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Abstract

We present a new theory of rational addiction. Addictive consumption
is compulsive, in�uenced by subtle stochastic cravings. Crucially, the con-
sumer lacks complete information regarding the stochastic process generating
the cravings whose likelihood may be a¤ected by past consumption. The model
generates behavior, e.g., recurring recividism, associated with boundedly-rational
agents. Welfare enhancing policy involves providing information about the true
process. Our theory provides micro-foundation for non-linear intrinsic habit
formation. There is also the possibility of extrinsic habit-forming behavior
with contrarian peer group e¤ect due to informational cascades. We derive
some new results on monotonicity properties of the value function.
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1 Introduction

In this paper we develop a new theory of rational addiction.1 Its importance lies in
it (a) o¤erring novel insights regarding connections between social environment, ex-
periences, usage, costs of self-control and consumption of addictive substances, scope
of information campaigns, and the role informational peer e¤ects for consumption of
addictive substances, and (b) generating behavior often viewed as incompatible with
the model of a dynamically consistent decision-maker maximizing expected utility
and making Bayesian inferences whenever this is possible. The latter is very im-
portant since the most often-mentioned criticism of the rational addiction literature
seems to be its perceived failure in explaining much of observed behavior of addicted
individuals. In our work, we extend the basic rational addiction model in a very
natural and intuitive way (see details below). It is interesting that this is enough
to generate behavior that is often thought to require models of bounded rational
behavior for a proper explanation.
At a more technical level, our model provides a micro-foundation for nonlinear

intertemporal consumption complementarities.2 In addition, our model gives rise
to a hitherto unexplored decision-making problem where the study of the decision-
maker�s choices requires us proving certain monotonicity properties for the value
function of the associated stochastic dynamic programming problem that do not
have a counterpart in the literature on rational addiction or in the received dynamic
programming literature.
Our theory is motivated by two observations. First, often consumption is addic-

tive and (hence) compulsive. Second, the future e¤ects of current and past consump-
tion, though obvious at times, can also be more subtle, and without experimenting
the consumer may not be able to know the extent of the addictive properties (vis-a-vis
themselves) of certain consumption goods. Consider smoking as a speci�c example
(we will continue to use this as a sort of �canonical�example throughout the paper).
While smokers often feel an obvious desire to smoke, there are also more subtle ones
(for example, for its supposedly relaxing role, or as an aid to help concentrate.) In
fact, it is not uncommon to hear smokers claim (often as evidence of their attempt to
control their smoking) that they restrict this activity only to those situations when
there seems to be a dire need for it. For example, an academic who is a smoker

1We would like to thank, for the very useful comments and discussions, participants in seminars
at Exeter, York and Athens University of Economics and Business. The usual disclaimer applies.

2For an axiomatization of the linear intrinsic habit formation model see Rozen (2009). Rusti-
chini and Siconol� (2005) also axiomatize dynamically consistent habit formation over consumption
streams, but do not o¤er a particular structure for the utility or form of habit aggregation.
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and under pressure to �nish a paper to meet some (exogenous) deadline may feel
that during those times smoking helps him/her to concentrate. While smoking may
indeed help to concentrate (in what we call the craving state in the model), it is also
possible that past smoking itself may cause the smoker�s �need� for (or �bene�t�
from) smoking in order to concentrate. That is, this seeming need or bene�t may
in fact be illusory, and instead, a manifestation of addictiveness. However, since the
situations where the smoker feels the need to smoke can be due to exogenous factors
(�cue-conditioned�to borrow a term from the literature), it might not be obvious or
apparent to the smoker right away that a change in his total consumption of smoking
may reduce the chances of his having the need to smoke in similar future situations.
In more detail, we consider the situation where (maybe as a result of extensive

public information campaign in the past) the health and monetary costs of addic-
tive consumption are fully known by consumers. Our theory of rational addiction
then is based on four central premises. First, as mentioned, addictive consumption
is compulsive, in�uenced by the presence of temptations. These temptations are
modeled as (possibly cue-triggered) taste-shocks/cravings. Second, the occurrence
of temptations may depend on past behavior. Third, (addicted) individuals do un-
derstand their susceptibility to cravings and try to rationally manage the process
through their consumption. In particular, and as in other models involving rational
decision-makers, in the presence of an urge the consumer will indulge in her craving
as long as the (net of health and monetary costs) bene�ts from doing so outweigh
the expected future addiction costs from increasing the likelihood of future cravings.
The fourth, and central, premise of our theory, and what di¤erentiates substantially
our work from the existing literature, is that decision-makers often lack precise in-
formation about the addictive properties of the substance. We should clarify, before
we proceed, that while we pose the question as one where the decision-maker does
not know whether a certain substance is addictive or not, an alternative interpre-
tation is that even for substances known to be addictive, individual physiological
responses to it - for example frequency of personal cravings - do vary and it is this
that the decision-maker has uncertainty about. We should also emphasize that while
nothing prevents interpreting this behavior as due to factors like mistakes or over-
con�dence etc., our theory is about a decision-maker who is a Bayesian expected
utility maximizer with standard discounting facing uncertainty over the likelihood
of future temptations. And the uncertainty regarding the addictive properties of
the substance, or more formally, about the exact nature of the stochastic process
generating these needs/craving does not have to be due to any bounded-rationalilty
factors. It is perfectly plausible that the decision-maker may not have access to
enough data - especially if the uncertainty is about individual physiological reaction

3



to the addictive substance - to form a subjective prior that coincides with the true
process. As a result, he/she can only learn through experimentation via consump-
tion. The resulting behavior, though rational, may indeed seem to be deluded with
respect to the true process.3

Obviously, the theory we present may not be applicable to all addictive sub-
stances. For instance, we focus on cue-conditioned impulses that do not defeat
higher cognitive control, while, arguably, there are also drugs characterized by the
existence of cue-conditioned cravings that override cognitive control. Moreover, there
are addictive goods whose addictive properties are well understood and relevant in-
formation is publicly available. However, there are also addictive goods for which
the latter is not true and �cue-triggered mistakes�are not common4 (smoking, sex,
shopping, gambling, food-related addictions and kleptomania are some examples).
Therefore, we view our work as an important complement to the existing literature
in understanding (rational) addiction.
The four central premises of our theory di¤erentiate it substantially from the

received literature. Some of its predictions are new and o¤er some very interesting
insights for addictive consumption. In our model there is scope for policy interven-
tion in the form of campaigns informing consumers about the addictive properties
of the various substances, but crucially not about the health and monetary costs of
addictive consumption5. And similar to other rational addiction models, policies to
force a change of behavior is not welfare enhancing (in the absence of externalities).
Furthermore, our model can feature failed attempts to quit and occasional use. Such
behavior occurs as a process of experimentation in the face of subjective uncertainty.
Importantly, and in contrast to common conjectures and beliefs (see also below the
discussion of related literature), such behavior does not require the use of any be-
havioral assumptions in our set up. Our theory also provides micro-foundations for
nonlinear intrinsic habit-forming behavior but by starting from a standard model of
fully rational decision-maker with intertemporally separable preferences. The behav-
ior is generated due to the subjective uncertainty regarding the likelihood of future
temptations, which in turn depends on past behavior and the history of past and
current temptations. Our model may also give rise to extrinsic habit-forming behav-
ior.6 Interestingly, while there may be a standard peer e¤ect (where an agent has a

3It is common for addicts to be overcon�dent about their ability to quit.
4On this see also footnote 18 in Bernheim and Rangel (2004).
5A common frustration amongst anti-smoking campaigners is that �surely by this time, people

do know that smoking is bad for health�.
6In models of extrinsic habit formation, individuals derive utility from their relative position in

society, as in the �catching up with the Joneses� e¤ect of Abel (1990). This di¤erentiates these
models from the intrinsic formation paradigm where evaluation of own consumption uses as a
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higher chance of consuming if more people around him do so), there could also be a
contrarian informational peer e¤ect. This latter happens because past and current
consumption of peers may provide valuable information about the addictive proper-
ties of the substance. When only actions, but not the private information, of peers
is observed, the situation is similar to ones giving rise to informational cascades as
in the herding literature. An agent who would otherwise consume may refrain from
doing so if many of his peers show behavior that lead the agent to be fearful about
the substance�s addictive property; conversely an agent who might otherwise not
consume may infer from behavior of his peers that consumption is not very likely to
be addictive and hence decide to consume.
Our analysis has also a number of other interesting implications. First, consump-

tion patterns depend on the inherent addictive properties of the substance as well
as on the family and social environment of individuals when they make their �rst
consumption decision. The latter is due to the fact that the environment may have
a big impact on the prior of the decision-maker regarding the addictive properties
of the substance, which in turn will in�uence the �rst and subsequent consumption
decisions.
Second, drugs that are (perceived to be) more addictive may be associated with

lower consumption among more experienced users and higher consumption among
new users, in contrast to the predictions of Bernheim and Rangel (2004). In our
model, rational consumers lower their consumption in the face of higher perceived
degree of addiction resulting from consumption. Hence, if the increase in the per-
ceived degree of addictiveness is increasing in past consumption then we may observe
the phenomenon described. Third, our model predicts that addictive substances with
higher self-control costs are associated with lower consumption. Finally, it provides
a theoretical foundation behind an existing method to stop smoking with, arguably,
many bene�ciaries (one of the authors is one).7 Similar to our model, the central
premise of this method is that smoking has very subtle cravings which give rise to
forecasts of bene�ts that can be mistaken as actual bene�ts. It is also against the
use of quit aids because, and our model agrees to this, they perpetuate addiction
(though admittedly at lower health costs). Instead, subsidies for aids could be spent
on information campaigns about the addictive properties of smoking that may reduce
smoking signi�cantly and thereby reducing both health and future monetary costs.
We discuss next the literature on addiction. The seminal paper on rational ad-

diction, Becker and Murphy (1988) (BM hereafter), investigates a nonlinear intrinsic

reference point own past consumption.
7See �The Easy Way to Stop Smoking�by Alan Carr, Penguin Books Ltd, 3rd Revised edition

(1999).
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habit formation model where past consumption increases with certainty the value of
future consumption. In that model, the decision-maker is rational and, in contrast
to our model, fully aware of the implications of her consumption decisions when
maximizing her intertemporal payo¤. Policy intervention is thus welfare improving
only when externalities are imposed by the addicts. Orphanides and Zervos (1995)
(OZ hereafter) investigate the implications of the decision-maker facing subjective
uncertainty about the future health costs of addictive consumption. In that work,
the consumer learns about true costs from past experience. If past consumption of
the addictive substance has been costly, then the decision-maker becomes fully aware
of the true costs of addictive consumption and the environment becomes identical to
that in BM. OZ emphasize the importance of information about health consequences
of addictive consumption. In our model, this is not an issue as the decision-maker
is fully aware of the health and monetary consequences of consumption, but not
of the implications in terms of future occurrence of cravings. Gruber and Köszegi
(2001) (GK hereafter) introduce dynamic inconsistency in BM by means of hyper-
bolic discounting. Our decision-maker�s preferences, however, are not dynamically
inconsistent. GK is motivated by evidence of unrealized intentions to quit at some
time in the future and the search for self-control devices, such as avoiding cues or
entering rehabilitation, to help quit, which is behavior that does not arise in the
BM model.8 In their context, government policy should also depend on the �in-
ternalities�imposed by dynamically inconsistent addicts. Moreover, commitment is
valuable when it changes future behavior. These papers do not provide any axiomatic
or micro-foundation of habit forming preferences.9 Gul and Pesendorfer (2007) (GP
hereafter) in turn characterize axiomatically dynamically consistent preferences over
menus of streams of consumption (rather than on streams themselves) and investi-
gate the implications for rational addiction when the decision-maker is fully aware
of the environment. In their context, past consumption a¤ects the cost of current
self-control and the decision-maker can choose consumption and future options that
go against temptations. In contrast to our work, the latter are de�ned in GP as con-
sumption bundles and future options that are costly to ignore (i.e. to not choose).
In their setup rehab is desirable as in GK, but as a commitment device to reduce
temptation; therefore, prohibitive policies are bene�cial.10 Yet, failed attempts or
unrealized promises to quit are not predicted by that model. This is also true for

