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Abstract 

We propose two simple evaluation methods for time-varying density forecasts of continuous 

higher-dimensional random variables. Both methods are based on the probability integral 

transformation for unidimensional forecasts. The first method tests multinormal densities and 

relies on the rotation of the coordinate system. The advantage of the second method is not only its 

applicability to arbitrary continuous distributions but also the evaluation of the forecast accuracy 

in specific regions of its domain as defined by the user’s interest. We show that the latter property 

is particularly useful for evaluating a multidimensional generalization of the Value at Risk. In 

simulations and in an empirical study, we examine the performance of both tests. 
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1. Introduction 

Evaluation of the accuracy of forecasts occupies a prominent place in the finance and 

economics literature. However, most of this literature (e.g., Diebold and Lopez, 1996) 

focuses on the evaluation of point forecasts as opposed to interval or density forecasts. 

The driving force for this over-focus is that, until recently, point forecasts appeared to 

serve well the requirements of the forecast users. However, there is increasing evidence 

that a more comprehensive approach is needed. One example is Value at Risk (VaR) 

which is defined as the maximum loss on a portfolio over a certain period of time that can 

be expected with a certain probability. When returns are normally distributed, the VaR of 

a portfolio is a simple function of the variance of the portfolio.1 In this case, normality 

justifies the use of point forecasts for the variance. However, when the return distribution 

is non-normal, as is now the general consensus, the VaR of a portfolio is determined not 

just by the portfolio variance but by the entire conditional distribution of returns. More 

generally, decision making under uncertainty with asymmetric loss function and non-

Gaussian variables involves density forecasts (see Tay and Wallis, 2000; and Guidolin 

and Timmermann, 2005, for a survey and discussion of density forecasting applications 

in finance and economics). 

 

The increasing importance of forecasts of the entire (conditional) density naturally raises 

the issue of forecast evaluation. The relevant literature, although developing at a fast 

pace, is still in its infancy. This is somewhat surprising considering that the crucial tools 

employed date back a few decades. Indeed, a key contribution by Diebold et al. (1998) 

                                                 
1 When the mean return on an asset is assumed to be zero, as is commonly the case in practice when dealing 
with short-horizon returns, the VaR of a portfolio is simply a constant multiple of the square root of 
variance of the portfolio. 
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relies on the probability integral transformation (PIT) result in Rosenblatt (1952). 

Diebold et al. point out that the correct density is weakly superior to all forecasts. This 

suggests that forecasts should be evaluated in terms of their correctness as this is 

independent of the loss function. To this end, Diebold et al. (1998) employ the PIT of the 

univariate density forecasts which, if accurate, are ... dii  standard uniform. They measure 

the forecast accuracy by the distance between the empirical distribution of the PITs and 

the 45° line and argue that the visual inspection of this distance may provide valuable 

insights into the deficiencies of the model and ways of improving it. Obviously, standard 

goodness-of-fit tests can be directly applied to the PITs (see Noceti et al., 2003 for a 

comparison of the existing goodness-of-fit tests). Additional tests have been proposed by 

Anderson et al. (1994), Li (1996), Granger and Pesaran (1999), Berkowitz (2001), Li and 

Tkacz (2001), Hong (2001), Hong and Li (2003), Bai (2003) and Hong et al. (2007). 

 

The existing evaluation methods of the multidimensional density forecasts (MDF) rely on 

the advances made in the univariate case. Diebold et al. (1999) extend the PIT idea to the 

multivariate forecasts by factoring the multivariate probability density function (PDF) 

into its conditionals and computing the PIT for each conditional. As in the univariate 

case, the PIT of these forecasts is ... dii  uniform if the sequence of forecasts is correct. 

Clements and Smith (2000, 2002) extend Diebold et al.’s (1999) idea and propose two 

tests based on the product and ratio of the conditionals and marginals. While the latter 

tests perform well when there is correlation misspecification, they underperform the 

original test by Diebold et al. (1999) when such misspecification is absent. However, 

both approaches rely on the factorization of each period forecasts into their conditionals, 
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which may be impractical for some applications (e.g., for numerical approximations of 

density forecasts). Moreover, these approaches assume that the forecasting model is 

correct under the null hypothesis. This assumption has important implications for the 

evaluation tools employed, particularly in relation to parameter estimation uncertainty. 

Recognising this issue, another strand of MDF evaluation literature has recently gained 

momentum. This literature allows for dynamic misspecification and/or parameter 

estimation uncertainty and includes important contributions by Corradi and Swanson 

(2006b), Bai and Chen (2008), Chen and Hong (2009), inter alia. Corradi and Swanson 

(2006b) construct Kolmogorov-type conditional distribution tests in the presence of both 

dynamic misspecification and parameter estimation uncertainty. While their testing 

framework is flexible, it suffers from the fact that the limiting distribution is not nuisance 

parameters free and bootstrapping is needed to obtain valid critical values. Bai and Chen 

(2008) and Chen and Hong (2009) propose MDF evaluation tests that, under certain 

conditions, deal with the parameter estimation uncertainty. For example, Bai and Chen 

(2008) employ the K-transformation of Khmaladze (1981) to remove the effect of 

parameter estimation, so that a distribution-free test can be constructed. However, they 

still rely on the factorization of the joint density and apply this procedure only to 

multivariate normal and multivariate-t distributions, in which case they obtain closed-

form results. We discuss these issues in more detail in Section 3 and refer the interested 

reader to Mecklin and Mundfrom (2004) and Corradi and Swanson (2006a) for further 

insights into density forecast evaluation. 
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Broadly speaking, this paper belongs to the literature established by Diebold et al. (1998, 

1999) and Clements and Smith (2000, 2002) which does not account for parameter 

estimation uncertainty. This approach also dominates in the parametric-VaR area of the 

risk management literature, in which we are mainly interested (see, for example, 

Gourieroux and Jasiak, 2010). Thus, in simulations and empirical examples, we ignore 

parameter estimation uncertainty and potential dynamic misspecification but we 

acknowledge that these could be important. Finally, we stress that forecasts may vary 

over time making parameter estimation and forecast evaluation based on the laws of large 

numbers unfeasible. 

