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Abstract
We propose two simple evaluation methods for timeang density forecasts of continuous
higher-dimensional random variables. Both methods lsased on the probability integral
transformation for unidimensional forecasts. Thstfimethod tests multinormal densities and
relies on the rotation of the coordinate systene ativantage of the second method is not only its
applicability to arbitrary continuous distributiobsit also the evaluation of the forecast accuracy
in specific regions of its domain as defined byudbBer’s interest. We show that the latter property
is particularly useful for evaluating a multidiménsal generalization of the Value at Risk. In

simulations and in an empirical study, we examireegerformance of both tests.
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1. Introduction
Evaluation of the accuracy of forecasts occupigsaminent place in the finance and
economics literature. However, most of this litarat(e.g., Diebold and Lopez, 1996)
focuses on the evaluation of point forecasts a®sg to interval or density forecasts.
The driving force for this over-focus is that, untcently, point forecasts appeared to
serve well the requirements of the forecast udéosvever, there is increasing evidence
that a more comprehensive approach is needed. Karapde is Value at Risk (VaR)
which is defined as the maximum loss on a portfolier a certain period of time that can
be expected with a certain probability. When resuaire normally distributed, the VaR of
a portfolio is a simple function of the variancetbé portfolio® In this case, normality
justifies the use of point forecasts for the vaterHowever, when the return distribution
is non-normal, as is now the general consensusyéfeof a portfolio is determined not
just by the portfolio variance but by the entirendtional distribution of returns. More
generally, decision making under uncertainty wilyrametric loss function and non-
Gaussian variables involves density forecasts {sgeand Wallis, 2000; and Guidolin
and Timmermann, 2005, for a survey and discussiafensity forecasting applications

in finance and economics).

The increasing importance of forecasts of the erfionditional) density naturally raises
the issue of forecast evaluation. The relevantditee, although developing at a fast
pace, is still in its infancy. This is somewhatsising considering that the crucial tools

employed date back a few decades. Indeed, a keyilmation by Diebold et al. (1998)

! When the mean return on an asset is assumedzerbeas is commonly the case in practice wherirdgal
with short-horizon returns, the VaR of a portfol® simply a constant multiple of the square root of
variance of the portfolio.



relies on the probability integral transformatioRIT) result in Rosenblatt (1952).
Diebold et al. point out that the correct densgiywieakly superior to all forecasts. This
suggests that forecasts should be evaluated instafmtheir correctness as this is
independent of the loss function. To this end, Diéket al. (1998) employ the PIT of the
univariate density forecasts which, if accurate,iad. standard uniform. They measure
the forecast accuracy by the distance betweenrtipgrieal distribution of the PITs and
the 45° line and argue that the visual inspectibthis distance may provide valuable
insights into the deficiencies of the model and svalyimproving it. Obviously, standard
goodness-of-fit tests can be directly applied t® BiTs (see Noceti et al., 2003 for a
comparison of the existing goodness-of-fit tesdg)ditional tests have been proposed by
Anderson et al. (1994), Li (1996), Granger and Resé1999), Berkowitz (2001), Li and

Tkacz (2001), Hong (2001), Hong and Li (2003), &4103) and Hong et al. (2007).

The existing evaluation methods of the multidimenal density forecasts (MDF) rely on
the advances made in the univariate case. Dieth@l €1999) extend the PIT idea to the
multivariate forecasts by factoring the multivagigirobability density function (PDF)
into its conditionals and computing the PIT for leaonditional. As in the univariate
case, the PIT of these forecasts.igl. uniform if the sequence of forecasts is correct.
Clements and Smith (2000, 2002) extend Diebold.& @999) idea and propose two
tests based on the product and ratio of the camdits and marginals. While the latter
tests perform well when there is correlation mis#fpmtion, they underperform the
original test by Diebold et al. (1999) when suclsspecification is absent. However,

both approaches rely on the factorization of eaatiod forecasts into their conditionals,



which may be impractical for some applications .(efgr numerical approximations of
density forecasts). Moreover, these approachesmassbat the forecasting model is
correct under the null hypothesis. This assumptiaa important implications for the
evaluation tools employed, particularly in relatit;m parameter estimation uncertainty.
Recognising this issue, another strand of MDF eatau literature has recently gained
momentum. This literature allows for dynamic missfieation and/or parameter
estimation uncertainty and includes important dbotrons by Corradi and Swanson
(2006b), Bai and Chen (2008), Chen and Hong (2068 alia. Corradi and Swanson
(2006b) construct Kolmogorov-type conditional distition tests in the presence of both
dynamic misspecification and parameter estimatioicettainty. While their testing
framework is flexible, it suffers from the fact thtae limiting distribution is not nuisance
parameters free and bootstrapping is needed tanoldéd critical values. Bai and Chen
(2008) and Chen and Hong (2009) propose MDF evaludests that, under certain
conditions, deal with the parameter estimation tag#y. For example, Bai and Chen
(2008) employ theK-transformation of Khmaladze (19819 remove the effect of
parameter estimation, so that a distribution-feet tan be constructed. However, they
still rely on the factorization of the joint densiand apply this procedure only to
multivariate normal and multivariatedistributions, in which case they obtain closed-
form results. We discuss these issues in moreldet8iection 3 and refer the interested
reader to Mecklin and Mundfrom (2004) and Corraali &wanson (2006a) for further

insights into density forecast evaluation.