8See Gruber and Köszegi (2001) for a discussion of this evidence.
9For an axiomatization of hyperbolic discounting, see Harvey(1986). See also Halevy (2008)

for an alternative micro-foundation of hyperbolic discounting in terms of uncertainty about future
consumption.
10Moreover, the demand for temporary commitment generates rehab cycles.
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the model of Bernheim and Rangel (2004) (BR hereafter). These authors also study
addictive consumption in a framework that allows for micro-founded intertemporal
consumption complementarities,11 but under �cue�induced mistakes�. Speci�cally,
the decision-maker operates in a stochastic environment where depending on past
consumption she may be �hit by temptations�that carry very high physiological and
psychological costs of being ignored. Thus, in contrast to our work, cue-conditioned
cravings override cognitive control and the decision-maker consumes the addictive
substance whenever she faces a temptation.12 However, addicts can engage in activ-
ities that reduce the exposure to temptations whenever they are in a �cool� state,
i.e. whenever they do not have a cue-triggered impulse.13

In relation to the received literature, we should also point out that one can
interpret the models of BM, OZ, GK and BR as focusing on an environment where
temptations are always present. This follows from their assumption that for any given
future consumption levels, future health consequences of current consumption and
strength of future temptations, the decision-maker considers abstention to be always
inferior to consumption. In these models, it is the �degree of the temptations�that
depends on past consumption: in BM, OZ and GK this is described by the habit-
forming process, while in BR this is described by the presence of a �cold� and a
�hot�state with the latter being more likely the higher past consumption is. Unlike
these, in our model (as in GP) temptations may not be present and in the absence
of temptations, consumption of the addictive substance is inferior to abstention (for
example, due to the presence of high health costs). Furthermore, in contrast to all
the above papers, temptations here are preference-shocks. However, their occurrence
depends on past behavior in contrast to the cue-triggered taste-shocks in Laibson

11The model in BR can also accommodate intrinsic habit-forming preferences as in BM. However,
most of the insights in BR do not rely on such preferences; the insights they o¤er can also be derived
in a context with no intertemporal preference complementarities (see pp. 1567-1568 in BR).
12BR describe their model in terms of a �cold�and a �hot�state. In the former, the decision-maker

matches actions to preferences, while in the latter she consumes the substance with no reference
to her preferences. In this way, the latter behavior may diverge from preferences. However, this
behavior is also observationally very similar to the one that would arise when the decision-maker
always matches actions to preferences but in some states the welfare cost of abstaining from the
addictive consumption is very high that �forces�the decision- maker to consume the substance. For
a related point see footnote 18 and the last paragraph in p. 1563 in BR.
13Thus, in BR, rehab cycles arise due to a form of �consumption-smoothing�.
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(2001) (L hereafter).14 Our decision-maker would pay to not have a craving.15 This
echoes the bene�cial e¤ect of removing temptations in GP and L. However, in our
model, as in L, eliminating options would not be bene�cial for consumers.
The organization of the paper is as follows. The next section describes the basic

model which is used to build our intuition and derive in Section 3 most of our results.
The robustness of the insights of this basic model is the topic of Section 4, where,
among others, the relation of our model to the intrinsic habit formation literature is
also discussed. Finally, Section 5 concludes.

2 Model

In this section we consider the simplest model that can capture our story. We consider
some extensions later in Section 4.
There are two periods t = 1; 2: In Section 4, we discuss the extension of our model

with T > 2 periods including the case of in�nite horizon. Let � be the discount
factor. A consumer chooses action at in each period t where at 2 f0; 1g; in what
follows, we will use the words �action�and �consumption�interchangeably. at = 1
and 0 represent consumption of the addictive substance and abstention in period t
respectively. We will often use smoking to describe the model, though our framework
can describe other addictive goods also as we have mentioned in the Introduction.
An important point to note is that the consumer cannot commit to future actions:
she chooses action at in period t.
Net (of monetary and non-monetary short and long run costs) utility per period

is given by the bounded function u(at; xt): The random variable xt 2 f0; 1g is used
to capture �urge� or �craving�. In any period t; xt = 1 (respectively, xt = 0)
represents the state when the urge is present (respectively, absent). The following
two inequalities on the function u depict the basic assumption that in the absence of
any intertemporal e¤ects the optimal action of the consumer in period t is to choose
at = xt in state xt:

14In L the probability of occurrence of the various cues is exogenously determined, which is not
the case here or in BR. In L, however, it is past cue-conditioned consumption of the substance that
a¤ects the degree of cue-triggered impulse to consume the substance (ie. the marginal utility from
consumption). In this sense, preferences in L belong to the intrinsic habit-formation paradigm.
15We abstain from analyzing external (�lifestyle�) activities that reduce exposure to temptations

(which are the focus of BR, GK and to some extend in L). While we recognize that individuals
may manage their addiction through lifestyle activities and we do not deny the importance of
such activities, we abstract from this in our model to focus on the novel aspect of our theory,
namely, management of addiction through changes in consumption in the face of uncertainty over
the addictive properties of the substance.
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Assumption 1 u(0; 0) > u(1; 0)

Action at = 1 is costly and hence in the absence of any urge, at = 0 is the best
action ceteris paribus. This is captured by Assumption (1). This assumption also
di¤erentiates our work from BM, OZ, GK and BR.

Assumption 2 u(1; 1) > u(0; 1)

Even though at = 1 is costly, when the craving happens, the urge is su¢ ciently
strong so as to make at = 1 the best action all other things equal. This is captured
by Assumption (2). Note that in our case u(1; 1) � u(0; 1) is bounded. If it was
unbounded then x = 1 could be thought of as a cue that defeats cognitive control
along the lines of BR.
The above describe the ex-post (period t) preferences given the state xt: However,

we want to model the e¤ect that the consumer is aware that compulsive consumption
(we focus here) is bad. This is captured by Assumption (3), which shows that (even
after taking into account the ex-post preferences) the consumer would prefer not to
get the urge.

Assumption 3 u(0; 0) > u(1; 1):

As we see shortly, while Assumptions (1) and (2) drive the second-period optimal
choice, the �rst-period action is in�uenced by Assumption (3) as well.
The above assumptions imply that the welfare costs of the addictive consumption

are known and well understood by the decision maker. In particular, note that
u(0; 0) � u(1; 0) represents the welfare cost due to health and monetary costs of
compulsive consumption.16 However, before we continue, we need to point out here
that the above formulation abstracts from any long run cumulative cost-e¤ects of
the compulsive consumption. We choose this formulation not because we think that
such costs are unimportant, but only to emphasize that our results do not rely on
any cumulative welfare costs. We discuss this, as also the issue of how our model
relates to the habit formation models, in more detail in section 4.
We now describe the beliefs of the consumer about the evolution of the state xt:

The consumer does not know the true stochastic process but attaches a probability
distribution (representing his prior) over the set of possible processes. For simplicity,
we restrict attention to the situation when this set consists of the following two

16For some substances, health costs from consumption may depend on the craving state. For ease
of exposition, we have de�ned in the main text the health (and monetary) costs only in terms of
the no-craving state. None of the results are a¤ected if we did otherwise.
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processes only. The �rst is an i.i.d process where in both periods, the probability
that xt = 1 is equal to p with 1 > p > 0: The other process, which we refer
to as the addictive process, depends on the past and current consumption. More
speci�cally, under the latter process, the probability that x2 = 1 is given by the
continuous function f(h1; a1); where h1 is a measure of past consumption prior to
period 1. For brevity, we will refer to h1 as history in this and the next sections.
Higher h1 represents a higher level of past consumption (with h1 = 0 representing
no consumption in the past and h1 > 0 representing past consumption). Note that
a positive h1 may represent past passive consumption. We assume the following:

Assumption 4 f(h; a) is increasing in both arguments.

For the formal derivation of the optimal consumption rule, it su¢ ces to assume
only that f is increasing in a; however, monotonicity with respect to h is used for the
various comparative statics results. Denote by f0 the probability that x1 = 1: This
probability depends positively on consumption up to and including (some arti�cial)
period zero.17 It is the second process that makes consumption addictive: higher
current or past consumption makes higher future consumption more likely through
the e¤ect of increasing the likelihood of occurrence of future cravings. Let �0 denote
the subjective prior belief of the decision maker that the process is addictive.
We also make the following intuitive assumption on the stochastic processes.

Assumption 5 f(0; 0) = p

Zero current and past consumption under the addictive process gives the same
likelihood for craving in the next period as the i.i.d process. Put di¤erently, for
someone who has never consumed the addictive good, the chances of getting an urge
next period is the same under the addictive process as it is under the i.i.d process.
Note that Assumptions (4) and (5) imply that f � p; further, Assumption (5) implies
that as long as the consumer�s subjective belief puts some (initial) probability on the
addictive process being the true process, she does expect an increase in the likelihood
of future cravings whenever there is (additional) consumption of the addictive good.
The next assumption, while reasonable, also serves the technical purpose of guar-

anteeing that Bayes rule can be applied when xt = 0 (even when �t�1 = 1):

Assumption 6 f(h; 1) < 1 for any h

17In other words, we can think of an arti�cial period t = 0 and write f0 as f(h0; a0): We write
f0 to avoid notational cluttering.
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The above three assumptions on f(h; a) and p imply that that 0 < �0f0 + (1 �
�0)p < 1.
Next we assume a supermodularity type property on f:

Assumption 7 f(h; 1)� f(h; 0) is increasing in h for all h:

Assumption (7) is consistent with the literature. Further, it is used only for two
results: (i) showing possibility of recidivist behavior, and (ii) exhibiting pattern of
use of more or less addictive substances amongst old and young users.
We have already mentioned this in the Introduction but let us emphasize again

that even though we have described the model as depicting the story where a decision-
maker does not know whether a substance is addictive or not, it is possible (by having
a slightly di¤erent speci�cation) to capture an alternative story in which even though
it might be generally known that the substance is addictive, individual physiological
responses to consumption of the substance do vary, and what the decision maker
is not fully sure about is his/her own responses to the substance. More formally,
suppose the decision-maker knows that the probability of having a craving is given
by the function f(h; a; �) but des not know her addictive type � 2 f�l; �hg: Under the
assumptions that f(0; 0; �l) = f(0; 0; �h) � p; f(h; a; �h) > f(h; a; �l) except when
h = a = 0; and that f(h; a; �h)=f(h; a; �l) is increasing in h and a; this alternative
model would give qualitatively similar results as the one we consider.18

The sequence of events in any period is as follows. In any period t; the consumer
starts with the prior �t�1 and past behavior summarized by ht�1 and at�1:The state
xt is realized and is observed by the consumer, who then uses the realized value of
xt to update her prior to arrive at the posterior, �t: Let m(xt; �t�1; ht�1; at�1) be
the function (of the variables, xt; �t�1; ht�1;and at�1) that gives the posterior; i.e.
�t = m(xt; �t�1; ht�1; at�1):

19 In each period, the consumer also chooses action at in
order to maximize her intertemporal welfare. Being a rational consumer, she takes

18Further, this alternative version �ts our model exactly under the assumption that f(h; a; �l) is
a constant and equal to p for all h and a: In general, one could think of f(h; a; �) increasing in h
and a for both values of � (as long as the likelihood ratio assumption is maintained).
19m(xt; �t�1; ht�1; at�1) is simply the application of Bayes rule. Formally,

m(1; �t�1; ht�1; at�1) =
�t�1f(ht�1; at�1)

�t�1f(ht�1; at�1) + (1� �t�1)p

and

m(0; �t�1; ht�1; at�1) =
�t�1(1� f(ht�1; at�1))

�t�1(1� f(ht�1; at�1)) + (1� �t�1)(1� p)
:
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into account the possible implications of her current choice of action on the likelihood
of the future occurrences of cravings.
For later use, we de�ne

D = u(0; 0)� u(1; 1)
B = u(1; 1)� u(0; 1)

As we will see in more detail shortly, D captures the (long run) bene�t from not
having the urge. B on the other hand represents the short run bene�t from indulging
to the urge net of health and monetary costs. For simplicity, we refer hereafter to B
simply as the bene�t/kick from consuming the substance under a craving.