 

This paper makes two important contributions. Firstly, it proposes two new tests to 

evaluate multidimensional, time-varying density forecasts which although – similarly to 

its counterparts – may suffer from parameter estimation error and dynamic 

misspecification, are nevertheless simpler and more flexible. Secondly, to the best of our 

knowledge it is the first to formalise and propose a theoretical framework to testing the 

accuracy of multidimensional VaR (MVaR). This framework is particularly important for 

examining multiple sources of tail risk. 

 

The outline of the remainder of this paper is as follows. In Section 2, we discuss an 

evaluation procedure for multinormal density forecasts. Section 3 presents a test for 

arbitrary continuous densities while Section 4 discusses the results of Monte Carlo 

simulations and an empirical application for the newly proposed tests. Finally, Section 5 

concludes. 
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2. Evaluation Procedure for Multinormal Density Forecasts 

Rosenblatt (1952) showed that for the cumulative distribution function (CDF) tF
⌢

 (PDF 

tf
⌢

), which correctly forecasts the true data generating process (DGP) tF  of the 

observation tx ,  i.e., for which tF
⌢

( tx )= tF ( tx ), the PIT 
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is ... dii  according to ]1,0[U . Therefore, the adequacy of forecasts can be easily evaluated 

by examining the tz  series for violations of independence and uniformity. 

 

The PIT idea is extended to the multivariate case by Diebold et al. (1999). Their test 

procedure (D-test hereafter) factors each period MDF into the product of the conditionals 

 

)()|(),...,,|(),...,,( 11121,1211211 ttttttNttNttNtttt xfxxfxxxxfxxxf −−−−− ⋅⋅⋅⋅=
⌢⌢⌢⌢

 

 

and obtain the PIT for each conditional distribution, producing a set of N tz -series, which 

are ... dii  ]1,0[U  individually and as a whole whenever the MDF is correct. 2 Rejecting the 

null of ... dii  ]1,0[U  for any, as well as the combined tz  series implies that the MDF is 

misspecified. Clements and Smith (2000, 2002) propose two tests (CS-tests hereafter) 

                                                 
2 There are N! different ways to factor the MDF ),...,( 1,1,1 −− tNtt xxf

⌢

, giving us a wealth of  z series with 

which to evaluate the forecast. 
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based on the product (CS1) and the ratio (CS2) of PITs for the conditionals and marginals, 

where the N-dimensional vector of scores has typical elements m
t

c
t

j
t zzz ,1,1|2 ⋅=  and 

m
t

c
t

j
t zzz ,1,1|2 /=  respectively. 

 

For a multinormal density forecast, we describe below a test (MN-test hereafter) that 

avoids the possibly cumbersome factorization of the MDF. Instead, we transform the 

coordinate system according to a linear transformation composed of a translation and a 

rotation and compute the PITs for each marginal distribution. Note that the standard 

multinormality tests (e.g., Cox and Small, 1978; Smith and Jain, 1988) do not apply for 

time-varying distributions.  

 

Specifically, let ),...,( ,,1 tNtt XXX =  represent an N-dimensional multinormal random 

variable with mean tµ  and the variance-covariance matrix tΣ . The null hypothesis 

assumes that the MDF 1−tF
⌢

 is the same as the true distribution tF  of tX  and we do not 

distinguish between these functions in what follows, 

 

:0H  T
ttF 11}{ =−

⌢

 is the true DGP,  :AH  T
ttF 11}{ =−

⌢

 is not the true DGP. 

 

It is well known that the random variable )(
~

tttt XRX µ−= , where tR  is the matrix of 

eigenvectors of tΣ , is multinormal with mean zero and a diagonal variance-covariance 

matrix T
tttt RR Σ=Σ~ . Since tX  is multinormal, tX

~
 is a collection of independent univariate 
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variables with marginal distributions tNt FF ,,1

~
,...,

~
, tiF ,

~
 ∼ N(0, ),(

~
iitΣ ). Moreover, the null 

hypothesis that the observations tx  are drawn from tX  is equivalent to the hypothesis that 

the transformed observations )(~
tttt xRx µ−=  are drawn from tX

~
. From the results in 

Rosenblatt (1952) and by the independence of the components of tX
~

 follows that under the 

null, the scores )~(
~~

,,, tititi xFz = , Ni ,...,1= , are independently and uniformly3 distributed on 

[0,1]N individually and as a whole. The null can then be tested by the standard tests of 

uniformity (see Noceti et al., 2003) and independence (see Brock et al., 1991). In the next 

section, we define the test statistic that we use in our simulations and empirical studies and 

show also that linear transformations re-emerge as a useful tool in a test that does not rely 

on the normality of the forecasts. 

 

3. Evaluation Procedure for Arbitrary Continuous MDFs 

The test introduced in this section (Q-test hereafter) fulfils two purposes. On the one hand, 

it is a simple, ready-to-use procedure to evaluate arbitrary continuous MDFs. On the other 

hand, it allows for focusing on a specific region of the MDF instead of examining it over its 

entire domain. As we shall explain later in this section, existing tests can then be used to 

verify the region-specific accuracy of the forecasts. The latter application is particularly 

interesting from a risk-management perspective. Risk managers and regulators are 

interested, generally, in the likelihood of large losses, i.e. in a specific tail of the 

distribution. If this is the case, then, a model superior in forecasting the central part of the 

distribution will be eschewed in favour of another model which accurately forecasts the 

                                                 
3 This will be the case when all variables intX

~
 are not degenerated. Otherwise, we use only variables with 

positive variance to compute the scores. 
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tails. This objective motivates the censored likelihood test of Berkowitz (2001), in which 

the observations not falling into the negative tail of the distribution (with the cut-off point 

being decided by the user’s requirements) are truncated. 