Broadly speaking, this paper belongs to the litemestablished by Diebold et al. (1998,
1999) and Clements and Smith (2000, 2002) whichs do&t account for parameter
estimation uncertainty. This approach also dommatethe parametric-VaR area of the
risk management literature, in which we are maimlierested (see, for example,
Gourieroux and Jasiak, 2010). Thus, in simulatiand empirical examples, we ignore
parameter estimation uncertainty and potential dhoamisspecification but we

acknowledge that these could be important. Finallg, stress that forecasts may vary
over time making parameter estimation and foreeasltuation based on the laws of large

numbers unfeasible.

This paper makes two important contributions. Birsit proposes two new tests to
evaluate multidimensional, time-varying densityefmasts which although — similarly to
its counterparts — may suffer from parameter egsiona error and dynamic
misspecification, are nevertheless simpler and rflergéble. Secondly, to the best of our
knowledge it is the first to formalise and prop@stheoretical framework to testing the
accuracy of multidimensional VaR (MVaR). This framk is particularly important for

examining multiple sources of tail risk.

The outline of the remainder of this paper is dto¥es. In Section 2, we discuss an
evaluation procedure for multinormal density fostsa Section 3 presents a test for
arbitrary continuous densities while Section 4 dsses the results of Monte Carlo
simulations and an empirical application for thevlyeproposed tests. Finally, Section 5

concludes.



2. Evaluation Procedurefor Multinor mal Density Forecasts

Rosenblatt (1952) showed that for the cumulatiriéiution function (CDF)F, (PDF
ﬁ), which correctly forecasts the true data genegatprocess (DGP)F, of the

observationx,, i.e., for whichF,(x,)= F,(x,), the PIT

2= [ f(Wdu=F(x)

is i.i.d. according tou [01]. Therefore, the adequacy of forecasts can beyeasilluated

by examining thez, series for violations of independence and unifeymi

The PIT idea is extended to the multivariate cagelebold et al. (1999). Their test

procedure (D-test hereafter) factors each period=Mido the product of the conditionals

o (s Yoo X)) = Foia R | X Xogee Xy ) T,y (X | %) 3 (%)

and obtain the PIT for each conditional distribatiproducing a set oN z -series, which
arei.id. U[0]] individually and as a whole whenever the MDF isrect.? Rejecting the
null of i.i.d. U[01] for any, as well as the combinet] series implies that the MDF is

misspecified. Clements and Smith (2000, 2002) peptwo tests (CS-tests hereafter)

% There areN! different ways to factor the MDFfAt(XLt_l,...,XN]t_l) , giving us a wealth ofz series with
which to evaluate the forecast.



based on the product (CS1) and the ratio (CS2)Td Pr the conditionals and marginals,

where the N-dimensional vector of scores has typical elemeats= z5, [y and

z) = 73,/ 2]} respectively.

For a multinormal density forecast, we describeoweh test (MN-test hereafter) that
avoids the possibly cumbersome factorization of BBF. Instead, we transform the
coordinate system according to a linear transfaonatomposed of a translation and a
rotation and compute the PITs for each marginatridigion. Note that the standard
multinormality tests (e.g., Cox and Small, 1978;itBnand Jain, 1988) do not apply for

time-varying distributions.

Specifically, let X, =(X,...,Xy,) represent anmN-dimensional multinormal random
variable with meany, and the variance-covariance matrk . The null hypothesis

assumes that the MDF,_, is the same as the true distributi®p of X, and we do not

distinguish between these functions in what follows

H,: {F_}. isthetrue DGP, H,: {F_}., is notthe true DGP.

It is well known that the random variabl)fét =R (X, —4,), where R is the matrix of

eigenvectors ofZ,, is multinormal with mean zero and a diagonal araee-covariance

matrix ft =RZ,R'. Since X, is multinormal, )Zt is a collection of independent univariate



variables with marginal distributionglyt,...,lzN’t, IEH ON(0,Z, (,i)). Moreover, the null
hypothesis that the observatiorsare drawn fromX, is equivalent to the hypothesis that
the transformed observation§ = R (X, —4,) are drawn from)?t. From the results in
Rosenblatt (1952) and by the independence of theoonents 0f>—<~t follows that under the
null, the scoresz,, = IEM(XYt )i=1...N, are independently and uniformlglistributed on

[0,1]" individually and as a whole. The null can thentested by the standard tests of
uniformity (see Noceti et al., 2003) and indepemngefsee Brock et al., 1991). In the next
section, we define the test statistic that we nseur simulations and empirical studies and
show also that linear transformations re-emerga aseful tool in a test that does not rely

on the normality of the forecasts.