3 Optimal consumption

In this section we analyze the optimal choices of the consumer. Here, and for the
rest of the paper as well, we make the tie-breaking assumption that if in any period
the consumer is indi¤erent between choosing at = 1 or at = 0; she will choose at = 0:
It can easily be checked that no qualitative result is a¤ected if one were to break the
tie in the other way.
We start by considering the second period. Since there is no future period to

consider, the posterior beliefs about the stochastic process are actually irrelevant,
and the optimal consumption in the second period is determined solely by the second
period state x2: Clearly, given Assumptions (1) and (2), the consumer chooses a2 = 1
if and only if x2 = 1: Therefore the welfare bene�t of not having a craving in the
second period is D:
Turning to the �rst-period choices, Assumptions (1) and (3) imply that the short

run and the long run incentives are not in con�ict when x1 = 0: The action a1 =
1 is costly in terms of current period payo¤. Moreover, for any posterior beliefs,
it (weakly) worsens the future expected payo¤ by making cravings (weakly) more
likely.20 Thus, if x1 = 0; the optimal action is a1 = 0:
The problem is more interesting when x1 = 1. In this case, the posterior beliefs

are important. Payo¤ from action a1 is

u(a1; 1) + �u(0; 0)� �D[(1� �1)p+ �1f(h1; a1)] (1)

The �rst term is the current period payo¤ while the second is the discounted payo¤
in the absence of any future urge. The third term represents the discounted expected

20And, if �0(1� f0) > 0; the future expected payo¤ is in fact strictly lower.
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cost when the craving occurs next period, which occurs with (perceived) probability
(1� �1)p+ �1f(h1; a1).
As expression (1) shows, when x1 = 1; the current period payo¤ is maximized

by choosing a1 = 1: However, this raises the future cost by increasing the poste-
rior likelihood of a craving (since f(h1; 1) > f(h1; 0)): Therefore, when deciding
whether or not to consume, the rational consumer balances the current �kick�from
satisfying the urge, B; versus the decrease in expected discounted future utility,
�D�1 [f(h1; 1)� f(h1; 0)] ; from exposing herself to a greater risk of having a craving
next period.
The resolution of this trade-o¤ is then that non-smoking (i.e. a1 = 0) is the

optimal response even in the presence of craving if and only if

B

�D
� �1 [f(h1; 1)� f(h1; 0)] (2)

The left hand side re�ects the trade-o¤between the current �kick�and the future
cost of addiction. The right hand side is the perceived increase in the probability
of getting a craving in the future as a result of current smoking. Thus, if the in-
crease in future perceived probability of craving is su¢ ciently high, then refraining
from consumption is optimal. We collect the results on optimal consumption in the
Proposition below.

Proposition 1 Optimal consumption for the two periods is given by
(a) For t = 2; a2 = x2
(b) For t = 1; a1 = 0 when x1 = 0: When x1 = 1; a1 = 0 if and only if inequality

(2) holds.

Inequality (2) con�rms certain results of the received literature. First, suppose
there is a reduction in u(1; 1) as a result of which B falls and D increases. In
other words, the bene�t to giving in to the urge is lower, while the bene�t from not
having an urge next period is higher. In that case, current consumption is indeed
lower. Second, for any given beliefs, more addictive drugs (consider an increase in
f(h1; 1) � f(h1; 0) for any given h1) are associated with lower consumption. Third,
direct peer e¤ects can reduce self-control (B increases); peer e¤ects are discussed
in more detail later. Finally, reducing the occurrence of cravings and exposure to
cues (through change in habits/environment for example) is bene�cial for any given
priors due to a decrease in the true probability of x1 = 1 (think of a reduction if p
and f that does not reduce the terms f(h; 1) � f(h; 0) for any h. There is thus no
change in consumption decisions; however, the change in the parameter values are ex
ante bene�cial since the (true) chances of craving states are lower for any history).
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It is important to note that similar to the standard rational addiction model, policy
interventions such as forcing the consumer not to consume,21 or raising taxes on
the addictive good are not welfare enhancing in our setup in the absence of any
consumption externalities and/or merit good arguments.
Importantly, Proposition 1, and in particular inequality (2), provide us with some

new implications and insights. First, they illustrate the role of (a policy of providing)
information regarding the addictive properties of the compulsive consumption. For
example, suppose the true process is in fact the addictive one but that the consumer
does not know this and consequently has beliefs such that �1 < 1: Then, if for some
history h1 we have B < �D [f(h1; 1)� f(h1; 0)] but inequality (2) is not satis�ed, the
consumer will choose to smoke in period t = 1 but will stop (voluntarily) if provided
with (credible) information about the true process.
Second, the prior �0 can be thought of arising as a result of the environment in

which the decision-maker has been raised (representing the �rst instance she has to
decide whether to consume the compulsive good or not). As such, it can capture the
cultural and family environment, and habits as well as peer experience. Thus, for a
youngster who lives in a family and social environment where smoking is the norm,
�0 may be relatively low. In this case, the posterior �1 will be relatively low and
hence, all other things equal, the likelihood of smoking is relatively high. Recalling
the alternative interpretation of our model as involving a decision-maker who does
not know her individual physiological responses to consumption of an (known) ad-
dictive substance, the prior �0 can also encompass personal psychological traits. For
example, many addicts seem to su¤er from what appears to be an obvious overcon-
�dence with respect to their ability to �kick the habit�. A low �0 can re�ect this
overcon�dence that then leads to experimenting (and possibly eventual addiction)
with substances that are �generally�known to be addictive.
Third, the decision-maker in our model can exhibit behaviour that can be in-

terpreted as failed attempt to quit. Suppose the prior �0 and (positive) past con-
sumption is such that [B=�D]=[f(h1; 1) � f(h1; 0)] � �0 <

�0f0
�0f0+(1��0)p

: Then, the
consumer chooses a1 = 0 in period t = 1 but would choose a2 = 1 in t = 2 if x2 = 1:
Of course, one might argue that this is an artifact of the two-period horizon of our
basic model; however, as we show in more detail in the next section, the same in-
sights carry over in a more general multi-period model. We should emphasize that
the observed behaviour in this case is not due to dynamic inconsistency of prefer-
ence or (cue-induced) mistake but as a result of experimentation and information
acquisition as consumption and preference shocks vary over time.

21For instance, through use of extraneous resistance to cravings (physical con�nement, �special
medicines�- see BR for discussion of such measures).
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Fourth, one needs to be careful about the role of quit aids and their welfare e¤ects.
Quit aids such as patches and inhalers are usually promoted as bene�cial since they
are supposed to reduce health costs - associated with inhaling tar and other additives
in cigarettes - while providing smokers with the necessary nicotine intake to reduce
withdrawal e¤ects from not smoking. In addition, it is argued that this intake could
be decreasing over time thus enabling smokers to get out of the habit eventually.
In terms of our model, one can think of quit aids as a di¤erent substance with the
following properties. First it gives a higher bene�t from nicotine intake because it
provides the kick without the health costs from using tobacco products. That is, quit
aids are characterized by a higher B22: Second, the use of quit aids does not increase
the value of h: That is, unlike smoking, using quit aid in period t = 1 is supposed to
result in h2 � h1: However, it is not clear whether quit aids do indeed help kick the
addiction by lowering the value of h: In the case when they do not help, not only is it
possible that the consumer may start smoking again but also that she might simply
get addicted to the quit aid product.
Fifth, substances with stronger withdrawal syndromes are associated with lower

consumption. To see this, note �rst that self-control costs are represented by u(0; 0)�
u(0; 1) as this measures the welfare cost from having a craving given abstention. Note
also that we can writeD = u(0; 0)�u(0; 1)�B: Hence, an increase in u(0; 0)�u(0; 1);
other things remaining the same, will lower the chances of smoking.
Finally, our model can exhibit the phenomenon that more addictive drugs are

associated with lower, rather than higher, consumption amongst the more experi-
enced users. As mentioned before, a more addictive substance is characterized by
a higher value of f(h; 1) � f(h; 0) for any h: However, for any h0 > h00; while both
f(h0; 1) � f(h0; 0) and f(h00; 1) � f(h00; 0) are higher for a more addictive substance
than for a less addictive one, it follows from assumption (7) that f(h0; 1)�f(h0; 0) >
f(h00; 1) � f(h00; 0): Hence the more experienced users (characterized by history h0)
may stop when the less experienced do not.
Note that even though our model involves experimentation and learning when �0

is di¤erent from 0 or 1; absence of learning does not change the essence of our main
message insofar �0 < 1: In fact, the case for information campaigns would be stronger
if the true process was indeed the addictive one but the consumer�s subjective prior
puts �0 = 0 (and hence consumes in the �rst period).

22Note thus that in a model with cumulative health costs as the one we discuss in Section 4, the
use of quit aids would also lead to lower health costs in the future.
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4 Extensions

In the previous sections, we have considered the 2-period model that illustrates most
of the insights in the simplest setting. However, it is important to know whether
these insights remain valid in a more general multi-period model. Furthermore, as
mentioned earlier, certain properties of the model, for example, depicting behavior
that seems like failed attempts to quit can be addressed more satisfactorily in a truly
multi-period model. Finally, a general multi-period model may generate additional
insights not present in the simpler 2-period one. Therefore, in this section, we extend
the analysis to arbitrary T > 2 periods (where T can be �nite or in�nite). We also
discuss the issue of cumulative welfare e¤ects and end this section by showing how
the present work relates to the intrinsic habit formation models. Before we do so,
we discuss next some new implications of (a simple extension of) our model for peer
e¤ects.

4.1 Peer E¤ects

Our model features two kinds of peer e¤ects:
(1) Standard peer e¤ect: This can be modelled as follows. Whenever there

are more people around the decision-maker that consume the substance, either there
is an increase in u(1; 1), resulting in an increase in B (and a decrease in D); or, there
is an increase in the likelihoods f(ht�1; at�1) and p (for any given history). The �rst
depicts a direct increase in the cost of not consuming in the presence of the urge, the
second re�ects an increase in the desire to consume (by an increase in the likelihood
of experiencing an urge). In either case, this is the more standard peer e¤ect where
an agent has a higher tendency to consume the addictive substance if more people
around him also consume.
(2) The informational peer e¤ect: There is a less obvious peer e¤ect that

can arise out of the process of information acquisition as a result of observing others�
consumption practices. In particular, suppose there is a population of individuals
and the true process is common for all. In such an environment observing others�
consumption provides further information to the individual about addictiveness of
the process23. Given our assumptions, Proposition 1 still holds. Hence for every
individual, at = 1 implies that the individual has observed xt = 1: However, when
at = 0 it may still be the case that xt = 1: Hence as in herd behavior models(e.g.

23To simplify the exposition, we assume that the processes of the individuals are in e¤ect, perfectly
correlated. It is clear that we do not need perfect correlation; rather what is needed is that others�
consumption provides some valuable information regarding one�s own process.
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Bikhchandani et al. 1992, and Banerjee 1992), actions will not perfectly reveal the
state/signal x; and in particular an informational cascade can arise for consumers
who face xt = 1: In more detail, an agent who would otherwise smoke may decide
not to smoke if many of his peers have been smoking frequently, as the latter would
imply that the process is very likely to be addictive. Similarly, an agent who would
otherwise not smoke may decide to smoke if many of his peers have not been smoking
frequently, as the latter would imply that the process is very likely not to be addictive.
Note the di¤erent implications of the two di¤erent forms of peer group e¤ects. In

the preference-related peer group e¤ect we get the standard conclusion of reinforcing
smoking behavior in a group. In the informational peer group e¤ect, however, we
can get contrarian behavior due to informational cascades. Our model can be used
to provide some micro-foundations for extrinsic habit formation (ie. for consumption
history of peers to a¤ect one�s own tendency to consume); however, as the previous
discussion showed, the exact nature of the extrinsic habit formation model can be
(subtly) di¤erent from what one might expect at �rst.

