marginal deadweight loss as is

the curvature of the indifference curve. What matters is the curvature of the indifference

curve in relation to the budget constraint.3 When the budget constraint is linear and

g′′ = 0, dAh/dt reduces to dAh/dt = −1/f ′′. Hence, if we linearized, we would obtain:

dAhL
dt

= − 1

f ′′
, (12)

which confirms that the linearization procedure leads to an overestimation of the true

marginal deadweight loss.

In empirical studies of the taxable income function, it is usually the taxable income

function AhL (t, v, u) , valid for a linear budget constraint, that is estimated and reported.

However, if we know dAhL/dt as well as the tax function T (A) = g (A) + tA, it is easy

3In a recent article on optimal income taxation, ReP (2010) define elasticities along the nonlinear tax
schedule, instead of the usual elasticities defined along linearized schedules. They show that the formula
obtained in Saez (2001) can then be written in a more transparent way, which do not make use of the
concept of virtual densities.
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to calculate the comparative statics for the taxable income function Ah (t, v, u). This

is because the comparative statics for the two functions are related according to the

formula:
dAh

dt
=

dAhL/dt

1− g′′ (A)
(
dAhL/dt

) . (13)

4.3 Bias when Linearizing

We below will measure the bias implied by linearizing in three ways: the overestimation

of the marginal deadweight loss, the underestimation of the marginal tax revenue and

overestimation of the marginal deadweight loss per marginal tax dollar. We will see that

all these measures depend on the relative sizes of g′′ and f ′′. For simplicity, we use a

to denote the ratio g′′/f ′′. Then, a is a measure of the relative curvature of the budget

constraint and the indifference curve.

The relative error in the marginal deadweight loss when using the linearized budget

constraint is given by the ratio of expressions (5) to (3), i.e. by:

MDWL

MDW
=
dAhL/dt

dAh/dt
=
g′′ + f ′′

f ′′
= 1 +

g′′

f ′′
= 1 + a. (14)

Hence, a is also a direct measure of the relative bias in the marginal deadweight loss

if we incorrectly linearize. For example, if a = 1 and hence g′′ = f ′′, the linearization

procedure overstates the true marginal deadweight loss by a factor 2. This holds true

irrespective of the absolute size of g′′ and f ′′. It is the relative curvature of the budget

constraint and the indifference curve that matters. Note that the bias a would be negative

if the tax function were concave (g′′(A) < 0). In this case, the linearization procedure

would underestimate the correct marginal deadweight loss. In the numerical simulations

provided in the next section, we fully account for nonconvexities of the budget set.

The relative curvature of the budget constraint and the indifference curve as mea-

sured by a also play an important role in the expression for the relative error in marginal

tax revenue. However, f ′′ and g′′ enter this expression in other ways. The relative error

in the marginal tax revenue is obtained as the ratio of (4) and (2). Using (6) and (14),

we get:
MTRL
MTR

= 1 + a× (g′(Ah) + t) dAh/dt

Ah + (g′(Ah) + t) dAh/dt
. (15)
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4.4 Marginal Deadweight Loss for the Population

If we want to find the aggregate marginal deadweight loss, we can integrate over v. From

a welfare point of view, there is no obvious way how one should aggregate the marginal

deadweight loss for different individuals. However, it is fairly common to calculate a

weighted sum (or average) of the marginal deadweight losses of the different agents

in the population. Whatever the weights that are used, it is clear that the aggregate

marginal deadweight loss calculated with the function AhL gives a higher value than if

calculated using Ah. In the next section, we will simply compute the average marginal

deadweight loss

There is no clear way of aggregating the marginal deadweight loss per marginal tax

dollar. For example, if one calculates the arithmetic average of the marginal deadweight

loss per marginal tax dollar, individuals for which the marginal tax revenue is low would

receive a very large weight in the aggregation process, which may be difficult to justify

and misleading in terms of policy recommendations. For this reason, we in the next

section will compute the marginal deadweight loss per tax dollar as the ratio between

the average marginal deadweight loss and the average marginal tax revenue.

5 Numerical Illustration

We already know that the curvature of the budget constraint is as important as the

curvature of the indifference curves when computing the marginal deadweight loss. The

aim of this section is to assess the potential magnitude of the bias induced by the

linearization procedure.

5.1 Random Shocks

Statutory tax systems are usually piecewise linear. However, because of errors and

optimization frictions, individuals may behave as if the budget constraint was actually

smooth.4 To make this point, we consider a piecewise linear tax system T (A) and

introduce a random shock δ corresponding to an increase or decrease in taxable income.

This shock has support
[
δ, δ
]
, pdf D, and mean equal to zero. Individuals know how

it is distributed and behave as expected utility maximizers. Because of the latter, the

former may actually behave as if the tax system was smooth even though it consists of

a combination of linear brackets.