 

As the Q-test is based on the PIT computation, we show first in a simple example that for a 

correct MDF 1−tF
⌢

, the PITs )(1 tt xF −

⌢

 are not necessarily uniformly distributed. For the 

standard binormal )(1 tt xF −

⌢

, it is straightforward to compute that the probability mass of the 

contour area }025.0)(:{ 1
2 <∈ − yFRy t

⌢

 is 0.117. Thus, under this distribution, the 

probability of obtaining a score )(1 ttt xFz −=
⌢

 < 0.025 is 0.117 rather than 0.025 as would be 

the case if tz  were uniformly distributed. It follows that, generally, the multidimensional 

extension of the PIT does not produce uniformly distributed scores. However, a simple 

modification in the PIT computation restores the uniformity. First, we transform the series 

T
ttxx 1}{ ==  into M

tx = )1,....,1(},....,{ ,,1 ⋅tNt xxMax  and then compute the scores )(1
M
tt

M
t xFz −=

⌢

. 

Instead of the original observation tx , we use for the computation of the PIT the projection 

of the largest coordinate of tx  on the main diagonal along the vector perpendicular to the 

corresponding axis (see Figure 1). Note that for unidimensional forecasts, our procedure 

reduces to the traditional PIT.  In the appendix, we prove the following result.   

 

Proposition 1: If T
ttF 11}{ =−

⌢

 is the true DGP for the sequence T
ttx 1}{ = , then T

t
M
tt

M
t xFz 11 )}({ =−=

⌢

, 

)1,....,1(},....,{ ,,1 ⋅= tNt
M
t xxMaxx , is ... dii  according to the uniform distribution ]1,0[U . 
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For an intuition of the proof of Proposition 1, we focus on two-dimensional orthants 

(quadrants) )),(( vvQ = )},(:{ 2 vvyRy ≤∈ , ,Rv∈  as illustrated by the dark gray rectangle in 

Figure 1.4 The crucial observation is that for any point tx  inside (outside) of the quadrant 

)),(( vvQ , M
tx  lies also inside (outside) of )),(( vvQ . In other words, ),( vvxt ≤  implies 

),( vvxM
t ≤  and vx ti >,  for at least one i  implies ),( vvxM

t > . As a consequence, the 

probability of obtaining a score )(1
M
tt

M
t xFz −=

⌢

 below )),((1 vvFt−

⌢

 is equivalent to the 

probability of tx  lying in )),(( vvQ , i.e., it is equal to )),((1 vvFt−

⌢

. 

 

[Figure 1] 

 

Importantly, the proposed procedure effectively transforms a MDF 1−tF
⌢

 into a 

unidimensional random variable )(1
M
tt

M
t XFZ −=

⌢

, M
tX = )1,....,1(},....,{ ,,1 ⋅tNt XXMax . Due to 

the Max{.} operator, each realization Mtz  of M
tZ  exploits the information in the entire 

multidimensional observation tx . The forecast 1−tF
⌢

 is then deemed correct whenever the 

proportion of observations that fall into each orthant )),...,(( vvQ  approximates the 

probability of this orthant under 1−tF
⌢

. In particular, the Q-test allows for assessing the 

accuracy of the forecasts in the “negative tail” of the distribution, as illustrated in the 

application to risk management later in this section. 

 

 

                                                 
4 Strictly speaking, the set )),...,(( vvQ = )},...,(:{ vvyRy N ≤∈  is an orthant in the coordinate system 

centred at ),...,( vv .  Due to the importance of orthants (quadrants), we call our procedure the Q-test. 
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Hypotheses 

Proposition 1 leads to a testable null hypothesis that the series T
ttF 11}{ =−

⌢

 is the actual DGP 

against the alternative that it is not.   

 

:0H  T
ttF 11}{ =−

⌢

 is the true DGP,  :AH  T
ttF 11}{ =−

⌢

 is not the true DGP. 

 

As the M
tz -scores are ... dii  uniform under the null, the standard tests of uniformity apply 

(see Noceti et al., 2003). The assumption that M
tz -scores are ... dii  can be tested by simply 

examining correlograms of various powers of M
tz (see Brock et al., 1991 for other, formal 

tests). However, when applied to the dynamic estimation of the MVaR, standard tests from 

the VaR literature on risk management (Kupiec, 1995 and Christoffersen, 1998) appear to 

be the suitable choice. In most of our examples, we focus on testing uniformity of the 

scores with the Pearson’s 2X -statistic 

 

∑ =
−= K

k i KTKTnX
1

22 )//()/(  

 

where in  is the number of M
tz -scores in the interval [(i-1)/K, i/K], i = 1,…,K. By the 

Pearson-Fisher theorem, 2X  is distributed asymptotically as 2χ  with K-1 degrees of 

freedom when no parameters are estimated from the data. We discuss the case with 

estimated parameters below. In any case, the rejection of either uniformity or 

independence, or both, provides statistical evidence that T
ttF 11}{ =−

⌢

 is not the true DGP. On 
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the other hand, failure to reject the null implies that we cannot dismiss the hypothesis that 

the MDF model under examination is correct. 