3. Evaluation Procedurefor Arbitrary Continuous MDFs
The test introduced in this section (Q-test heezpafulfils two purposes. On the one hand,
it is a simple, ready-to-use procedure to evaladbérary continuous MDFs. On the other
hand, it allows for focusing on a specific regidritee MDF instead of examining it over its
entire domain. As we shall explain later in thistem, existing tests can then be used to
verify the region-specific accuracy of the foresasthe latter application is particularly
interesting from a risk-management perspective.k Risanagers and regulators are
interested, generally, in the likelihood of largesdes, i.e. in a specific tail of the
distribution. If this is the case, then, a modgdesior in forecasting the central part of the

distribution will be eschewed in favour of anotlmodel which accurately forecasts the

3 This will be the case when all variablesXn are not degenerated. Otherwise, we use only \esafith
positive variance to compute the scores.



tails. This objective motivates the censored Ikadid test of Berkowitz (2001), in which
the observations not falling into the negative tdithe distribution (with the cut-off point

being decided by the user’s requirements) are atexac

As the Q-test is based on the PIT computation,hvesvdirst in a simple example that for a

correct MDF F_,, the PITsF,_(x) are not necessarily uniformly distributed. For the
standard binormalft_l(xt), it is straightforward to compute that the proligbmass of the
contour area{yOR?:F,_(y)<0.025 }is 0.117. Thus, under this distribution, the
probability of obtaining a score = F_,(x, 9 0.025 is 0.117 rather than 0.025 as would be

the case ifz, were uniformly distributed. It follows that, geadly, the multidimensional

extension of the PIT does not produce uniformitritisted scores. However, a simple

modification in the PIT computation restores th&armity. First, we transform the series
x={x} into X" = Maxx,....xy} {....1) and then compute the score® =F,_,(x").
Instead of the original observatiof, we use for the computation of the PIT the progect
of the largest coordinate of on the main diagonal along the vector perpendidolahe

corresponding axis (see Figure 1). Note that fadiorensional forecasts, our procedure

reduces to the traditional PIT. In the appendig,prove the following result.

Proposition 1If {F_}[, is the true DGP for the sequenog}[ , then{z" = F_,(x")}.,,

X" =Max{X,,,....%y} (... 1) , is i.id. according to the uniform distributian[oy].



For an intuition of the proof of Proposition 1, iecus on two-dimensional orthants
(quadrants)Q((v,v)) ={yOR?:y<(v,v)}, VOR, as illustrated by the dark gray rectangle in

Figure 1? The crucial observation is that for any poigtinside (outside) of the quadrant
Q((v,v)), x lies also inside (outside) a®((v,v)). In other words,x. < (v,v )implies

x' <(v,v) and x, >v for at least onei implies x" >(v,v). As a consequence, the
probability of obtaining a score! =F_ (x") below F_((v,v)) is equivalent to the

probability of x, lying in Q((v,v)), i.e., it is equal taF_,((v,V)).

[Figure 1]

Importantly, the proposed procedure effectivelynsfarms a MDF F_, into a
unidimensional random variablg" =F_ (X"), X"= Max{X,,....Xy} {L....) . Due to
the Max{.} operator, each realizatiog” of zZ" exploits the information in the entire
multidimensional observation,. The forecastF, , is then deemed correct whenever the
proportion of observations that fall into each arth Q((v,...,v)) approximates the

probability of this orthant undelft_l. In particular, the Q-test allows for assessing th

accuracy of the forecasts in the “negative tail’tioé distribution, as illustrated in the

application to risk management later in this sectio

* Strictly speaking, the se®((V,...,v))= {yOR" :y<(v,...,v)} is an orthant in the coordinate system
centred at(v,...,v) . Due to the importance of orthants (quadrants)call our procedure the Q-test
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Hypotheses

Proposition 1 leads to a testable null hypothdsis the serie¢F, ,}, is the actual DGP

against the alternative that it is not.

H,: {F_}. isthetrue DGP, H,: {F_}., is notthe true DGP.

As the z" -scores ard.i.d. uniform under the null, the standard tests of amifity apply
(see Noceti et al., 2003). The assumption tifatscores are.i.d. can be tested by simply

examining correlograms of various powers#¥f(see Brock et al., 1991 for other, formal

tests). However, when applied to the dynamic esionaf the MVaR, standard tests from
the VaR literature on risk management (Kupiec, 1888 Christoffersen, 1998) appear to

be the suitable choice. In most of our examples,faeels on testing uniformity of the

scores with the Pearson?-statistic

X2=3"" (n -T/K)2/T/K)

where n, is the number ofz" -scores in the interval if@)/K, /K], i = 1,...K. By the

Pearson-Fisher theoremX? is distributed asymptotically ag? with K-1 degrees of

freedom when no parameters are estimated from #te. dVe discuss the case with

estimated parameters below. In any case, the i@jeocdf either uniformity or

independence, or both, provides statistical evidehat{F, ,}|, is not the true DGP. On

11



the other hand, failure to reject the null implieat we cannot dismiss the hypothesis that

the MDF model under examination is correct.