4The importance of random shocks and optimization frictions was already emphasized by Burtless
and Hausman (1978), Hausman (1979), Blomquist (1983), Hausman (1985) and more recently Chetty
(2012)).
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Following ?, we further assume that there is no income effect on taxable income. The

Bernoulli utility is given by:

U = A+ δ − T (A+ δ)− η
(
A

v

)
. (16)

The heterogeneity parameter v corresponds to the individual ability to transform effort

into earnings. The function η captures the disutility of effort, and satisfies η′ > 0 and

η′′ > 0. The expected utility is therefore given by:

EU =

∫ δ

δ

[
A+ δ − T (A+ δ)− η

(
A

v

)]
D (δ) dδ = A−

∫ δ

δ
T (A+ δ)D (δ) dδ − η

(
A

v

)
.

(17)

We call T̂ ′(A) =
∫ δ
δ [dT̂ (A+δ)/dA]D(δ)dδ the expected marginal tax rate. The first-order

condition of the utility maximisation programme is:

v′
(
A

v

)
= v

[
1− T̂ ′(A)

]
. (18)

We see that the optimum A depends on the distribution of δ, through the expected

net-of-tax wage rate. When they make their choices, individuals do not consider the

actual tax schedule, but the expected smooth one.

5.2 Parameterization

The overall concavity of the US tax system has decreased quite substantially during the

last four decades (see Figure 3). To illustrate the sensitivity of the marginal deadweight

loss, marginal tax revenue and marginal deadweight loss per dollar, we provide numerical

computations for the US economy in 1979, 1993 and 2006. These computations should

be regarded as illustrative.

We take into account the federal income tax, the state income tax, the earned income

tax credit, the payroll tax, the state sales tax and the local sales tax. We use the

Californian tax schedule to compute the state taxes. The disutility of effort η is given

by:

η

(
A

v

)
=

v

1 + 1/β

(
A

v

)1+1/β

. (19)

v can be interpreted as a wage parameter and β as the elasticity of taxable income. The

distribution of v is obtained by inversion, using TAXSIM and the CPS labor extracts
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Figure 3: Statutory and expected marginal tax rates (plain and dotted lines respectively,
benchmark calibration of σ)

restricted to single males for 1979, 1993 and 2006.

The standard deviation σ of the error term δ plays an important part in the compu-

tations. There is however no obvious way to calibrate it. We assume that it is normally

distributed and that individuals face a positive shock larger than 10% of average gross in-

come with a probability of 10% (and the same for a negative shock). We obtain σ = 859

for 1979, σ = 1, 227 for 1993 and σ = 2, 787 for 2006. We below examine the sensitivity

of our numerical results with respect to this parameter.

We use a Hermite interpolation of order two in order to approximate the expected

tax schedule. This means that the interpolation matches the unknown function both in

observed values, and the observed values of its first two derivatives. This procedure is

satisfying as our results depend one the slope and on the curvature of the expected tax

schedule. Figure 3 shows the statutory piecewise linear schedule and the corresponding

smooth schedule in 1979, 1993 and 2006.

5.3 Numerical Results

In the tables below, we show the bias in various measures of the deadweight loss. One

measure is the deadweight loss per marginal tax dollar. It is often used and easy to
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understand as long as we are on the left hand side of the Laffer curve. However, when

we approach the top of the Laffer curve, the MTR will go to zero and the marginal

deadweight loss per marginal tax dollar to infinity. Then, for further increases in the

taxable income elasticity, the marginal tax revenue will be negative and the marginal

deadweight loss per marginal tax dollar will be negative. The intuition for such a negative

number is less straightforward than when the marginal tax revenue is positive. For this

reason, we do not report the marginal deadweight loss per marginal tax dollar for values

of the taxable income elasticity where we are on the right-hand side of the Laffer curve.

Tables 1, 2 and 3 summarize the results, for our benchmark calibration of σ and

elasticities in the range 0.2–1.0. The marginal deadweight loss and tax revenue that we

report correspond to a 10% increase in t. For example, we see that the linearization

procedure leads to an overestimation of the marginal deadweight loss by 15.4% in 1979,

9.7% in 1993 and 6.3% in 2006, for an elasticity β = 0.4. These biases are much larger

for an elasticity of 1.0 – equal to 38.2%, 19.1% and 13.7% respectively. Regarding the

marginal deadweight loss per marginal tax dollar, it clearly appears that the biases in the

deadweight loss and tax revenue do not alleviate, but reinforce each other. During the

last forty years, and until the financial crisis of 2007, there has been in many countries

a tendency to reduce marginal tax rates faced by high income earners. This has made

the tax systems less curved overall. In these cases, the overestimation of the marginal

deadweight loss and the underestimation of the marginal tax revenue are relatively small.

However, marginal tax rates faced by high income earners have been increased in the

last few years and further increases are vividly discussed. In this context, it is critical

to correctly account for the curvature of the tax function.