 

We note here that our test is not fully consistent as it cannot detect specific departures from 

the null.5 For example, a bidimensional density that mirrors the density under the null 

across the main diagonal will generate the same M
tz -scores. However, this inconsistency is 

not unique to our test (see, for example, Bai and Chen, 2008).6  Moreover, although clearly 

important for MDF evaluation, the lack of full consistency is less important for MVaR 

evaluation. The “mirror” bidimensional density in the example above will generate 

identical M
tz -scores as the true MDF and will lead to identical conclusions on MVaR 

accuracy that are correct for both, the true and the “mirror” distribution. 

 

Unlike other tests for time-varying MDFs (e.g. Diebold et al., 1999; Clements and Smith, 

2002; Bai and Chen, 2008), the Q-test generates only one score for each observation 

),...,( ,,1 tNtt xxx = . Although this parsimony may lead to loss of information, we illustrate in 

one of our simulations (Table 2) the opposite effect of concentrating the evidence from the 

sample. Importantly also, a single score helps to circumvent the potential problems related 

to interdependence of multiple scores that are computed from the same observation (see, 

for example, Bai and Chen, 2008). 

 

                                                 
5 We thank an anonymous referee for pointing this out. 
6 As we noted earlier, under a rotation of the coordinate system, the Mtz -scores remain uniform for the true 

MDF but it is unlikely that they will remain uniform for an alternative distribution. Therefore, computing 
scores under sufficiently many rotations can re-establish consistency. Our Monte Carlo simulations suggest 
that at most N rotations, where N is the number of dimensions of the MDF, are generally sufficient to 
obtain the correct answer. 
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Multidimensional Value at Risk 

In a market with N assets, an investor is interested in the event E that the random return of 

each asset falls below a certain value v. Equipped with the forecast 1−tF
⌢

,  the investor can 

compute tv  such that α=− )),...,((1 ttt vvF
⌢

, i.e., such that the event E is expected to occur with 

probability α. If the value of tv  is negative, the investor can compute the loss due to the 

event E for any portfolio of long positions. 

 

The rationale in this example lies at the heart of the concept of Value at Risk (VaR) which 

is now one of the most widely used risk measures among practitioners, largely due to its 

adoption by the Basel Committee on Banking Regulation (1996) for the assessment of the 

risk of the proprietary trading books of banks and its use in setting risk capital requirements 

(see Jorion, 2000). For the unidimensional CDF 1−tF
⌢

, the VaR at the coverage level 1-α is 

the quantile tv  for which α=− )(1 tt vF
⌢

. Generalizing this definition to the MDF 1−tF
⌢

, we 

require that the MVaR ),...,( tt vv  satisfies the condition α=− )),...,((1 ttt vvF
⌢

.7 From the 

definition M
tz = )(1

M
tt xF −

⌢

 follows immediately that M
tz  is less than α  whenever all 

components of the observation ),...,( ,,1 tNtt xxx =  fall below (exceed) the critical value tv , 

 

M
tz  < α  ⇔  tix ,  < tv  for all i = 1,…,N 

 

                                                 
7 Asymmetric specifications of MVaR, α=− )),...,(( ,,11 tNtt vvF

⌢

, where tNt vv ,,1 ... ≠≠ , are also 

possible. Investigating these alternatives is beyond the scope of this paper. 
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The latter property has important consequences when assessing the MVaR forecasts (the 

density forecasts for an orthant )),...,(( tt vvQ ). For a sufficiently large number of 

observations, we can compute the proportion of scores that exceed the MVaR (the 

proportion of observations that fall into )),...,(( tt vvQ ), and compare this number to the 

nominal significance level α . We refer to this procedure as unconditional accuracy. On 

the other hand, the conditional accuracy requires that the number of scores that exceed 

the MVaR forecast should be unpredictable when conditioned on the available 

information (i.e., the MVaR violations should be serially uncorrelated). To assess both 

types of accuracy, we can resort to the unconditional accuracy test of Kupiec (1995) and 

the conditional accuracy test of Christoffersen (1998). Although both tests are designed 

for testing the univariate VaR accuracy, they still apply for our purposes because the Q-

test effectively converts a MDF into a univariate score variable. 

 

In the context of the last example, the MVaR is a suitable instrument of risk measurement 

for situations of joint losses incurred by long positions in N assets. If, however, the 

investor contemplates also (some) short positions, she will be interested in the joint risk 

of positive (and negative) returns. In other words, the investor will be interested in the 

appropriate orthant which combines negative returns for the long positions and positive 

returns for the short positions. The accuracy of the density forecasts for areas other than 

the “negative orthant” can be assessed by transforming the canonical coordinate system. 

In order to compute the Mtz -scores in the transformed system, we have to express the 

observations tx  and the arguments in the MDF 1−tF
⌢

 in the new coordinates. Specifically, 

for a translation vector tµ  and a rotation matrix tR , we compute tx~ = )( ttt xR µ− , M
tx~ = 
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)1,...,1()~,...,~( ,,1 ⋅tNt xxMax  and M
tz~ = 1

~
−tF ( M

tx~ )= 1−tF
⌢

)~( 1
t

M
tt xR µ+− . Note that under this 

transformation, 1
~

−tF  is a CDF and the M
tz~ -scores are i.i.d. ]1,0[U  when 1−tF

⌢

 is the true 

DGP. The orthant )),...,(( tt vvQ  in the transformed system corresponds then to a different 

area of the original 1−tF
⌢

 domain and the accuracy of the 1−tF
⌢

 in this area can be tested by 

the same means as in the canonical system. Figure 2 shows the example of 2=N  assets 

with means zero and MDF 1−tF
⌢

. The rotation of the coordinates clockwise by 90° 

relocates the south-east orthant (a positive and a negative return) in the canonical 

coordinates to the south-west orthant (two negative returns). The investor can, 

consequently, assess the MVaR under 1−tF
⌢

 for a portfolio composed of a short position in 

the first asset and a long position in the second asset. 