We note here that our test is not fully consistenit cannot detect specific departures from
the null® For example, a bidimensional density that mirrbrs density under the null
across the main diagonal will generate the sathescores. However, this inconsistency is
not unique to our test (see, for example, Bai ahdnC2008f. Moreover, although clearly
important for MDF evaluation, the lack of full castency is less important for MVaR
evaluation. The “mirror” bidimensional density imet example above will generate
identical z" -scores as the true MDF and will lead to identicahclusions on MVaR

accuracy that are correct for both, the true aed'tfirror” distribution.

Unlike other tests for time-varying MDFs (e.g. Dodd et al., 1999; Clements and Smith,
2002; Bai and Chen, 2008), the Q-test generateg omé score for each observation

X = (X, Xy,) - Although this parsimony may lead to loss of infiation, we illustrate in

one of our simulations (Table 2) the opposite efedaconcentrating the evidence from the
sample. Importantly also, a single score helpsrtumvent the potential problems related
to interdependence of multiple scores that are coatpfrom the same observation (see,

for example, Bai and Chen, 2008).

® We thank an anonymous referee for pointing thts ou

¢ As we noted earlier, under a rotation of the cmat system, the," -scores remain uniform for the true

MDF but it is unlikely that they will remain unifor for an alternative distribution. Therefore, coripg
scores under sufficiently many rotations can redgigth consistency. Our Monte Carlo simulationsgsst)
that at mostN rotations, whereN is the number of dimensions of the MDF, are gdherfficient to
obtain the correct answer.

12



Multidimensional Value at Risk

In a market withN assets, an investor is interested in the ekdahat the random return of

each asset falls below a certain valu&quipped with the forecadt ,, the investor can
computev, such thatF,_,((v,,....v,)) =@, i.e., such that the eveftis expected to occur with
probability . If the value ofv, is negative, the investor can compute the losstdube

eventE for any portfolio of long positions.

The rationale in this example lies at the heathefconcept of Value at Risk (VaR) which
is now one of the most widely used risk measuresngnpractitioners, largely due to its
adoption by the Basel Committee on Banking Reguiafl 996) for the assessment of the

risk of the proprietary trading books of banks @&sdise in setting risk capital requirements

(see Jorion, 2000). For the unidimensional CBE, the VaR at the coverage levellis
the quantilev, for which F_(v,)=a. Generalizing this definition to the MDF,_,, we
require that the MVaR(v,,...v,) satisfies the conditionF_((v,,...v;))=a.” From the
definition z"= F_(x") follows immediately thatz" is less thana whenever all

components of the observation=(x,,...,xy,) fall below (exceed) the critical value,

M H—-
z' <a - x,<yforalli=1,..N

7 Asymmetric specifications of MVaRF,_((Vy,...\Vy,)) =&, where V,, #...%V,,, are also
possible. Investigating these alternatives is bdybe scope of this paper.

13



The latter property has important consequences \&hsessing the MVaR forecasts (the

density forecasts for an orthar@((v,,...,v;))). For a sufficiently large number of
observations, we can compute the proportion ofescdhat exceed the MVaR (the

proportion of observations that fall intQ((v,,...,;)) ), and compare this number to the

nominal significance levetr . We refer to this procedure as unconditional aacyrOn
the other hand, the conditional accuracy requinas the number of scores that exceed
the MVaR forecast should be unpredictable when itiongéd on the available
information (i.e., the MVaR violations should beaiaky uncorrelated). To assess both
types of accuracy, we can resort to the unconditiancuracy test of Kupiec (1995) and
the conditional accuracy test of Christoffersen9g)9 Although both tests are designed
for testing the univariate VaR accuracy, they stply for our purposes because the Q-

test effectively converts a MDF into a univariaterg variable.

In the context of the last example, the MVaR isiigable instrument of risk measurement
for situations of joint losses incurred by long ifoss in N assets. If, however, the
investor contemplates also (some) short positishg,will be interested in the joint risk
of positive (and negative) returns. In other wortthg investor will be interested in the
appropriate orthant which combines negative retfwnshe long positions and positive
returns for the short positions. The accuracy efdbnsity forecasts for areas other than

the “negative orthant” can be assessed by trangigrthe canonical coordinate system.

In order to compute the” -scores in the transformed system, we have to expte
observationsx, and the arguments in the MDF, in the new coordinates. Specifically,

for a translation vectoy, and a rotation matri>R , we computex = R (x, =), X" =

14



Max(¥y, - Xy ) [@...) and Z" = F_(X")= F. (R™X" +). Note that under this
transformation,F,_, is a CDF and th&" -scores are.i.d. U[01] when F,_ is the true
DGP. The orthan®Q((v,,...,v, ))n the transformed system corresponds then téfereint

area of the originaF_, domain and the accuracy of tie, in this area can be tested by
the same means as in the canonical system. Figsine\s the example dfl =2 assets
with means zero and MDHF_,. The rotation of the coordinates clockwise by 90°

relocates the south-east orthant (a positive antegative return) in the canonical
coordinates to the south-west orthant (two negatigturns). The investor can,

consequently, assess the MvVaR unﬁgf for a portfolio composed of a short position in

the first asset and a long position in the secaséta

[Figure 2]

The possibility of generating scores in differeabinate systems allows, potentially, for
gathering abundant information on the tested MD#Rlikg the D-test and CS-tests, where
various independent score series can be generdtedscores in the Q-test are not
independent across transformations. Figure 3 shiogvscatter plot of the scores computed
under the standard binormal in the canonical (sjaand in the 90°-rotated system (y-axis)
are dependent. For example, the canonical anddiaed scores are not less than 0.2

simultaneously.