In Tables 4 and 5, we examine the sensitivity of our calibration with respect to

changes in the standard deviation σ of the error term δ, for an elasticity β of 0.4 and

0.8 respectively. We consider two deviations to the left and two deviations to the right,

for year 2006. The results of our benchmark calibration are quite robust to relatively

large variations in σ. For example, for β = 0.4, a multiplication of σ by 11, from

$500 to $5, 500, is associated with a 5%-change in the marginal deadweight loss and a

0.26%-change in the marginal tax revenue.
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Table 1: Benchmark Case, Year 1979

β 0.2 0.4 0.6 0.8 1.0

DW $42 $77 $100 $118 $122

DW linear $45 $88 $124 $154 $169

Bias +7.8% +15.4% +23.6% +30.1% +38.2%

TR $224 $162 $80 $22 −
TR linear $221 $150 $60 − −
Bias -1.4% -7.3% -29.7% − −

DW per $ $0.19 $0.47 $1.26 $5.50 −
DW per $ linear $0.20 $0.59 $2.21 − −
Bias +9.3% +24.5% +75.9% − −

Table 2: Benchmark Case, Year 1993

β 0.2 0.4 0.6 0.8 1.0

DW $27 $47 $61 $68 $69

DW linear $28 $51 $69 $79 $82

Bias +5.2% +9.7% +13.9% +16.0% +19.1%

TR $74 $36 $6 − −
TR linear $73 $32 − − −
Bias -1.9% -12.5% − − −

DW per $ $0.36 $1.28 $10.3 − −
DW per $ linear $0.39 $1.61 − − −
Bias +7.2% +25.3% − − −
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Table 3: Benchmark Case, 2006

β 0.2 0.4 0.6 0.8 1.0

DW $131 $237 $311 $363 $386

DW linear $136 $252 $340 $404 $439

Bias +3.6% +6.3% +9.1% +11.5% +13.7%

TR $554 $376 $210 $75 −
TR linear $549 $361 $182 $33 −
Bias -0.8% -4.0% -13.5% -55.6% −

DW per $ $0.24 $0.63 $1.48 $4.84 −
DW per $ linear $0.25 $0.70 $1.87 $12.2 −
Bias +4.5% +10.7% +26.1% +151.1% −

Table 4: Year 2006, Variation in σ for β = 0.4

σ $500 $1, 500 $2, 787 $4, 500 $5, 500

Benchmark

DW $247 $242 $237 $235 $235

DW linear $256 $253 $252 $252 $254

Bias +3.4% +4.5% +6.3% +7.6% +8.0%

TR $373 $378 $376 $372 $372

TR linear $364 $367 $361 $355 $354

Bias -2.2% -2.9% -4.0% -4.8% -5.1%

DW per $ 0.65 0.64 0.63 0.63 0.63

DW per $ linear 0.69 0.69 0.70 0.71 0.72

Bias +5.8% +7.7% +10.7% +13.0% +13.8%
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Table 5: Year 2006, Variation in σ, for β = 0.8

σ $500 $1, 500 $2, 787 $4, 500 $5, 500

Benchmark

DW $362 $357 $363 $354 $332

DW linear $401 $398 $404 $406 $385

Bias +10.9% +11.4% +11.5% +14.9% +15.9%

TR $73 $72 $75 $76 $57

TR linear $33 $31 $33 $23 $4

Bias -54.3% -56.9% -55.6.0% -69.7% -93.4%

DW per $ 4.96 4.98 4.84 4.67 5.87

DW per $ linear 12.03 12.87 12.2 17.71 103.9

Bias +142.5% +158.4% +10.7% +279.6% +1670.3%

6 Conclusion

Actual tax systems are usually such that the marginal tax changes with the income

level, implying that the budget constraints that individuals face are nonlinear. It is

of interest to calculate the marginal deadweight loss of changes in a nonlinear income

tax. A nonlinear income tax can be varied in many different ways. Break points can

be changed, the intercept can be changed and the slope can be changed. Moreover, the

slope can be changed in different ways. We do not cover all these different possibilities

to vary a nonlinear tax. We focus on a particular kind of change in the slope, namely

a change in the slope such that the marginal tax changes with the same number of

percentage points at all income levels. Such a change can represent, for example, a

change in the pay roll tax, the value added tax or a proportional state income tax. A

common procedure to calculate the marginal deadweight loss of a change as described

above has been to linearize the budget constraint at some point and then calculate the

marginal deadweight loss for a variation in the linearized budget constraint. As shown in

the article, such a procedure does not give the correct value of the marginal deadweight

loss.

In this article, we derive the correct way to calculate the marginal deadweight loss

when the budget constraint is smooth and convex. It is well known that the size of the

deadweight loss depends on the curvature of the indifference curves, with more curved

indifference curves yielding smaller substitution effects and lower marginal deadweight
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losses. We show that the curvature of the budget constraint is equally important for

the size of the marginal deadweight loss. In fact, the curvature of the budget constraint

enters the expression for the marginal deadweight loss in exactly the same way as the

curvature of the indifference curve. We then numerically show that the bias introduced

by the linearization procedure is often quite large, for reasonable parameter values.

Because of the potentially misleading policy implications of the linearization proce-

dure, we believe that the curvature of the tax system should be fully accounted for when

measuring the deadweight loss.
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