 

[Figure 2] 

 

The possibility of generating scores in different coordinate systems allows, potentially, for 

gathering abundant information on the tested MDF. Unlike the D-test and CS-tests, where 

various independent score series can be generated, the scores in the Q-test are not 

independent across transformations. Figure 3 shows the scatter plot of the scores computed 

under the standard binormal in the canonical (x-axis) and in the 90°-rotated system (y-axis) 

are dependent. For example, the canonical and the rotated scores are not less than 0.2 

simultaneously. 

 

[Figure 3] 
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On the other hand, the use of only one score series raises the question of the transformation 

that maximizes the power of the test. A simple transformation that, arguably, comes closest 

to this goal, projects the largest component from the principal component analysis of the 

covariance matrix tΣ  of 1−tF
⌢

 on the main diagonal. This transformation can be constructed 

by rotating the demeaned 1−tF
⌢

 firstly by the matrix of eigenvectors of tΣ , and then by the 

matrix that rotates the axis with the largest variance to the main diagonal.  

 

Parameter Estimation Uncertainty 

It is well known that the presence of estimated parameters may complicate test inference. 

For example, the Kolmogorov test can be difficult to apply in the presence of estimated 

parameters, particularly for multivariate data with many parameters (see, for example, Bai 

and Chen, 2008). Following other scholars (Diebold and Mariano, 1995; Christoffersen, 

1998; Diebold et al. 1998, 1999; Clements and Smith, 2000, 2002), we consider the 

forecasts as primitives and ignore the method employed to obtain them. In many situations 

this may be an acceptable practice. Firstly, many density forecasts are not based on 

estimated models. For example, the large-scale market risk models at many financial 

institutions combine estimated parameters, calibrated parameters and ad-hoc modifications 

that reflect the judgment of management. Another example is the density forecasts of 

inflation of the Survey of Professional Forecasters (see Diebold et al., 1998). Moreover, 

previous research suggests that parameter estimation uncertainty is of second-order 

importance when compared to other sources of inaccuracies such as model misspecification 

(Chatfield, 1993). Further, Diebold et al. (1998) find that the effects of parameter 
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estimation uncertainty are immaterial in simulation studies geared toward the relatively 

large sample sizes employed in financial studies such as the present one.  

 

When parameter estimation cannot be ignored, suitable estimators can often be found that 

lead to pivotal test statistics (e.g., the “super-efficient” estimators in Watson, 1958). 

Particularly, for time-invariant forecasts )|( 11 −− ttt xF θ
⌢

= )|( θtxF , a suitable k-dimensional 

ML estimator θ
⌢

 in the Pearson’s- 2χ  goodness-of-fit test is obtained by maximizing with 

respect to θ   the multinomial distribution 

 

)()...(
!!...

!
)|,...,( 1

1
1

1 θθθϕ Kn
K

n

K
K pp

nn

T
nn =  

 

where ∫=
iBi dfp ωθωθ )|()(  is the probability of the fixed hyperbox n

i RB ∈ , i =1,…,K, 

under )|( θtxf  and in  is the number of observations in this hyperbox. By the Pearson-

Fisher theorem, the statistic 

 

∑ =
−= K

k iii TpTpnX
1

22 ))(/())(()( θθθ
⌢⌢⌢

   

 

is distributed asymptotically as 2χ  with K-k-1 degrees of freedom (see Watson, 1958; 

Birch, 1964). It is straightforward to show that this test is equivalent to the test of 

uniformity of the scores )|( θ
⌢

M
t

M
t xFz = . Therefore, the 2X  test statistic which we use 
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extensively in this work is pivotal for time-invariant densities, when the parameters are 

estimated from the multinomial PDF. 

 

An important class of models comprises a time-varying hypothesised distribution with a 

well-defined structure on the co-evolution of the variables (e.g. VAR and GARCH 

models). In this case, one way of accounting for parameter estimation uncertainty is to 

apply the K-transformation (Khmaladze, 1981), which allows for the construction of a 

distribution-free test statistic. In principle, the K-transformation can be applied to the MN 

and Q-test along the lines of the V-test in Bai (2003) and Bai and Chen (2008). Its 

computation, however, may be cumbersome for non-standard MDFs. 

 

Finally, in the case of arbitrary time-varying MDFs – for which our general model is 

particularly suited – parameter estimation is infeasible as only one observation is drawn 

from the MDF at each date. As such, the only practical solution is to assume that the 

hypothesised model is correct under the null. 

 

4. Monte Carlo Simulations and Empirical Results 

Although a comprehensive study of the statistical properties of the proposed tests is beyond 

the scope of this work, we performed Monte Carlo simulations, in which we compared the 

performance of four test procedures (D-test, CS-tests, Q-test and MN-test). 

 

In the first experiment, we generated observations according to a mixture of two binormal 

distributions, i.e., at each time t, an observation was drawn from one of the distributions 
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according to the probability weights in the mixture. Note that this experiment can be 

interpreted as emulating a time-varying DGP that is forecasted correctly by time-varying 

densities. Specifically, we used two mixtures,  )I),,½N((  )I),,-½N((-M NN1 δδδδ += and 

=2M  ,1)))2/(-),2/((1,-½N((0,0), δδ + ,1)2/(),2/((1,N((0,0), ½ δδ , where δ is interpreted as 

the deviation from the null hypothesis and NI  is the N-dimensional identity matrix The 

scatter plots of the representative data are reproduced in Figures 4 and 5, respectively. 