4.2 Longer Horizon

We start by describing direct extensions of corresponding terms and de�nitions of the
two-period model; naturally, we also need to introduce some new ones. Throughout,
we suppress the explicit dependence on the horizon T in our notation to simplify
exposition.
For any period t � 1; and given any history of consumption represented by

the vector (a0; :::; at�1); let the scalar ht be a measure of past consumption, which,
hereafter, we will simply call the period t history. For example, for some � 2 (0; 1=2];
we could have ht =

Pt�1
i=0 ai(�)

t�i: In this case, ht belongs to the interval [0; 1] for
all t and ht+1 = �(ht + at): More generally, for any ht; we postulate that ht+1 =
g(ht; at) with g(0; 0) = 0; and the function g being continuous and increasing in both
arguments.24 We also assume that there exists some H > 0 such that ht 2 [0; H];
for all t:25

For all the variables, we will sometimes use them without the time subscript (for
example, write h, or a) to denote values. For example, h refers to some scalar in
[0; H]; a refers to the number 0 or 1 etc.
f(ht; at) denotes the probability that xt+1 = 1 under the addictive process. We

retain all the assumptions from the 2-period model about the function f . As before,
�t�1 and �t denote period-t prior and posterior beliefs, respectively, that the true

24The fact that g is increasing in h also di¤erentiates our model from that in GP.
25This means that the function g must be such that for any ht�1 and at�1; g(ht�1; at�1) 2 [0;H]:
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process is the addictive one. As usual, the latter is obtained by updating �t�1 (using
Bayes rule) upon observing the realized value of xt; given that there is no additional
information that is relevant for inferences regarding the true addictive process, the
period t+1 prior is simply the period t posterior. We often writemt(xt) to denote the
period�t posterior for given craving state xt (and suppress the variables �t�1; ht�1
and at�1 when it is not important to mention the dependence of �t on these).
Note that as long as 1 > �t�1 > 0 and it is not true that ht�1 = at�1 = 0;

Assumption (5) implies that the period-t posterior belief �t is increasing in x (oth-
erwise is independent of xt) and26 that m(1; �t�1; ht�1; at�1) is increasing, while
m(0; �t�1; ht�1; at�1) is decreasing, in ht�1 at�1: Finally, as long as ht�1 = at�1 = 0
is not true, the period�t posterior is increasing in the prior �t�1.
It is helpful to de�ne here the posterior probability of observing xt+1 = 1 given

ht; at and prior �t: Let this posterior probability be denoted by �(at; ht; �t) where

�(at; ht; �t) = (1� �t)p+ �tf(ht; at)

The optimal action in any period t; denoted by a(ht; xt; �t); depends on period-t
history ht; posterior �t and observed state xt:When T is �nite, it also depends on the
horizon T . A �nite period problem is essentially nonstationary; however, to avoid
cluttering we drop the time subscript t and write a(:) rather than at(:). And the
same applies for the functions Z and V described later. We show later stationarity
of these functions for the in�nite-horizon case.
The consumer�s objective is to choose the consumption plan to maximize

E

(
TX
t=1

�t�1u(at; xt)

)

where E denotes the expectations operator conditional on x1; h1 and �1(x1):
Let Z(at; xt; ht; �t) denote the period-t expected discounted payo¤when in period

t the state is xt; the history is ht; the posterior is �t and the action is at: That is,

Z(at; xt; ht; �t) � u(at; xt)+
+��(at; ht; �t)�

�Z(a(g(ht; at); 1;m(1; �t; ht; at)); 1; g(ht; at);m(1; �t; ht; at))+
+�[1� �(at; ht; �t)]�

�Z(a(g(ht; at); 0;m(0; �t; ht; at)); 0; g(ht; at);m(0; �t; ht; at))
26In fact, after a straightforward rearrangement, one can see that m(1; �t�1; ht�1; at�1) �

m(0; �t�1; ht�1; at�1) is proportional to �t�1(1� �t�1)(f(ht�1; at�1)� p):
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The value function V is given by:

V (xt; ht; �t) � Z(a(ht; xt; �t); xt; ht; �t)

In the �nite�horizon case, this can be derived by using backward induction. We
can not rely on backward induction when dealing with the in�nite-horizon case.
Nevertheless, using dynamic programming techniques we can show that the value
function exists and is well-de�ned even when T !1. This is done in Section 4.2.2.
below.
Bearing the above in mind, we �rst show, similar to what we had earlier, that

under certain conditions the consumer can choose at = 0 even if xt = 1; for any
T > 2. Towards that end, we de�ne the following terms �rst.
Let bDt+1(ht; �t) be given bybDt+1(ht; �t) = V (0; g(ht; 1);m(0; �t; ht; 1))� V (1; g(ht; 1);m(1; �t; ht; 1))

That is, for any ht and �t; and given that the consumer had decided to smoke in
period t (i.e., at = 1) the term bDt+1 measures the gain - evaluated at t + 1 - from
not having an urge in period t+ 1.
Similarly, we de�ne the terms �t+1 and 	t+1 as:

�t+1(ht; �t; x) = V (x; g(ht; 0);m(x; �t; ht; 0))� V (x; g(ht; 1);m(x; �t; ht; 1))

and

	t+1(ht; �t) = �(0; ht; �t)�t+1(ht; �t; 1) + (1� �(0; ht; �t))�t+1(ht;�t; 0)

�t+1(ht; �t; x) represents the gain - evaluated at t + 1 - from not smoking in the
current period and optimally responding to next period�s craving-state conditional
on the latter being x. The interpretation of the term 	t+1(ht; �t) is more subtle.
State in period t+ 1 is not known in period t: Abstaining from smoking in period t
has two e¤ects: it changes the likelihood of a craving next period, and it changes the
next-period�s value function conditional on next-period�s craving state. Maintaining
the likelihood of craving at the level corresponding to non-consumption in period
t; 	t+1(ht; �t) measures the ex ante - i.e., evaluated at t - expected gain from the
change in the next-period�s value function.
We are now ready to show:

Proposition 2 Suppose xt = 1: Then, at = 0 is the optimal action in period t if
and only if the following inequality holds:

B � �fmt(1) [f(ht; 1)� f(ht; 0)] bDt+1(ht; �t) + 	t+1(ht; �t)g (3)

19



Proof. Payo¤ from action at in period t (when xt = 1) is given by

u(at; 1) + �V (0; g(ht; at);m(0; �t; ht; at)) (4)

���(at; ht; �t) [V (0; g(ht; at);m(0; �t; ht; at))� V (1; g(ht; at);m(1; �t; ht; at))]

Using expression (4), we see that when xt = 1; action at = 0 is preferred to at = 1
when

u(0; 1) + �V (0; g(ht; 0);m(0; �t; ht; 0))

���(0; ht; �t) [V (0; g(ht; 0);m(0; �t; ht; 0))� V (1; g(ht; 0);m(1; �t; ht; 0))]
�

u(1; 1) + �V (0; g(ht; 1);m(0; �t; ht; 1))

���(1; ht; �t) [V (0; g(ht; 1);m(0; �t; ht; 1))� V (1; g(ht; 1);m(1; �t; ht; 1))]

Some straightforward algebraic manipulations, using the de�nitions of bDt+1(ht; �t)
and 	t+1(ht; �t); and noting that �(1; ht; �t)��(0; ht; �t) = mt(1) [f(ht; 1)� f(ht; 0)]
gives the desired inequality.
The above result follows simply from the de�nitions of the various terms and it

the natural extension of the decision rule (2) in the current multi-period model. Since
a longer horizon implies that there are more periods in which undesirable cravings
can occur, it is natural to expect that, other things remaining the same, a longer
horizon would reduce the temptation to smoke. In other words, we would expect
	t+1(ht; �t) � 0 and bDt+1(ht; �t) � D; given that in the 2-period model we have
�2(h1; �1; 1) = �2(h1; �1; 1) = 	2(h1; �1) = 0 and bD2(h1; �1) = D: However, this
is not necessarily true in the absence of further structure. In addition, there are
certain properties of the two-period model, described below, that are intuitive and
yet cannot extend directly to the multi-period set up without further structure.

� Since future cravings depend on past and current consumption, and since crav-
ing states are undesirable, one expects welfare (as re�ected in the value func-
tion) to be adversely a¤ected by the presence of future craving, or higher past
and current consumption, or higher posterior. For the 2-period model, note
that since V (x2; h2; �2) = u(x2; x2); and given Assumption (3), the future value
function V (x2; h2; �2) is nonincreasing in the craving-state, x2, history, h2, and
posterior, �2.

� Similarly, we would expect higher current and past consumption to be detri-
mental for future welfare even when there is no craving in the future (and
the decision-maker responding optimally). Indeed, in the 2-period model we
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have that V (0; g(h1; a1);m(0; �1; h1; a1)) is nonincreasing in h1 and a1 since
V (0; g(h1; a1);m(0; �1; h1; a1)) = u(0; 0).

� At the optimum, the cost of having a craving state next period should be
at least as large as equal to D; since cravings make consumption more likely
and because higher consumption makes cravings in future periods more likely.
Note that in the 2-period model, and recalling the de�nition of D; we have
V (0; g(h1; a1);m(0; �1; h1; a1)) � V (1; g(h1; a1);m(1; �1; h1; a1)) � D because
of V (x; g(h1; a1);m(x; �1; h1; a1)) = u(x; x).

� We expect the optimal action to be abstaining from consumption in the absence
of any craving; recall Proposition (1).

The natural extensions of the above properties in the model with T > 2 are that
for any t < T :
(A) V (xt+1; ht+1; �t+1) is nonincreasing,
(B) V (0; g(ht; at);m(0; �t; ht; at)) is nonincreasing in ht and at;
(C) V (0; g(ht; at);m(0; �t; ht; at))� V (1; g(ht; at);m(1; �t; ht; at)) � D;
(D) a(ht+1; 0;mt+1(0)) = 0:
Note that when T > 2 Property (B) is not implied by Property (A) due to

m(0; �t; ht; at) being decreasing in ht and at if 1 > �t > 0: Moreover, Property (C)
does not follow from Property (A) directly despite the fact that m(0; �t; ht; at) <
m(1; �t; ht; at): Note that the four properties (A)-(D) are all true for t = T � 1,
when T > 2 and �nite, for similar reasons with the 2-period model. Nevertheless,
even though the properties mentioned above are all intuitive, we require additional
assumptions on the f and g function for them to hold in the general multi-period
model. Since the proofs are somewhat lengthy we have relegated them to appendices.
Here, we provide an informal discussion on how we obtain our results. We also discuss
the basic intuition as to why these additional structures on the functions f and g
are needed.
Proving Properties (A)-(D) under additional assumptions on fundamentals fol-

lows an inductive argument. First, we show in Appendix B the following Lemma:

Lemma 3 If properties (A) and (B) are true for t � n; n � 2; then properties (C)
and (D) are true for t = n� 1:

That is, if the value function in all periods from n (inclusive) and onwards, with
n � 2; satis�es Properties (A) and (B), then Property (C) holds for period n � 1:
Furthermore, the optimal action in period n is to abstain from consumption in the
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absence of any craving. Thus, it su¢ ces to show Properties (A) and (B) for any
t � 0.
One can show that property (A) is true for period t = T � 2 with T > 2 and