[Figure 3]
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On the other hand, the use of only one score seigss the question of the transformation
that maximizes the power of the test. A simplegfarmation that, arguably, comes closest

to this goal, projects the largest component frbm principal component analysis of the

covariance matrixz, of F_, on the main diagonal. This transformation can drestructed

by rotating the demeanela_l firstly by the matrix of eigenvectors &,, and then by the

matrix that rotates the axis with the largest var@to the main diagonal.

Parameter Estimation Uncertainty
It is well known that the presence of estimatechpeaters may complicate test inference.
For example, the Kolmogorov test can be difficoltapply in the presence of estimated
parameters, particularly for multivariate data watlany parameters (see, for example, Bai
and Chen, 2008). Following other scholars (Diebadl Mariano, 1995; Christoffersen,
1998; Diebold et al. 1998, 1999; Clements and Sn#000, 2002), we consider the
forecasts as primitives and ignore the method eyepld@o obtain them. In many situations
this may be an acceptable practice. Firstly, maegsidy forecasts are not based on
estimated models. For example, the large-scale ehartkk models at many financial
institutions combine estimated parameters, calorglarameters and ad-hoc modifications
that reflect the judgment of management. Anotheangde is the density forecasts of
inflation of the Survey of Professional Forecasi@ee Diebold et al., 1998). Moreover,
previous research suggests that parameter estimatncertainty is of second-order
importance when compared to other sources of imace@s such as model misspecification

(Chatfield, 1993). Further, Diebold et al. (1998hdf that the effects of parameter

16



estimation uncertainty are immaterial in simulatistudies geared toward the relatively

large sample sizes employed in financial studieb s1$ the present one.

When parameter estimation cannot be ignored, daitgiimators can often be found that

lead to pivotal test statistics (e.g., the “sup@icient” estimators in Watson, 1958).

Particularly, for time-invariant forecasts_,(x, |6,_,) =F(x |6), a suitablek-dimensional

ML estimator 8 in the Pearson’sy®> goodness-of-fit test is obtained by maximizinghwit

respect tod the multinomial distribution

T pr()...00 (0)

n,..n.|8)=
P 10) = o

where p, (6) :Ia f (w|f)dw is the probability of the fixed hyperbo® OR", i =1,...K,

under f(x |6 )and n, is the number of observations in this hyperbox.tBy Pearson-

Fisher theorem, the statistic
X2(8) = (n - p,(O)T)*/(p,(O)T)

is distributed asymptotically ag® with K-k-1 degrees of freedom (see Watson, 1958;
Birch, 1964). It is straightforward to show thatistitest is equivalent to the test of

uniformity of the scoresz” =F(x" |8). Therefore, theX? test statistic which we use

17



extensively in this work is pivotal for time-invart densities, when the parameters are

estimated from the multinomial PDF.

An important class of models comprises a time-vayyypothesised distribution with a
well-defined structure on the co-evolution of tharigbles (e.g. VAR and GARCH
models). In this case, one way of accounting falapeter estimation uncertainty is to
apply theK-transformation (Khmaladze, 1981), which allows tbe construction of a
distribution-free test statistic. In principle, tKetransformation can be applied to the MN
and Q-test along the lines of thétest in Bai (2003) and Bai and Chen (2008). Its

computation, however, may be cumbersome for namdsia MDFs.

Finally, in the case of arbitrary time-varying MDFsfor which our general model is
particularly suited — parameter estimation is isfel® as only one observation is drawn
from the MDF at each date. As such, the only pecattsolution is to assume that the

hypothesised model is correct under the null.

4. Monte Carlo Simulations and Empirical Results
Although a comprehensive study of the statisticapprties of the proposed tests is beyond
the scope of this work, we performed Monte Cartowations, in which we compared the

performance of four test procedures (D-test, C&1€¥test and MN-test).

In the first experiment, we generated observatamwording to a mixture of two binormal

distributions, i.e., at each tinte an observation was drawn from one of the distiding

18



according to the probability weights in the mixtufdote that this experiment can be
interpreted as emulating a time-varying DGP thdbiecasted correctly by time-varying

densities. Specifically, we used two mixturesj, =%N((-3,-9),1) +¥N((9,9),!) and
M, =%N((0,0)((1,-0/2),(-6/2,1))) + ¥2N((0,0),((1,0/2),(6/2,1), whered is interpreted as
the deviation from the null hypothesis amg is the N-dimensional identity matrix The

scatter plots of the representative data are rejgextlin Figures 4 and 5, respectively.
[Figures 4 and 5]