 

[Figures 4 and 5] 

 

For both mixtures, we tested the null hypothesis that the observations came from a 

binormal with mean and variance obtained from the relevant mixture, 
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In order to compute the test statistic in the D-test and the CS-tests, we factor the 

multinormal PDF ),;( Σµxf  into a product of two multinormal PDFs (a conditional and a 

marginal), 

 

),;(),;(),;( 2222||1 2121
ΣΣ=Σ µµµ xfxfxf xxxx    (1) 

where  
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In our bivariate case, we computed one score for the marginal ),;( 2222 Σµxf  and another 

for the conditional ),;(
2121 ||1 xxxxxf Σµ  PDF for each observation ),( ,2,1 tt xx . When the null is 

true, these scores are i.i.d. ]1,0[U  (Diebold et al., 1999). Two mutually independent scores 

can be also obtained from another factorization, in which 1x  and 2x  are swapped but they 

are not independent from the scores obtained in the first factorization. Therefore, we use 

one pair of independent scores per observation in the evaluation of the D-test and the CS-

tests. For the Q-test, only one independent score series can be generated. For the reasons 

discussed at the end of Section 3, we compute the scores under the transformation that 

projects the largest component from the principal component analysis of the covariance 

matrix Σ  on the main diagonal. Finally, the MN-test produces, by construction, two 

independent score series. 

 

Table 1 reports the results of the experiment for two data generating processes (mixtures 

M1 and M2) and different values of the parameter δ. 

 

[Table 1] 

 

The performance of all tests, with the exception of the CS2-test and – to a lesser extent – 

the D-test, is comparable for the first mixture despite the fact that the Q-test uses only 
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half of the scores relative to the other tests. For the second mixture, however, the Q-test 

and CS-tests clearly outperform their competitors.8 The comparative disadvantage of the 

latter is due to the fact that the covariance matrices, estimated from the samples, are close 

to the identity matrix. In this case, the null hypothesis takes the form of the standard 

binormal. The D-test and the MN-test verify then, whether the marginal distributions 

follow the univariate standard normal and ignore the correlation between the variables. 

The Q-test and the CS-tests, on the contrary, combine the information from both 

variables, which allows for a sharper detection of a deviation from binormality.  

Furthermore, we found in this experiment that the performance of the Q-test does not 

deteriorate essentially in the canonical coordinate system.  

 

Regarding the effect of the dimension N on the power of the tests, we investigated in 

another simulation the extent to which the tests suffer from the curse of dimensionality. For 

this purpose, we generalized the mixture 1M  from the previous example to 

 )),/,...,/(½N( NINN δδ −− +  )),/,...,/(½N(  NINN δδ . In this mixture, δ is the 

Euclidean distance between the origin of the coordinates and the means 

)/,...,/( NN δδ ±±  of the DGP. This distance remains constant for all dimensions N 

which makes the test results comparable across dimensions, 

 

d(( N/δ ,…, N/δ ),(0,..,0)) = d(( N/δ− ,…, N/δ− ),(0,..,0)) = δδ =NN 2)/(  

 

                                                 
8 These results confirm the findings in Clements and Smith (2002) for the CS-tests and the D-test. 
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As in the previous experiment, the scores were computed under the null of multinormality 

with mean and covariance matrix obtained from the mixture, )0,...,0(=µ , 

NNii /)( 2δ+=Σ ,  Nij /2δ=Σ . For reasons of computational efficiency, the scores in the 

Q-test were obtained in the coordinate system rotated by the matrix of the eigenvectors of 

the estimated covariance matrix. As the hypothesised function becomes then a product of N 

marginal PDFs, the computation simplifies to the multiplication of N-PITs of these 

marginals. This operation can be performed efficiently in higher dimensions. For the 

evaluation of the MN-test, we stacked the N-dimensional scores into a single vector. 

Additionally, in a unidimensional version of the MN-test (MN1-test hereafter), we 

examined the vector of MN scores that corresponded to the rotated variable with the largest 

variance (the first principal component). The N vectors of scores in the D-test were 

obtained from the repeated application of the factorization (1) to the N-dimensional 

forecast. One score per observation ),...,( ,,1 tNt xx  was then computed for each of the 

independent factors. Table 2 reports the p-values of the Pearson’s 2X -statistic for the tests 

Q/MN1/MN/D as computed from a sample of 2500 observations drawn from the above 

mixture for each value of δ and N. 

 

[Table 2] 

 

The MN1-test is by far the most powerful among the three contenders and seems to retain 

power in higher dimensions, at least for the parameter space under study. Interestingly, 

the tests MN and D are the worst performing ones in spite of exploiting N-1 additional 

independent score series relative to the tests MN1 and Q. Further analysis of the MN 
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scores showed that the information on the true DGP is concentrated in the scores 

corresponding to the first principal component. The inclusion of other scores dilutes this 

information and leads to loss of power. For the D-test, none of the N individual score 

vectors is consistently superior to any other or to the stacked vectors. Finally, the Q-test 

performs worse than MN1-test but is clearly more powerful than the tests MN and D, 

although its power appears to decrease with higher N. 

 

Finally, in an empirical study, we tested the hypothesis of multinormal distribution for 

the daily returns of S&P500, Dow Jones and Nasdaq equity indices. Table 3 presents 

summary statistics for the continuously compounded daily return series of equity indices 

computed from the raw prices. The mean returns are almost identical for all series and 

close to zero. In line with previous evidence, the distribution of daily returns is heavily 

leptokurtic and the hypothesis of univariate normality is strongly rejected for each equity 

index. 