�nite; the reader is referred to Appendix A for details. It can also be shown that, with
T > 2 and �nite, property (B) holds for period t = T � 2 if �(0; g(h; a);m(0; �; h; a))
is nondecreasing in h and a.27 However, monotonicity of �(0; g(h; a);m(0; �; h; a))
with respect to h and a depends on the properties of the g and f functions and
is not guaranteed by the assumptions made so far. Furthermore, conditional on
�(0; g(h; a);m(0; �; h; a)) being nondecreasing in h and a; property (A) is guaranteed
to hold for any period t � T�3 when T > 3 and �nite; ifm(1;m(0; �; h; a); g(h; a); 0)
is nondecreasing in h and a: However, the latter can not be guaranteed with the
assumptions made so far: further restrictions on f and g would be required: Similarly,
for Properties (A) and (B) with 1 � t < T when T !1:
Before we go on to state the restrictions we make on the f and g functions, it is

useful to note �rst the reason why these are needed for the general multiperiod model.
Here we provide the rough intuition, for details please refer to the Appendices. In
the 2-period model, since the second period is the last period, the value function in
the second period does not depend on the posterior or the history. This of course
is not true for arbitrary periods of the general multiperiod model. In what follows,
consider a period t other than the last or the second last period. The current value
function depends on the current posterior through its e¤ect on the probability of
craving next period as well as through its e¤ect on the value function next period.
Now, the current posterior, in the face of a current craving state, is non-increasing
in past consumption; further the likelihood of a craving next period is also higher in
current and past consumption. However, while next period�s posterior is higher in
past consumption if next period�s state is the craving state, it is actually lower if the
state happens to be the non-craving state. Hence to obtain the desirable properties
on the value function - Properties (A) and (B) (and thereby Properties (C) and (D))
- some additional structure in the form of restrictions on the fuctions f and g are
needed.
To describe the restrictions we put on the f and g functions, it is useful to de�ne

the operator L. Given functions g(h; a) and m(0; �; h; a), the operator L is given as

Lg(h; a) = g(g(h; a); 0) and

Lm(0; �; h; a) = m(0;m(0; �; h; a); g(h; a); 0):

27To see this, note, similar to the 2-period model, that
V (0; g(hT�2; aT�2);m(0; �T�2; hT�2; aT�2)) = u(0; 0) + �u(0; 0) �
��(0; g(hT�2; aT�2);m(0; �T�2; hT�2; aT�2))D:
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Further, we use the convention L0g(h; a) = g(h; a), L0m(0; �; h; a) = m(0; �; h; a);
and let Ltg(h; a) = g(Lt�1g(h; a); 0) and Ltm(0; �; h; a) =m(0; Lt�1m(0; �; h; a); Lt�1g(h; a); 0):
Thus, L maps posterior under an urge, m(0; �; h; a); history g(h; a) and current ab-
stention into next period�s history and posterior under no craving.

We then make the following assumption (by following the convention that
1Q
i=2

y �

1 ):

Assumption 8 For any t � 1; the functions f and g are such that if h00 � h0 and
a00 � a0 (with at least one inequality being strict) then

(1� f(h0; a0))
(1� f(h00; a00))

tY
i=2

(1� f(Lt�ig(h0; a0); 0))

� f(Lt�1g(h00; a00); 0)

f(Lt�1g(h0; a0); 0)

tY
i=2

(1� f(Lt�ig(h00; a00); 0)):

We show in Appendix C that the set of functions g and f that satisfy Assumption
(8) is non-empty. To get a feel for how strong the assumption is we also note that it
is consistent with the functions used in the literature (BM, OZ, GK, L and BR).
We also show in Appendix C that the above assumption implies that for any

t � 1
(i) �(0; Lt�1g(h; a); Lt�1m(0; �; h; a)) is nondecreasing in h and a and
(ii) m(1; Lt�1m(0; �; h; a); Lt�1g(h; a); 0) is nondecreasing in h and a.
To understand these, consider the case when there is no craving, posterior is

m(0; �; h; a); history is g(h; a) and consumption does not take place. Conclusion (i)
then says that the likelihood of future urges is nondecreasing in h and a even in states
when the urge is not present and consumption does not take place. Conclusion (ii)
guarantees that after a string of no cravings and zero consumptions followed even-
tually by a craving, higher past consumption, h and a; will lead to (weakly) higher
posterior: Note that these two Conclusion imply (just set t = 1) the monotonicity
properties discussed above.
We can now discuss how our insights from the two-period model carry over to the

extension with T > 2 periods. Note here that despite the fact that properties (A)-
(C) and Assumption (8) are important in the forthcoming discussion for any T > 2;
�nite or in�nite, the steps we will follow depend on whether T is �nite or in�nite.
The reason is that in the former case we will be using backward induction, while in
the latter we will be using dynamic programming techniques to show existence of
the value function and certain limiting arguments to determine its properties.
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4.2.1 The Finite Horizon Problem

We �rst consider the case when T is �nite. We can then get the following result:

Lemma 4 Assume 8. Then properties (A)-(D) hold for any 0 � t � T � 1:

Proof. We show in Appendix B that under Assumption (8), if properties (A) and
(B) are true for any t � n; then they are also true for t = n� 1; for any given n � 2:
The result is then obtained by using Lemma 3 and using an induction argument after
recalling that properties (A)-(D) hold in the last period.
Before we go on to the in�nite horizon model, we end this (sub)section by dis-

cussing how our model can feature failed attempt to quit.
Behaviour exhibiting Recidivism:
Consider the case where the outside observer observes the value of xt (for example,

because xt represents situations or external cues, such that it is �known�that the
decision-maker becomes more tempted to consume in those situations). In this case,
certain behavior on the part of the agent will look like an attempt to resist temptation
for some periods before �giving in� to it later.28 To illustrate this in the simplest
possible way, suppose that we are in period T � 3 and xT�3 = 1: Suppose also that
the decision-maker has consumed the substance in the past and, more speci�cally,
hT�3 > 0 is such that

B = �fmT�3(1) [f(hT�3; 1)� f(hT�3; 0)] bDT�2(hT�3) + 	T�2(hT�3)g

Hence,29 the decision maker chooses aT�3 = 0: The outside observer may naturally
then interpret this as the decision-maker�s attempt to quit.
Let�s now consider the path (of realizations of xt) such that xT�2 = 0 and xT�1 =

1: We know from the above Lemma that under Assumption (8) we have aT�2 = 0;
but what about consumption in period T�1? Since T is the terminal period, by using
reasoning similar to the one in the two-period model we have that the decision-maker
chooses aT�1 = 1 if (and only if)

28The case where the outside observer does not observe the craving state of the decision-maker
is not interesting. The reason is that even if all the decision maker does is to choose at = xt
(something she would do, for example, if she believed that the process was certainly non-addictive
(�0 = 0)), to the outside observer however, since xt is stochastic, this might seem like the the
decision-maker relapsing into consuming the substance after stopping for some periods.
29Note here that the particular rule for resolving indi¤erence we have deployed, namely that

an indi¤erent decision-maker does not smoke, is not important for our argument here though it
simpli�es exposition. By continuity, we could develop the same type of argument even if B was "
less that the right-hand side of the above equation with " very small but positive scalar.
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B > �mT�1(1) [f(hT�1; 1)� f(hT�1; 0)]D
If at�1 = 1; then the outside observer may naturally interpret this as if the decision-
maker relapses into consuming the substance after stopping for one (or more) periods,
that is, as a �failed attempt to quit�.
To see under what conditions this can happen, focus on an environment with

(weak) depreciation of the stock of addiction: g(h; 0) � h:Note thus that if aT�3 =
aT�2 = 0; then hT�1 � hT�3 and f(hT�1; 1) � f(hT�1; 0) � f(hT�3; 1) � f(hT�3; 0);
where the last inequality follows from Assumption (7)30. Since 	t+1(ht) � 0 andbDt+1(ht) � D; the (additional) condition for aT�3 = 0 and aT�1 = 1 is there-
fore that mT�1(1) is strictly less than mT�3(1): Let fT�2 = f(hT�3; 0) and fT�1 =
f(g(hT�3; 0); 0), to ease notation, and note that

mT�1(1)�mT�3(1)

=
mT�3(1)(1� fT�2)fT�1

mT�3(1)(1� fT�2)fT�1 + (1�mT�3(1))(1� p)p
�mT�3(1)

= mT�3(1)

�
(1� fT�2)fT�1

mT�3(1)(1� fT�2)fT�1 + (1�mT�3(1))(1� p)p
� 1
�

= mT�3(1)(1�mT�3(1))

�
(1� fT�2)fT�1 � (1� p)p

mT�3(1)(1� fT�2)fT�1 + (1�mT�3(1))(1� p)p

�
the sign of which depends on the sign of (1 � fT�2)fT�1 � (1 � p)p: Now since
fT�1 � fT�2; we have

(1� fT�2)fT�1 � (1� p)p
� (1� fT�2)fT�2 � (1� p)p

Thus, for mT�1(1) < mT�3(1); it is su¢ cient to have (1� fT�2)fT�2 � (1� p)p < 0:
For example, suppose p = 1=2; a natural case for �random�cravings: Since fT�2 > p,
we have (1� fT�2)fT�2 � (1� p)p < 0 and hence mT�1(1) < mT�3(1):

30For the parametric example considered in Appendix C where

f = p+ g(h; a)

g(h; a) = �(h) + �2a;

�2 > 0; �(0) = 0; �(h) � h; �0(h) � 0

for any history h; the expression f(h; 1) � f(h; 0) is independent of h and hence trivially weakly
increasing in h: As we also discuss in Appendix C this example is consistent with the models in the
received literature on rational addiction.
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Accordingly, if p = 1=2 and f(h; a) is supermodular then we can have rational
and dynamically consistent behavior that looks to an outside observer like a failed
attempt to quit, while it is only part of experimentation via consumption when the
craving state varies over time.

4.2.2 In�nite Horizon

Turning to the case of T ! 1; note �rst that taking xt and ht to be the two state
variables, the (subjective) transition probability function (of xt+1) is non-stationary.
This can be �handled�by treating �t to be a state variable also, in which case, the
transition probability �t becomes stationary. However, this comes at the �cost�of
having a state variable, �t; with no clear-cut monotonicity property regarding its law
of motion.
The �rst issue that arises then is whether the value function V (x; h; �) is well-

de�ned. The second is whether the value function satis�es properties (A) and (B)
- in which case, by Lemma 3, it will also satisfy properties (C) and (D): that is,
Lemma 4 will hold in this case also. If these are still true, our results will thus be
robust to allowing for in�nite horizon.
While one can show, using standard dynamic programming techniques, that

V (x; h; �) is indeed well-de�ned, continuous and bounded, the rest of the task re-
quires somewhat more involved analysis. In fact, a technical contribution of this
paper is to derive under Assumption (8) some new results on the monotonicity prop-
erties of the value function of a stochastic dynamic programming problem. The
details are in Appendix D, here we provide a brief intuitive discussion.
The basic idea behind our proof is as follows. We �rst de�ne a non-empty space

of functions, S�, with the domain of the functions being the state variables, x; h and
�; and where each function 
(x; h; �) 2 S�, satis�es the desirable monotonicity prop-
erties (A) and (B).31 Now, (similar to standard dynamic programming techniques),
we construct a contraction mapping that maps functions from S� to S� such that
the �xed point of this mapping, if it exists, satis�es the Bellman equation. Thus, if
S� is a closed set, we know (see for instance Stockey and Lucas, 1989) that the �xed
point of this mapping exists and is unique. Accordingly, it de�nes a value function
with the desired properties. To show that S� is a closed set we follow an iterative
procedure. We start with S; the space of all continuous bounded functions (over the
domain x; h and �) and consider �rst the subset, S0;d; such that a function 
 2 S0;d
if it is also nonincreasing in the variables x; h and �: We start by noting that S0;d is
a closed subset of S. We then apply the �rst iteration of the operator L on the func-

31S� is non-empty as clearly the constant function belongs to this set.
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tions in S0;d (for more details on the exact procedure, see Appendix D) to generate a
subset S1;d of S0;d such that these (once) iterated functions are also all nonincreasing.
The set of functions S1;d is now shown to be closed. Repeated application of this
procedure produces a sequence of sets of functions Sk;d; for k = 1; 2; :::; such that
each Sk;d is a subset of Sk�1;d; is a closed set, and S� = \kSk;d: The proof is then
concluded by noting that countable intersection of closed sets is closed.