For both mixtures, we tested the null hypothesst tthe observations came from a

binormal with mean and variance obtained from tlewant mixture,

1+ 9% 5°

#1 = (010)1 z]_ = [52 1+ 52

} U, = 00),z,=1,

In order to compute the test statistic in the D-tasd the CS-tests, we factor the

multinormal PDF f (x; #,%) into a product of two multinormal PDFs (a condiaand a
marginal),
focu,2)="1 (>(1;ﬂ><1|x272><1|x2) f (X5 1y, 255) 1)

where
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P
X=(%, %), M=ty 1), Z:{zllzlz}
21422

My, = Hy, * %102 55(% = %), 2k, =211 10295201

In our bivariate case, we computed one score ®mntharginal f (x,; 14,,%,,) and another

for the conditionalf (x; .. Z,,) PDF for each observatiofx,,,x,,) . When the null is

true, these scores ared. U[0]1] (Diebold et al., 1999). Two mutually independertres

can be also obtained from another factorizationyhich x, and x, are swapped but they
are not independent from the scores obtained iffingtefactorization. Therefore, we use
one pair of independent scores per observationaretvaluation of the D-test and the CS-
tests. For the Q-test, only one independent saatesscan be generated. For the reasons
discussed at the end of Section 3, we computedbees under the transformation that
projects the largest component from the princigahpgonent analysis of the covariance
matrix Z on the main diagonal. Finally, the MN-test prodjcby construction, two

independent score series.

Table 1 reports the results of the experimentviar tlata generating processes (mixtures

M, and M) and different values of the parameder
[Table 1]

The performance of all tests, with the exceptiothef CS2-test and — to a lesser extent —

the D-test, is comparable for the first mixture giess the fact that the Q-test uses only
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half of the scores relative to the other tests.tRersecond mixture, however, the Q-test
and CS-tests clearly outperform their competifoFsie comparative disadvantage of the
latter is due to the fact that the covariance roas;i estimated from the samples, are close
to the identity matrix. In this case, the null htipesis takes the form of the standard
binormal. The D-test and the MN-test verify therhether the marginal distributions
follow the univariate standard normal and ignore tlorrelation between the variables.
The Q-test and the CS-tests, on the contrary, aumnbhe information from both
variables, which allows for a sharper detection aofdeviation from binormality.
Furthermore, we found in this experiment that tleefgrmance of the Q-test does not

deteriorate essentially in the canonical coordisgttem.

Regarding the effect of the dimensidbhon the power of the tests, we investigated in
another simulation the extent to which the testfesfrom the curse of dimensionality. For

this purpose, we generalized the mixtumd, from the previous example to
VN((=3/VN,...~3/IN), 1) + %N(/VN,....0///N), 1) . In this mixture, & is the
Euclidean distance between the origin of the coatds and the means
(id/x/ﬁ,...,iw\/ﬁ) of the DGP. This distance remains constant fordatiensionsN

which makes the test results comparable acrossngiones,

d((3/VN ,...,85/N),(0,..,0)) = d(E 5/IN ..., —5//N),(0,..,0)) =+/(6//N)*>N =&

8 These results confirm the findings in Clements &mith (2002) for the CS-tests and the D-test.
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As in the previous experiment, the scores were coegpunder the null of multinormality

with  mean and covariance matrix obtained from thexture, 4=(0,...0),
z; =(N+0%)/N, =, =d°/N. For reasons of computational efficiency, the esan the

Q-test were obtained in the coordinate systemedthy the matrix of the eigenvectors of
the estimated covariance matrix. As the hypothddisection becomes then a produciNbf
marginal PDFs, the computation simplifies to theltiplication of N-PITs of these
marginals. This operation can be performed effityem higher dimensions. For the
evaluation of the MN-test, we stacked tNedimensional scores into a single vector.
Additionally, in a unidimensional version of the MBist (MN1-test hereafter), we
examined the vector of MN scores that corresponaddide rotated variable with the largest
variance (the first principal component). The vectors of scores in the D-test were
obtained from the repeated application of the faation (1) to theN-dimensional

forecast. One score per observatifx,,....x,, Wwas then computed for each of the

independent factors. Table 2 reports the p-valfiéiseoPearson’sX *-statistic for the tests
Q/MN1/MN/D as computed from a sample of 2500 obasgons drawn from the above

mixture for each value af andN.

[Table 2]

The MN1-test is by far the most powerful amongttiree contenders and seems to retain
power in higher dimensions, at least for the patamgpace under study. Interestingly,
the tests MN and D are the worst performing onespite of exploitingN-1 additional

independent score series relative to the tests ML Q. Further analysis of the MN
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scores showed that the information on the true O&Roncentrated in the scores
corresponding to the first principal component. Tingusion of other scores dilutes this
information and leads to loss of power. For theeBit none of th&l individual score
vectors is consistently superior to any other othe stacked vectors. Finally, the Q-test
performs worse than MN1-test but is clearly morev@dul than the tests MN and D,

although its power appears to decrease with higher

Finally, in an empirical study, we tested the hyyasis of multinormal distribution for
the daily returns of S&P500, Dow Jones and Nasdpdgtye indices. Table 3 presents
summary statistics for the continuously compoundi@tly return series of equity indices
computed from the raw priceShe mean returns are almost identical for all seaed

close to zero. In line with previous evidence, tligribution of daily returns is heavily
leptokurtic and the hypothesis of univariate noitpas strongly rejected for each equity

index.