 

[Table 3] 

 

In light of the individual results for the three indices, it comes as no surprise that the null 

of multinormality, where the parameters are estimated from the sample, is strongly 

rejected by all three tests with the p-values of the Pearson’s 2χ -test virtually equal to 

zero.9 More interesting are the insights offered by the scores computed by the Q-test. As 

explained in Section 3, these scores allow for verifying the accuracy of the forecasted 

                                                 
9 For brevity, the detailed results are not presented. They are available from the authors upon request. 
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density in specific areas. For the Q-test in the canonical system, the scores contain 

information on the forecast accuracy in the “negative orthants” of the distribution. Table 

4 contains the proportion of scores that fell into the orthant )),...,(( tt vvQ , where tv  is 

defined by α=− )),...,((1 ttt vvF
⌢

 for the nominal significance levels =α 0.005, 0.01, 0.015, 

0.02 and 0.025. By the results presented in Section 3, this proportion is equal to the 

exceedence rate of the MVaR at the corresponding coverage level 1-α. These proportions 

(exceedence rates) are consistently higher than the nominal levels α which means that the 

number of observations far in the negative tails is higher than that implied by a 

multinormal distribution. The stylized fact of fat tails in financial time series seems to be 

valid also in the multidimensional context. 

 

[Table 4] 

 

5. Summary and Conclusion 

The focus of the forecasting literature has recently shifted to interval and density 

forecasts. This shift has been motivated by applications in finance and economics as well 

as the realization that density and interval forecasts convey more information that point 

forecasts. Density forecasts naturally raise the question of evaluation. While efficient 

evaluation techniques for the univariate case have developed rapidly, the literature on 

multivariate density forecast evaluation remains limited. Indeed, the Diebold et al. (1999) 

PIT test remains the main reference with extensions proposed by Clements and Smith 

(2000, 2002). A drawback of these approaches is that they rely on the PDF factorization 

into conditionals and marginals which may prove challenging even for simple functions.  
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In this paper, we provide flexible and intuitive alternative tests of multivariate forecast 

accuracy that rely on the univariate PIT idea and avoid the cumbersome decomposition into 

conditionals and marginals. The framework is particularly important for examining 

multiple sources of tail risk encapsulated in MVaR. We performed Monte Carlo 

simulations and an empirical case study that exemplified the applications of both 

procedures. Finally, regarding the sources of forecast errors, we expect the parameter 

estimation uncertainty to be of second-order importance when compared to dynamic 

misspecification (Chatfield, 1993). However, shedding light on the power of the proposed 

test in the presence forecast inaccuracy requires formal investigation which may suggest a 

possible avenue for future research. 
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6. Appendix 

Proof of Proposition 1: 

For a series of T observations ),...,(,}{ ,,11 tNtt
T
tt xxxxx == =  of random variables T

ttX 1}{ =  

with continuous distributions T
ttF 1}{ = , we define the series of T transformed values 

T
t

M
tt

M
t xFz 1}}({ == , where M

tx =  )1,...,1(},....,{ ,,1 ⋅tNt xxMax , and the corresponding random 

variables M
tZ = }( M

tt XF = ))1,...,1(},....,{( ,,1 ⋅tNtt XXMaxF . 

 

We observe that if tx  belongs to the orthant )),...,(( vvQ  = )},,...,(:{ vvyRy N ≤∈  Rv∈ , 

then M
tx  also belongs to )),...,(( vvQ . This follows from the fact that vx ti ≤,  for i=1,…,N 

implies .},....,{ ,,1 vxxMax tNt ≤  On the other hand, if tx  does not belong to )),...,(( vvQ  then 

there must exist vx ti >,  and, hence, Mtx )),...,(( vvQ∉ . Therefore, 

 

)),...(()()()),,...(( vvFxFxFvvQx t
M
ttttt ≤≤∈∀ , (A1) 

)).,...(()()),,...(( vvFxFvvQx t
M
ttt >∉∀  

 

In order to prove that M
tZ  is uniformly distributed over U[0,1], we have to show that 

Pr( M
tZ < α) = α. From (A1) follows that M

tz = )( M
tt xF  ≤ α  =: )),...,(( vvFt  whenever 

)),...,(( vvQxt ∈ . The probability of the latter event is equal to the density mass over 

)),...,(( vvQ , i.e., equal to )),...,(( vvFt = α. 
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Finally, since M
tZ ∼U[0,1] for any CDF tF

⌢

, the distribution of M
tZ  is independent of the 

distribution of M
sZ  for any s≠t. 
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Table 1 The performance of Q/MN/D/CS1/CS2 in a Monte Carlo Simulation 

 
 
 

 
 
Notes: The table reports the p-values of the Pearson’s 2χ -test for the tests 
Q/MN/D/CS1/CS2, respectively, under the null N(µi, Σi), where µi and Σi were obtained 
from the corresponding mixture Mi. The test statistic X2 was computed from 5000 
stacked scores for MN/D/C1/C2 and from 2500 scores for the Q-test. The p-values were 
obtained from the 2

kχ -distribution with k=499 and k=249 degrees of freedom, 
respectively. The degrees of freedom parameter k was chosen in such a way that the 
expected number of observations in each of the k+1 subintervals of [0,1] was 10. 
 

 

 

 

 

 

 

 

 

 

Mixture M1                                  Mixture  M2  
 

    δ 
½N((-δ,-δ),I2) 

+ ½N((δ, δ ), I2) 
½N((0,0),((1, δ/2),(δ/2,1)))    

+½ N((0,0),((1,-δ/2),(-δ/2,1))) 
0.80 .072/.006/.251/.092/.545 .632/.702/.481/.546/.723 
1.00 .003/.002/.197/.000/.728 .181/.093/.199/.132/.943 
1.20 .000/.000/.128/.000/.535 .017/.349/.284/.004/.204 
1.40 .000/.000/.000/.000/.130 .000/.432/.391/.000/.009 
1.60 .000/.000/.000/.000/.094 .000/.000/.432/.000/.000 
1.80 .000/.000/.000/.000/.007 .000/.000/.153/.000/.000 
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Table 2 The performance of Q/MN1/MN/D in a Monte Carlo Simulation 

 

 