4.3 Cumulative Welfare E¤ects and (Intrinsic) Habit For-
mation

As noted before, we have deliberately excluded any cumulative welfare e¤ects in our
model so far to highlight the fact that our results do not depend on any such e¤ect.
However, in many applications, such e¤ects are present and are important (for exam-
ple long term health e¤ects of smoking or long term wealth e¤ects of gambling etc).
Here, we show how we can modify our basic model to allow for such environments;
we also show that the presence of such cumulative e¤ects does not a¤ect our results
qualitatively. Finally, we also explore the link between our model and those in the
intrinsic habit formation models.
To handle the presence of cumulative welfare e¤ect, we change the utility function

from being u(at; xt) to being v(at; xt; ht): The (harmful) cumulative e¤ect is captured
by the assumption that v(at; xt; ht) is nonincreasing in ht (and to rule out the trivial
case, is strictly decreasing for at least some values of h): To maintain the property
of compulsive consumption, we also assume that v(1; 1; ht) > v(0; 1; ht); v(0; 0; ht) >
v(1; 0; ht) and that v(0; 0; ht) > v(1; 1; ht) and v(at; xt; ht) being nonincreasing in ht.
Let us also de�ne D(h) = v(0; 0; h)� v(1; 1; h) and B(h) = v(1; 1; h)� v(0; 1; h); to
replace D and B from before.
By repeating the steps in Appendix B, one can easily show that Lemma 3 is

still valid. As we also show in Appendix D, the value function is still well-de�ned32.
Moreover, most of our results,33 and in particular Proposition (2) and Lemma 4 are
robust to the introduction of cumulative welfare results.
At this stage we can discuss how our work relates to the habit formation litera-

ture. Intrinsic habit formation models assume, in general, an intertemporal utility

32We focus on the in�nite horizon case to facilitate comparison with most of the received literature
on rational addiction; however, our discussion carries over to the case of �nite horizon.
33The only results that would require, in order to still hold in this case, further assumptions are

the ones that have to do with the comparison of the behavior of decision-makers with di¤erent
histories. Speci�cally, these additional assumption will have to be on the monotonicity with respect
to history of B(h)=D(h):
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where past consumption a¤ects valuation of current and future consumption. Our
discussion above emphasizes that our results do not rely on the presence or absence
of such intertemporal e¤ects.
Many of the intrinsic habit-formation models are used to explain phenomena that

standard intertemporally separable preferences seemingly cannot. Some such exam-
ples are: Constantinides (1990) helps understand data indicating that individuals
are far more averse to risk than might be expected; Boldrin, Christiano, and Fisher
(2001), who combine habit formation and intersectoral in�exibilities in a model of
real business cycles to suggest an explanation for why consumption growth is strongly
connected to income, but only weakly to interest rates; Uribe (2002), who gives an ex-
planation for the contractions in consumption that are observed before the collapse
of exchange rate stabilization programs. The above literature however postulates
the habit formation preferences in an ad hoc manner and in fact until recently there
have been no theoretical underpinnings of the habit formation preferences.34 Rozen
(2009), axiomatizes the so-called linear habit formation model used in some of the pa-
pers above. Rustichini and Siconol�(2005), axiomatize dynamically consistent habit
formation over consumption streams, (but do not o¤er a particular structure for the
utility or form of habit aggregation). Gul and Pesendorfer (2007), who also axiom-
atize a dynamically consistent non-linear habit formation model but by considering
preferences on menus of streams of consumption rather than on streams themselves.
In contrast to this strand of literature, our model generates non-linear habit forming
preferences, but by starting from a standard intertemporally separable discounted
utility. The reason is that while our decision-maker has preferences characterized by
standard utility function, she lacks information about the determination of the state
of the world (the �urge�to consume in the future), with the (perceived) stochastic
process generating the states depending on an endogenous variable (past consump-
tion). To be more speci�c, revert to the model with no cumulative welfare e¤ects for
simplicity of exposition (so that utility is given by u(a; x)): Note then that at time t
the payo¤ is given by u(at; xt) +

P1
i=1 �

iEt[u(at+i; Xt+i) j ht�1; at�1; �t�1; at+i�1; xt];
where at+i�1 = (at; at+1; :::; at+i�1) and Et[u(at+i; Xt+i) j ht; at+i�1; xt] denotes the
expectations operator with respect to Xt+i; for any i � 1, given the t�period prior
�t�1, past history ht�1 and consumption at�1 (and hence ht) and observed state xt
(and hence �t), and the consumption stream a

t+i�1 (which will determine the history
stream (ht+1; ht+2; :::; ht+i): Importantly, the perceived probability distribution over
Xt+i; for all i = 1; :::; T � t) is p+m(xt; �t�1; ht�1; at�1)[f(ht+i�1; at+i�1)� p]; which
is dependent on history of past consumption. Hence, the expected utility, in our
framework, falls under the rubric of nonlinear habit formation models.

34However, there is a large literature on the axiomatization of static reference dependence.
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5 Conclusions

We have presented a theory of rational addiction that complements the received
literature in an important way. In particular, our theory of rational addiction is
based on four central premises. First, addictive consumption is compulsive in that it
is in�uenced by stochastic urges. Second, cravings depend on past behavior. Third,
addicts understand their susceptibility to cravings and try to rationally manage the
process through their consumption even under a temptation. Fourth, and what
di¤erentiates substantially our theory from existing work, the consumer is not fully
aware of how easy or di¢ cult it might be to quit since they lack some information
about the addictive properties of the substance.
In our context, there is scope for campaigns that inform consumers about the

addictive properties of the various substances. Moreover, our theory provides some
micro-foundations for habit-forming behavior by starting from a standard model of
a fully rational decision-maker with intertemporally separable preferences, but with
subjective uncertainty over the likelihood of future temptations that depends on past
consumption behavior in tempting circumstances. In our model, failed attempts to
quit and occasional use can emerge as a process of information acquisition. Finally,
our model predicts that drugs with stronger withdrawal syndromes are associated
with lower consumption.
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7 Appendix A

Here we prove property (A) for t+ 1 = T � 1
Proof. Let (x00T�1; h

00
T�1; �

00
T�1) � (x0T�1; h

0
T�1; �

0
T�1) with at least one inequality

being strict, and a0T�1 = a(h
0
T�1; x

0
T�1; �

0
T�1) and a

00
T�1 = a(h

00
T�1; x

00
T�1; �

00
T�1): By the

de�nition of optimum, when x00T�1 = x
0
T�1 � xT�1 we have

V (xT�1; h
0
T�1; �

0
T�1) �

= u(a00T�1; xT�1) + �u(0; 0)� ��(a00T�1; h0T�1; �0T�1)D �
u(a00T�1; xT�1) + �u(0; 0)� ��(a00T�1; h00T�1; �00T�1)D

where the last inequality follows from �(a; h0T�1; �
0
T�1) � �(a; h00T�1; �00T�1): Note now

that by de�nition V (xT�1; h00T�1; �
00
T�1) = u(a

00
T�1; xT�1)+�u(0; 0)���(a00T�1; h00T�1; �00T�1)D.

Thus, V (xT�1; h00T�1; �
00
T�1) � V (xT�1; h

0
T�1; �

0
T�1): Finally, we have when h

00
T�1 =

h0T�1 � hT�1 and �00T�1 = �0T�1 � �T�1 by de�nition of optimum and similar to the

30



two-period model that

V (0; hT�1; �T�1) =

= u(0; 0) + �u(0; 0)� ��(0; hT�1; �T�1)D >
u(a00T�1; 1) + �u(0; 0)� ��(a00T�1; hT�1; �T�1)D

where the last inequality follows from u(0; 0) > u(a; 1) and �(0; hT�1; �T�1) �
�(a; hT�1; �T�1): Thus, V (1; hT�1; �T�1) < V (0; hT�1; �T�1):

8 Appendix B

Here we prove Lemma 3 and the inductive part of Lemma 4
Proof of Lemma 3. We start with proving property (D) for t = n� 1
For any given �n�1; hn�1 and an�1 and corresponding period n history hn and

posteriors �n(xn) �m(xn; �n�1; hn�1; an�1); let xn = 0: Then, if an = 0; the expected
discounted payo¤ in period n is

u(0; 0)

+��(0; hn; �n(0))V (1; h
0;m(1; �n(0); hn; 0))

+�(1� �(0; hn; �n(0)))V (0; h0;m(0; �n(0); hn; 0))
� u(0; 0) + �E�(0;hn;�n(0))V (X; h

0;m(X;�n(0); hn; 0))

where h0 = g(hn; 0): On the other hand, if an = 1; the payo¤ is

u(1; 0)

+��(1; hn; �n(0))V (1; h
00;m(1; �n(0); hn; 1))

+�(1� �(1; hn; �n(0)))V (0; h00;m(0; �n(0); hn; 1))
� u(1; 0) + �E�(1;hn;�n(0))V (X; h

00;m(X;�n(0); hn; 1))

where h00 = g(hn; 1): Note that �(0; hn; �n(0)) � �(1; hn; �n(0)):
Note by the property (A) for t = n andm(1; �n(0); hn; a) � m(0; �n(0); hn; a) that

V (1; g(hn; a);m(1; �n(0); hn; a)) � V (0; g(hn; a);m(0; �n(0); hn; a)); by the property
(A) for t = n andm(1; �n(0); hn; 1) � m(1; �n(0); hn; 0) that V (1; h0;m(1; �n(0); hn; 0)) �
V (1; h00;m(1; �n(0); hn; 1)) and by the property (B) for t = n that V (0; h

0;m(0; �n(0); hn; 0)) �
V (0; h00;m(0; �n(0); hn; 1)). Therefore, E�(1;hn;�n(0))V (X; h

00;m(X;�n(0); hn; 1))
� E�(0;hn;�n(0))V (X; h0;m(X;�n(0); hn; 0)): This alongside u(0; 0) > u(1; 0) proves

that an(hn; 0; �n(0)) = 0:
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We now prove property (C) for t = n� 1
Given the previous result, we have, for any given �n�1; hn�1 and an�1; and cor-

responding period n history hn and posteriors mn(xn);

V (0; hn;mn(0))

= u(0; 0) + �E�(0;hn;mn(0))V (X; h
0;m(X;mn(0); hn; 0))

and similarly

V (1; hn;mn(1))

= max
a
fu(a; 1) + �E�(a;hn;mn(1))V (X; g(hn; a);m(X;mn(1); hn; a))g

Note, due to u(0; 0)�u(0; 1) > u(0; 0)�u(1; 1) = D; that property (C) for t = n� 1
is proved if E�(1;hn;mn(1))V (X; h

00;m(X;mn(1); hn; 1))
� E�(0;hn;mn(1))V (X; h

0;m(X;mn(1); hn; 0))
� E�(0;hn;mn(0))V (X; h

0;m(X;mn(0); hn; 0)): These follow directly after noting
that (a) �(0; hn;mn(0)) � �(0; hn;mn(1)) � �(1; hn;mn(1)), (b) by the assump-
tion that property (A) holds for t = n and m(1;mn(xn); hn; a) � m(0;mn(xn); hn; a)
we have V (1; g(hn; a);m(1;mn(xn); hn; a)) � V (0; g(hn; a);m(0;mn(xn); hn; a)); (c)
by the assumption that property (A) holds for t = n and m(1;mn(1); hn; 1) �
m(1;mn(1); hn; 0)�m(1;mn(0); hn; 0) we have V (1; h0;m(1;mn(0); hn; 0))� V (1; h0;m(1;mn(1); hn; 0))
� V (1; h00;m(1;mn(1); hn; 1)), (d) by the assumption that property (B) holds for
t = n we have V (0; h0;m(0;mn(1); hn; 0)) � V (0; h00;m(0;mn(1); hn; 1)); and (e)
by the assumption that property (A) holds for t = n and m(0;mn(0); hn; 0) �
m(0;mn(1); hn; 0) we have V (0; h0;m(0;mn(0); hn; 0)) � V (0; h0;m(0;mn(1); hn; 0)).