[Table 3]

In light of the individual results for the threalines, it comes as no surprise that the null

of multinormality, where the parameters are eswthatrom the sample, is strongly
rejected by all three tests with the p-values @f Brearson’sy”-test virtually equal to

zero? More interesting are the insights offered by tberss computed by the Q-test. As

explained in Section 3, these scores allow forfykig the accuracy of the forecasted

° For brevity, the detailed results are not presknfaey are available from the authors upon request
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density in specific areas. For the Q-test in throo&al system, the scores contain
information on the forecast accuracy in the “nagatrthants” of the distribution. Table

4 contains the proportion of scores that fell itlte orthantQ((v,,...,v, )) whereyv, is

defined byF,_,((v,,....v;)) =a for the nominal significance levels =0.005, 0.01, 0.015,

0.02 and 0.025. By the results presented in Se@iothis proportion is equal to the
exceedence rate of the MVaR at the correspondiugrage level la. These proportions
(exceedence rates) are consistently higher thandimenal levelsa which means that the
number of observations far in the negative tailshigher than that implied by a
multinormal distribution. The stylized fact of ftls in financial time series seems to be

valid also in the multidimensional context.

[Table 4]

5. Summary and Conclusion
The focus of the forecasting literature has regestiifted to interval and density
forecasts. This shift has been motivated by apjptioa in finance and economics as well
as the realization that density and interval fosez@onvey more information that point
forecasts. Density forecasts naturally raise thesgion of evaluation. While efficient
evaluation techniques for the univariate case hdaxesloped rapidly, the literature on
multivariate density forecast evaluation remainstkd. Indeed, the Diebold et al. (1999)
PIT test remains the main reference with extensfmeposed by Clements and Smith
(2000, 2002). A drawback of these approaches isttiegy rely on the PDF factorization

into conditionals and marginals which may provellelnging even for simple functions.
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In this paper, we provide flexible and intuitivdeahative tests of multivariate forecast
accuracy that rely on the univariate PIT idea aralchthe cumbersome decomposition into
conditionals and marginals. The framework is palddy important for examining
multiple sources of tail risk encapsulated in MVaRle performed Monte Carlo
simulations and an empirical case study that exéeglthe applications of both
procedures. Finally, regarding the sources of fmsee@rrors, we expect the parameter
estimation uncertainty to be of second-order imgmsé when compared to dynamic
misspecification (Chatfield, 1993). However, sheddiight on the power of the proposed
test in the presence forecast inaccuracy requinesdl investigation which may suggest a

possible avenue for future research.
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6. Appendix

Proof of Proposition 1:

For a series of observationsx={x}.;, % =(Xy,...Xy, )of random variable§ X},
with continuous distributiongF.},, we define the series of transformed values
{z" =F.(X"}} ., where X" = Max{x,,,.....xy,} (... 1), and the corresponding random

variablesz = F (X"} = F(MaX X,,,.... X} OL...))).

We observe that if. belongs to the orthar®((v....,v)) ={yOR" :y<(v,...,v)}, VOR,
then x" also belongs ta@((v,...,v)) . This follows from the fact thax,, <v fori=1,...N

implies Max{ x,,....,Xy ;} £Vv.On the other hand, ik, does not belong tQ((v,...,v)) then

there must exisk , >v and, hencex 0 Q((v,...,v)) . Therefore,

Ox 0Q((v...M), F(x)<F(X")<F((v..v),  (Al)

0% OQ((v...¥), R (x") > R ((V...v)).

In order to prove thaz is uniformly distributed ovetJ[0,1], we have to show that
Pr(z" < a) = a. From (A1) follows thatz" = F(x") < a = F((v,...,v)) whenever
X, 0Q((v....,v)). The probability of the latter event is equal te tdensity mass over

Q((v,...,v)), i.e., equal toF, ((v,...,v JF a.
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Finally, sincez" (U[0,1] for any CDF Ift, the distribution ofz is independent of the

distribution ofz!" for any t.
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Table 1 The performance of Q/MN/D/CS1L/CS2 in a Monte Carlo Simulation

Mixture My
%N((-9,-0),12)

Mixture M
%N((0,0),((1,6/2),(8/2,1)))

5 + 1N(®, 3 ), I) +14 N((0,0),((1,8/2),(-d/2,1)))
0.80 .072/.006/.251/.092/.545 .632/.702/.481/.52.
1.00 .003/.002/.197/.000/.728 .181/.093/.199/. B3.
1.20 .000/.000/.128/.000/.535 .017/.349/.284/.CROAY.
1.40 .000/.000/.000/.000/.130 .000/.432/.391/.008.
1.60 .000/.000/.000/.000/.094 .000/.000/.432/.Q00.
1.80 .000/.000/.000/.000/.007 .000/.000/.153/.000.