N δ  
    2     3     4     5     6     7     8     9   10 

    0.8 
 

.112 

.082 

.176 

.482 

.301 

.131 

.354 

.537 

.478 

.453 

.429 

.790 

.729 

.260 

.455 

.223 

.208 

.323 

.712 

.432 

.345 

.111 

.399 

.519 

.877 

.219 

.630 

.771 

.921 

.342 

.415 

.816 

.710 

.292 

.379 

.644 
    1.0 
 

.025 

.004 

.073 

.604 

.122 

.007 

.245 

.473 

.071 

.233 

.779 

.329 

.277 

.020 

.092 

.749 

.423 

.197 

.774 

.231 

.501 

.007 

.931 

.793 

.514 

.021 

.707 

.893 

.697 

.200 

.435 

.583 

.329 

.010 

.217 

.438 
    1.2 
 

.008 

.000 

.036 

.543 

.015 

.000 

.065 

.139 

.065 

.000 

.269 

.891 

.245 

.002 

.129 

.393 

.558 

.010 

.671 

.551 

.321 

.000 

.727 

.173 

.195 

.005 

.342 

.515 

.078 

.000 

.812 

.741 

.291 

.007 

.775 

.116 
    1.4 
 

.000 

.000 

.000 

.373 

.015 

.000 

.001 

.569 

.295 

.000 

.413 

.298 

.074 

.000 

.708 

.905 

.039 

.000 

.299 

.542 

.347 

.000 

.387 

.259 

.412 

.000 

.047 

.233 

.358 

.000 

.551 

.972 

.060 

.000 

.214 

.491 
    1.6 
 

.000 

.000 

.000 

.148 

.000 

.000 

.000 

.631 

.000 

.000 

.002 

.721 

.000 

.000 

.312 

.337 

.002 

.000 

.249 

.612 

.020 

.000 

.551 

.638 

.139 

.000 

.003 

.914 

.002 

.000 

.191 

.285 

.098 

.000 

.606 

.733 
    1.8 
 

.000 

.000 

.000 

.004 

.000 

.000 

.000 

.120 

.000 

.000 

.017 

.348 

.000 

.000 

.064 

.573 

.000 

.000 

.143 

.940 

.000 

.000 

.194 

.341 

.000 

.000 

.248 

.089 

.091 

.000 

.124 

.777 

.037 

.000 

.322 

.483 
 
Notes: The table reports the p-values of the Pearson’s 2χ -test for the tests 
Q/MN/D/CS1/CS2, respectively, under the null of multinormality, with mean and 

covariance matrix obtained from the mixture  )),/,...,/(½N( NINN δδ −− + 

).),/,...,/(½N( NINN δδ  The 2X -statistic was computed from 2500 scores for the 
tests Q and MN1 and from 2500*N scores for the tests  MN and D. The p-values were 
computed from the 2

kχ -distribution with k=249 and k=250*N-1 degrees of freedom, 

respectively. The degrees of freedom parameter k was chosen in such a way that the 
expected number of observations in each of the k+1 subintervals of [0,1] was 10. 
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Table 3 Summary Statistics 

 

Statistics S&P500 Dow Jones Nasdaq 
    

Mean (%) 0.0083 0.0147 0.0128 
Stand Dev (%) 1.1389 1.0919 1.8163 

Skewness 0.051 -0.064 0.116 
Kurtosis 4.984 6.004 6.614 

X2-stat (df=249) 433.5(0) 378.1(0) 514.8(0) 
 
Notes: The table reports the mean, standard deviation, skewness, kurtosis and the 
Pearson’s 2X -statistic (p-values in parenthesis) under the null of normality for the log 
returns for S&P500, Dow Jones and Nasdaq for the sample period 25/09/1998 to 
29/08/08 (2498 daily observations).  
 

 

Table 4 MVaR Unconditional Forecast Accuracy for the Multinormal Density 

 

Nominal 
Significance %x ut  

%5.0=α  0.881 2.037 
%1=α  1.361 1.558 
%5.1=α  1.962  1.664 

%2=α  2.562 1.778 
%5.2=α  3.163 1.892 

 

Notes: The table reports the percentage of exceptions out of 2498 daily observations (i.e., 
the proportion of times the forecasted MVaR is exceeded) and the Kupiec’s t-statistic to 
test the null hypothesis of unconditional accuracy for different nominal significance 
levels. 
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Figure 1: The contour area }025.0)(:{ 1

2 <∈ − yFRy t

⌢

 (gray) and the quadrant 

)}1,1(:{))1,1(( 2 −−≤∈=−− yRyQ  (dark gray) for the standard binormal 1−tF
⌢

. For 

observations (black dots) lying inside (outside) of the quadrant ))1,1(( −−Q , the “highest” 
of the projections on the main diagonal along the axes lies also inside (outside) of 

))1,1(( −−Q . 
 
 

 

 

 

 

 

 
 

 

Figure 2: After the rotation of the canonical system clockwise by 90°, the south-east 
orthant Qse moves to the south-west position Qsw. The dashed lines are the main diagonals 
in the original and the rotated system while the shaded ellipse is the contour area of 1−tF

⌢
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Figure 3: A scatter plot of scores generated from 1000 standard binormal observations 
under the null N((0,0),I). The x-axis (y-axis) corresponds to the scores computed in the 
canonical (90°-rotated) system. 
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Figure 4: A sample of 1000 observations from the mixture 1: ½N((-δ,-δ),I2) + 
½N((δ,δ),I2)) for δ=1.4. 
 

 4  2 2 4

 4

 2

2

4

 

 

 

 



36 
 

 

Figure 5: A sample of 1000 observations from the mixture 2: ½N((0,0),((1,-δ/2),(-δ/2,1))) 
+ ½N((0,0), ((1, δ/2),(δ/2,1))) for δ=1. 
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