Proof of inductive part of Lemma 4. Assume that properties (A) and (B) hold
for t = n.
We �rst prove property (A) for t = n� 1
Let (x00n; h

00
n; �

00
n) � (x0n; h

0
n; �

0
n) (with at least one inequality being strict) and

a0n = a(h0n; x
0
n; �

0
n) and a

00
n = a(h00n; x

00
n; �

00
n): We have by the de�nition of optimum

that when x00n = x
0
n � xn

V (xn; h
0
n; �

0
n) �

= u(a00n; xn)

+��(a00n; h
0
n; �

0
n)V (1; g(h

0
n; a

00
n);m(1; �

0
n; h

0
n; a

00
n))

+�(1� �(a00n; h0n; �0n))V (0; g(h0n; a00n);m(0; �0n; h0n; a00n))
� u(a00n; xn) + �E�(a00n;h0n;�0n)V (X; g(h

0
n; a

00
n);m(X;�

0
n; h

0
n; a

00
n))
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Note now that V (xn; h00n; �
00
n) = u(a

00
n; xn) + �E�(a00n;h00n;�00n)V (X; g(h

00
n; a

00
n);m(X;�

00
n; h

00
n; a

00
n)):

Thus, V (xn; h00n; �
00
n) � V (xn; h0n; �0n) follows directly if

E�(a;h00n;�00n)V (X; g(h
00
n; a);m(X;�

00
n; h

00
n; a))�E�(a;h0n;�0n)V (X; g(h0n; a);m(X;�0n; h0n; a)).

This follows after observing (a) �(a; h0n; �
0
n) � �(a; h00n; �

00
n), (b) by the assumption

that property (A) holds for t = n and m(1; �n; hn; a) � m(0; �n; hn; a) we have
V (1; g(hn; a);m(1; �n; hn; a)) � V (0; g(hn; a);m(0; �n; hn; a)); (c) by the assumption
that property (A) holds for t = n and m(1; �0n; h

0
n; a) � m(1; �00n; h

00
n; a) we have

V (1; g(h0n; a);m(1; �
0
n; h

0
n; a)) �

V (1; g(h00n; a);m(1; �
00
n; h

00
n; a)), and (d) by the assumption that properties (B) and

(A) hold for t = n alongsidem(0; �0n; h
0
n; a) � m(0; �00n; h0n; a) we have V (0; g(h0n; a);m(0; �0n; h0n; a))

� V (0; g(h0n; a);m(0; �00n; h0n; a))
� V (0; g(h00n; a);m(0; �00n; h00n; a)):
To conclude the proof of this part let h0n = h

00
n � hn; �0n = �00n � �n and x0n = 0 <

1 = x00n; and note by Lemma 3 that

V (0; hn; �n) =

= u(0; 0)

+��(0; hn; �n)V (1; g(hn; 0);m(1; �n; hn; 0))

+�(1� �(0; hn; �n))V (0; g(hn; 0);m(0; �n; hn; 0))
� u(0; 0) + �E�(0;hn;�n)V (X; g(hn; 0);m(X;�n; hn; 0))

Note now that V (1; hn; �n) = u(a
00
n; 1) + E�(a00n;hn;�n)V (X; g(hn; a

00
n);m(X;�n; hn; a

00
n))

and that u(0; 0) > u(1; 1) � (a00n; 1): Thus, V (1; hn; �n) � V (0; hn; �n) follows directly
if E�(a00n;hn;�n)V (X; g(hn; a

00
n);m(X;�n; hn; a

00
n)) �

E�(0;hn;�n)V (X; g(hn; 0);m(X;�n; hn; 0)). This follows after observing (a) �(0; hn; �n) �
�(a00n; hn; �n), (b) by the assumption that property (A) holds for t = n andm(1; �n; hn; a) �
m(0; �n; hn; a) we have V (1; g(hn; a);m(1; �n; hn; a)) � V (0; g(hn; a);m(0; �n; hn; a));
(c) by the assumption that property (A) holds for t = n and m(1; �n; hn; a

00
n) �

m(1; �n; hn; 0) we have V (1; g(hn; 0);m(1; �n; hn; 0))� V (1; g(hn; a00n);m(1; �n; hn; a00n)),
and (d) by the assumption that property (B) holds for t = n we have V (0; g(hn; 0);m(0; �n; hn; 0))
� V (0; g(hn; a00n);m(0; �n; hn; a00n)):
Finally, we prove property (B) for t = n� 1
Recalling the de�nition of the operator L; note that property (B) for t = n � 1

would be implied directly by setting j = 0 in the following statement:

V (0; Ljg(h; a); Ljm(0; �n�1; h; a)) is nonincreasing in h and a for any T�n � j � 0:

In what follows we prove the above statement under the assumption that prop-
erties (A) and (B) hold for all t � n.
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This is done by induction on j.
Clearly the above statement is true for j = T � n
due to V (0; LT�ng(h; a); LT�nm(0; �n�1; h; a)) = u(0; 0) (recall that in the last

period the optimal action follows the craving state). Assume that it is also true for
some admissible j = i: For j = i� 1; we then have, after using Lemma 3, that

V (0; Li�1g(h; a); Li�1m(0; �n�1; h; a)) = u(0; 0)

+E�(0;Li�1g(h;a);Li�1m(0;�n�1;h;a))V (X;L
ig(h; a);m(X;Li�1m(0; �n�1; h; a); L

i�1g(h; a); 0)):

Recall that Lig(h; a) = g(Li�1g(h; a); 0) and note that Li�1g(h; a) is increasing in h
and a: Recall also that m(0; Li�1m(0; �n�1; h; a); L

i�1g(h; a); 0) = Lim(0; �n�1; h; a):
Note that Li�1g(h; a) and Li�1m(0; �n�1; h; a) refer to history and posteriors in period
n + i � 1: Clearly then, using in the above expectation the inductive assumption,
property (A) for t = n + i � 1, and that (as we show in Appendix C) Assumption
(8) implies that
(i) �(0; Li�1g(h; a); Li�1m(0; �n�1; h; a)) is nondecreasing in h and a and
(ii) m(1; Li�1m(0; �n�1; h; a); L

i�1g(h; a); 0) is nondecreasing in h and a,
we have that the above expectation is nondecreasing in h and a and thereby the

desired result.

9 Appendix C

We start with (i). Note that Ltg(h; a) is increasing in h and a: Note also that by
assumption Lt�1g(h; a) � Ltg(h; a): We have for any 1 � t � T � j (and following

the convention that
1Q
i=2

y � 1 ):

�(0; Lt�1g(h; a); Lt�1m(0; �; h; a)) = p+ Lt�1m(0; �; h; a)[f(Lt�1g(h; a); 0)� p]

= p+
Lt�2m(0; �; h; a)(1� f(Lt�2g(h; a); 0))[f(Lt�1g(h; a); 0)� p]

Lt�2m(0; �; h; a)(1� f(Lt�2g(h; a); 0)) + (1� Lt�2m(0; �; h; a))(1� p)

Thus, for h0 � h00 or a0 � a00 we have that

�(0; Lt�1g(h0; a0); Lt�1m(0; �; h0; a0))� �(0; Lt�1g(h00; a00); Lt�1m(0; �; h00; a00))
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has the sign of

Lt�2m(0; �; h0; a0)(1� f(Lt�2g(h0; a0); 0))[f(Lt�1g(h0; a0); 0)� p]�
fLt�2m(0; �; h00; a00)(1� f(Lt�2g(h00; a00); 0)) + (1� Lt�2m(0; �; h00; a00))(1� p)g

�Lt�2m(0; �; h00; a00)(1� f(Lt�2g(h00; a00); 0))[f(Lt�1g(h00; a00); 0)� p]�
fLt�2m(0; �; h0; a0)(1� f(Lt�2g(h0; a0); 0)) + (1� Lt�2m(0; �; h0; a0))(1� p)g

=

fLt�2m(0; �; h0; a0)(1� f(Lt�2g(h0; a0); 0))Lt�2m(0; �; h00; a00)(1� f(Lt�2g(h00; a00); 0))�
�[f(Lt�1g(h0; a0); 0)� f(Lt�1g(h00; a00); 0)]g

+(1� p)�
fLt�2m(0; �; h0; a0)(1� f(Lt�2g(h0; a0); 0))[f(Lt�1g(h0; a0); 0)� p](1� Lt�2m(0; �; h00; a00))
�Lt�2m(0; �; h00; a00)(1� f(Lt�2g(h00; a00); 0))[f(Lt�1g(h00; a00); 0)� p](1� Lt�2m(0; �; h0; a0))g

Recalling the monotonicity properties of Lt�1g(h; a), we have that the sign of
the �rst term above is non-positive. The sign of the second term above is also non-
positive if

Lt�2m(0; �; h0; a0)

(1� Lt�2m(0; �; h0; a0)) �

(1� f(Lt�2g(h0; a0); 0))
(1� f(Lt�2g(h00; a00); 0))

[f(Lt�1g(h0; a0); 0)� p]
[f(Lt�1g(h00; a00); 0)� p]

� Lt�2m(0; �; h00; a00)

(1� Lt�2m(0; �; h00; a00))

which can be rewritten as

Lt�3m(0; �; h0; a0)(1� f(Lt�3g(h0; a0); 0))
(1� Lt�3m(0; �; h0; a0))(1� p) �

(1� f(Lt�2g(h0; a0); 0))
(1� f(Lt�2g(h00; a00); 0))

[f(Lt�1g(h0; a0); 0)� p]
[f(Lt�1g(h00; a00); 0)� p]

� Lt�3m(0; �; h00; a00)(1� f(Lt�3g(h00; a00); 0))
(1� Lt�3m(0; �; h00; a00))(1� p)
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and hence, by iterating backwards, as

m(1� f(h0; a0))
(1� �)(1� p)

tQ
i=2

(1� f(Lt�ig(h0; a0); 0))
tQ
i=2

(1� f(Lt�ig(h00; a00); 0))

[f(Lt�1g(h0; a0); 0)� p]
[f(Lt�1g(h00; a00); 0)� p]

� m(1� f(h00; a00))
(1� �)(1� p) :

This is true of � = 0 or, otherwise, if

(1� f(h0; a0))
(1� f(h00; a00))

tQ
i=2

(1� f(Lt�ig(h0; a0); 0))
tQ
i=2

(1� f(Lt�ig(h00; a00); 0))
(5)

� [f(Lt�1g(h00; a00); 0)� p]
[f(Lt�1g(h0; a0); 0)� p] :

We turn to (ii). Note due to p � f(h; a); that Lt�1m(0; �; h; a) � Ltm(0; �; h; a):
Note also that Ltm(0; �; h; a) is nonincreasing in h and a. We have, for any t �
T � j � 1 :

m(1; Lt�1m(0; �; h; a); Lt�1g(h; a); 0) =

Lt�1m(0; �; h; a)f(Lt�1g(h; a); 0)

Lt�1m(0; �; h; a)f(Lt�1g(h; a); 0) + (1� Lt�1m(0; �; h; a))p

Thus,

m(1; Lt�1m(0; �; h0; a0); Lt�1g(h0; a0); 0)�m(1; Lt�1m(0; �; h00; a00); Lt�1g(h00; a00); 0)

has the sign of

Lt�1m(0; �; h0; a0)f(Lt�1g(h0; a0); 0)(1� Lt�1m(0; �; h00; a00))p
�Lt�1m(0; �; h00; a00)f(Lt�1g(h00; a00); 0)(1� Lt�1m(0; �; h0; a0))p

The sign of this is non-positive if

Lt�1m(0; �; h0; a0)