Notes: The table reports the p-values of the Pa@sgy®-test for the tests

Q/MN/D/CS1/CS2, respectively, under the nulNE:), wherep; andX; were obtained
from the corresponding mixture ;MThe test statistic Xwas computed from 5000
stacked scores for MN/D/C1/C2 and from 2500 sctyeshe Q-test. The p-values were
obtained from the y?-distribution with k=499 and k=249 degrees of freedom,
respectively. The degrees of freedom paramletelas chosen in such a way that the
expected number of observations in each ok#iesubintervals of [0,1] was 10.
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Table 2 The performance of Q/MNL/MN/D in a Monte Carlo Simulation

0 N

2 3 4 5 6 I 8 9 01
0.8 |.112 301 478 729 208 345 877 .921 .710
.082 131 453 260 .323 111 219 .342 292
176 354 429 455 712 399 .630 .415 .379
482 537 790 223 432 519 771 .816 .644
1.0 |.025 A22 071 277 423 501 514 697 .329
.004 .007 .233 .020 .197 .007 .021 .200 .010
.073 245 779 092 774 931 707 435 217
.604 A73 329 749 231 793 .893 .583 .438
1.2 |.008 .015 .065 .245 558 .321 .195 .078 .291
.000 .000 .000 .002 .010 .000 .005 .000 .007
.036 .065 269 .129 671 .727 .342 812 .775
.543 139 891 393 551 173 515 741 116
1.4 |.000 .015 295 .074 .039 .347 412 .358 .060
.000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .001 .413 .708 .299 .387 .047 551 .214
373 569 298 905 542 259 233 972 491
1.6 |.000 .000 .000 .000 .002 .020 .139 .002 .098
.000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .000 .002 .312 .249 551 .003 .191 .606
.148 631 721 337 .612 .638 914 .285 .733
1.8 |.000 .000 .000 .000 .000 .000 .000 .091 .037
.000 .000 .000 .000 .000 .000 .000 .000 .000
.000 .000 .017 .064 .143 .194 248 .124 322
.004 120 .348 573 .940 .341 .089 .777 .483

Notes: The table reports the p-values of the Pemgd-test for the tests
Q/MN/D/CS1/CS2, respectively, under the null of tmdrmality, with mean and
covariance matrix obtained from the mixturé/zN((—JI\/W,...,—5/\/W),IN)+

1/2N((5/\/N,...,5/\/N),IN). The X?-statistic was computed from 2500 scores for the
tests Q and MN1 and from 2509*scores for the tests MN and D. The p-values were
computed from they?-distribution with k=249 and k=250*N-1 degrees oéedom,

respectively. The degrees of freedom paramletelas chosen in such a way that the
expected number of observations in each ok#iesubintervals of [0,1] was 10.
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Table3 Summary Statistics

Statistics S& P500 Dow Jones Nasdaq
Mean (%) 0.0083 0.0147 0.0128
Stand Dev (%) 1.1389 1.0919 1.8163
Skewness 0.051 -0.064 0.116
Kurtosis 4.984 6.004 6.614
X2-stat (df=249) 433.5(0) 378.1(0) 514.8(0)

Notes: The table reports the mean, standard demjaskewness, kurtosis and the

Pearson’ ? -statistic (p-values in parenthesis) under the onfilhormality for the log
returns for S&P500, Dow Jones and Nasdaq for thapka period 25/09/1998 to
29/08/08 (2498 daily observations).

Table4 MVaR Unconditional Forecast Accuracy for the Multinor mal Density

Nominal
Significance %X L,
a=05% 0.881 2.037
a=1% 1.361 1.558
a=15% 1.962 1.664
a=2% 2.562 1.778
a=25% 3.163 1.892

Notes: The table reports the percentage of exaeptat of 2498 daily observations (i.e.,
the proportion of times the forecasted MVaR is exiegl) and the Kupiectsstatistic to

test the null hypothesis of unconditional accurday different nominal significance
levels.
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Figure 1: The contour area{yOR?:F_(y)<0.025 }(gray) and the quadrant
Q((-1-1)) ={yOR?:y<(-1-1)} (dark gray) for the standard binormda¥ . For
observations (black dots) lying inside (outside)ttd quadranQ((-1-1), the “highest”
of the projections on the main diagonal along thkesalies also inside (outside) of

Q((-1-1).

=

Figure 2: After the rotation of the canonical system clodevby 90°, the south-east
orthant Qse moves to the south-west position Q$w.dashed lines are the main diagonals
in the original and the rotated system while thadsfd ellipse is the contour areafef, .
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Figure 3: A scatter plot of scores generated from 1000dstech binormal observations
under the null N((0,0),l). The x-axis (y-axis) aesponds to the scores computed in the
canonical (90°-rotated) system.
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Figure 4. A sample of 1000 observations from the mixture AN((-0,-0),l2) +
%N((0,9),12)) for d=1.4.
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Figure 5: A sample of 1000 observations from the mixturéZ((0,0),((1,8/2),(-5/2,1)))
+ %N((0,0), ((19/2),(d/2,1))) ford=1.
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