(1� Lt�1m(0; �; h0; a0))
f(Lt�1g(h0; a0); 0)

f(Lt�1g(h00; a00); 0)
� Lt�1m(0; �; h00; a00)

(1� Lt�1m(0; �; h00; a00))
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or, equivalently, if

Lt�2m(0; �; h0; a0)

(1� Lt�2m(0; �; h0; a0))
(1� f(Lt�2g(h0; a0); 0))
(1� f(Lt�2g(h00; a00); 0))

f(Lt�1g(h0; a0); 0)

f(Lt�1g(h00; a00); 0)

� Lt�2m(0; �; h00; a00)

(1� Lt�2m(0; �; h00; a00))

By backward iteration (recall the steps above), the latter is true if � = 0 or, otherwise,
if ,

(1� f(h0; a0))
(1� f(h00; a00))

tQ
i=2

(1� f(Lt�ig(h0; a0); 0))
tQ
i=2

(1� f(Lt�ig(h00; a00); 0))
(6)

� f(Lt�1g(h00; a00); 0)

f(Lt�1g(h0; a0); 0)
:

Comparing (5) and (6), and noting that f(Lt�1g(h00;a00);0)
f(Lt�1g(h0;a0);0) �

f(Lt�1g(h00;a00);0)�p
f(Lt�1g(h0;a0);0)�p ; we

thus have that a necessary and su¢ cient condition for both assumptions (i) and (ii)
to be true for any � is (6).
In what follows we consider in more detail how restrictive this is and how all

this relates to the functions that appear in the existing literature. The reader more
interested in pursuing the main arguments behind our results could skip the rest of
this section.
To see how restrictive (6) is and how it relates to functions used in the literature,

consider the following law of motion: g(h; a) = �(h) + �2a with �2 > 0; �(h) positive
and increasing with �(0) = 0; �(H) + �2 � H (recall our requirement that g(h; a) �
H) and h1 < h = �(h)+�2 (so that consumption raises history).

35 This encompasses
the law of motions (conditional on history h be bounded and �(h) being increasing)
in BM and OZ (where �(h) = �1h; 1 � �1 � 0 and �2 = 1), GK (where �(h) = �1h
and �1 = �2 < 1), L (where �(h) = �1h and �1 + �2 = 1). In addition, if �(�2) = �2;
�(h) = h for h < �2 and �(h) = �2 + �1(h � �2) for h > �2 with 0 � �1 < 1 ,
then it also shares in a simple manner the qualitative characteristics of the law of
motion in BR; in particular that there is depreciation (�1 < 1) and once consumption

35Interestingly, (6) is not satis�ed if �(h) = 0 for any h (as in GP) and f(h0a0) < f(h00; a00): in
this case f(Lt�ig(h; a); 0) = p for any i = 1; :::; t: Thus, our assumption that g is increasing in both
a and h is crucial for our results when T > 2.
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takes place history never reverts to the �clean state�h = 0 (here the lower history of
someone who has ever tried the substance is �2 > 0 and in BR it is �2 = 1).
Furthermore, consider f(h; a) = f̂(g(h; a)) (with f̂(g) increasing, f̂(0) = p and

f̂(g(H; 1)) < 1), which is consistent with BR (for a given �lifestyle activity�).36 A
simple special case of this is f(h; a) = p + g(h; a) with g(H; 1) < 1 � p (recall our
requirement that f(h; a) < 1):
For such fundamentals, focus on the case of h1 � �2 (thus, our decision maker

has already consumed once the substance - or in the case of smokers our decision
maker has been a passive smoker):We can thus restrict further attention to the case
of g(h; a) = c(a) + �1h+ �2a; with c � 0 (as in BM, OZ, GK and L) or c(1) = 0 and
c(0) = (1� �1)�2 > 0 (as in BR) and �2 > 0 and 0 < �1 < 1.
We then have that f(h; a) = p + c(a) + �1h + �2a. Moreover, f(L

jg(h; a); 0) =
p+ c(0)+ �1L

jg(h; a); and Lg(h; a) = c(0) + �1g(h; a) = c(0)+ c(a)�1+ �
2
1h+ �1�2a;

L2g(h; a) = c(0) + �1Lg(h; a) = c(0)(1 + �1) + c(a)�
2
1 + �

3
1h+ �

2
1�2a; and continuing

the iteration, Ljg(h; a) = c(0)
j�1P
i=0

�i1+ c(a)�
j
1+�

j+1
1 h+�j1�2a: Thus, f(L

jg(h; a); 0) =

p+ c(0)
jP
i=0

�i1 + c(a)�
j+1
1 + �j+21 h+ �j+11 �2a:

Therefore, after using convention
P�1

�=0 y = 0, (1�f(h; a))
tQ
i=2

(1�f(Lt�ig(h; a); 0)) =
t+1Q
i=2

(1� p� c(0)
t�iP
�=0

��1 � c(a)�t�i+11 � �t�i+21 h� �t�i+11 �2a) and (6) can be rewritten as

t+1Q
i=2

(1� p� c(0)
t�iP
�=0

��1 � c(a0)�t�i+11 � �t�i+21 h0 � �t�i+11 �2a
0)

t+1Q
i=2

(1� p� c(0)
t�iP
�=0

��1 � c(a00)�t�i+11 � �t�i+21 h00 � �t�i+11 �2a
00)

�
p+ c(0)

t�1P
i=0

�i1 + c(a
00)�t1 + �

t+1
1 h00 + �t1�2a

00

p+ c(0)
t�1P
i=0

�i1 + c(a
0)�t1 + �

t+1
1 h0 + �t1�2a

0

The above alongside �1H + �2 < 1� p (to ensure f(h; a) < 1) and �1H + �2 � H (to
ensure that g(h; a) � H) place restrictions on �1 > 0 and �2 > 0.
Clearly for �1 # 0 (and hence �2 � H and �2 < 1 � p) the above is violated if

36Recall that in BM, OZ, GK and GP we have f(h; a) = 0, while in L we have �0 = 0 and/or
f(h; a) = p for any h; a:
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a0 < a00 and c � 0. However, it is satis�ed if c(1) = 1 and c(0) = �2(1 � �1) (note
that in this case we have f(h; a) = p+ �2 as �1 # 0).
For �1 " 1 and hence �2 # 0 and H < 1 � p and c(0) # 0; the above is satis�ed

(recall also that c(1) = 0) if

(1� p� h0)t
(1� p� h00)t �

p+ h00

p+ h0

which is satis�ed if h0 = h00 and a0 < a00: Moreover, if a0 = a00 and h0 < h00; we have
that the left hand side of the above inequality is decreasing in t: Thus, the above
inequality is satis�ed for any t � 1 if and only if

(1� p� h0)
(1� p� h00) � p+ h00

p+ h0
=)

(1� 2p� h0)h0 � (1� 2p� h00)h00

This, in turn is satis�ed for any h0; h00 2 [h1; H] such that h00 > h0 if and only if
(1� 2p� h)h is nondecreasing, which is true if and only if

1� 2p� 2H � 0

Note that the latter implies 1� p > H:
Accordingly, by continuity the fundamentals in question satisfy (6) if 1 � 2p �

2H; �1 is su¢ ciently high and �2 is su¢ ciently low (and �1H + �2 < 1 � p and
�1H + �2 � H).

10 Appendix D: The In�nite Horizon Case

Before we proceed to the proofs, we should emphasize that, as noted in Section (4.3),
we can easily accommodate here the extension where temporal payo¤ depends also
on past consumption, by letting the per period utility function to be v(at; xt; ht);
t = 1; :::;1: In that case, we assume that v is a bounded and continuous function
on f0; 1g� f0; 1g� [0; H] and have the properties: v(0; 0; h) > v(1; 0; h), v(0; 0; h) >
v(1; 1; h) > v(0; 1; h) and v(a; x; h) being nonincreasing in h:
Next we provide a brief intuitive discussion, in terms of dynamic programming

theory, as to why we cannot use established results on properties of value functions for
what we need to show. The reader more interested in pursuing the main arguments
behind our results could skip the rest and go directly to the next (sub)section.
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Recall that the law of motion for period t consumption history is

ht = g(ht�1; at�1)

with h0 and a0 predetermined, g(0; 0) = 0 and g being continuous and increasing:
Recall also that (for given p and continuous and increasing 1 > f(h; a) � p)

Bayesian updating implies the following di¤erence equation for the period t posterior:

�t = m(xt; �t�1; ht�1; at�1)

with �0 predetermined (f(h0; a0) � f0) and

m(1; �t�1; ht�1; at�1) =
�t�1f(ht�1; at�1)

(1� �t�1)p+ �t�1f(ht�1; at�1)
and

m(0; �t�1; ht�1; at�1) =
�t�1(1� f(ht�1; at�1))

(1� �t�1)(1� p) + �t�1(1� f(ht�1; at�1))

Despite the seemingly nonstationary nature of the probability measure over the
stochastic state x; one can re-write it in such a way that beliefs over the next-period�s
craving shock can be represented by a stationary and continuous mapping. In more
detail, note that the probability that xt+1 = 1 given past consumptions and craving
shocks is equal to

�(at; ht; �t) � p+ �t[f(ht; at)� p]
Hence, by including the posterior, �t; in the set of state/predetermined variables
the above probability becomes stationary. However this comes at the expense of
having a state variable, �t, with a law of motion that has no clear-cut monotonicity
properties. To see this, de�ne the following law of motion (from the decision-maker�s
point of view) of the period t craving-state

xt = �(�t�1; ht�1; at�1; !t)

with !t being a uniformly distributed random variable in [0; 1]; �(�t�1; ht�1; at�1; !)
being nonincreasing in !; and �(�t�1; ht�1; at�1; !) = 1 when ! � �(at�1; ht�1; �t�1)
and zero otherwise. Note that � is nondecreasing in �t�1; ht�1 and at�1: We then
have that the period t posterior is in e¤ect a stochastic state variable as well with
law of motion

�t =M(�t�1; ht�1; at�1; !t) � m(�(�t�1; ht�1; at�1; !t); �t�1; ht�1; at�1)

Clearly, M is nondecreasing in �t�1: M is also nondecreasing in ht�1 and at�1 if
!t � �(at�1; ht�1; �t�1): However, if !t > �(at�1; ht�1; �t�1); the (contradicting)
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monotonicity properties of m and � with respect to ht�1 and at�1 imply that the
corresponding monotonicity of M requires more structure into the problem (ie. into
the functions m and �). This is what complicates the derivation of the properties of
the (shown below to be well-de�ned) value function, and the additional structure is
accomplished by Assumption (8).
We are now ready to proceed with the rest of the proof.

10.1 V is well-de�ned for T � 1
The following proof uses standard dynamic programming techniques (see, for in-
stance, Stockey and Lucas (1989)) to show that the Bellman equation is well-de�ned
and that the value function V is given by the unique mapping N that is uniformly
contracting on the set S of continuous and bounded functions of x; h and �; with
x 2 f0; 1g; h 2 [0; H] and � 2 [0; 1]. Readers who are familiar with such methods
can skip the rest of this section and go directly to the next (sub)section.
Our �rst task is to show that a well-de�ned value function V (x; h; �) exists.

Letting then the period�t vector of state/predetermined variables be fxt; ht; �tg;
the Bellman equation is

V (xt; ht; �t) =

max
at2f0;1g

8<:v(at; xt; ht) + �
8<: �(at; ht; �t)V

�
1; g(ht; at);

�tf(ht;at)
(1��t)p+�tf(ht;at)

�
+(1� �(at; ht; �t))V

�
0; g(ht; at);

�t(1�f(ht;at))
(1��t)(1�p)+�t(1�f(ht;at))

� 9=;
9=;

De�ne the set S of bounded and continuous functions 
 of x; h and �; with
x 2 f0; 1g; h 2 [0; H] and � 2 [0; 1]: De�ne then the function of x; h and �

(N
)(x; h; �) = max
a2f0;1g

8<:v(a; x; h) + �
8<: �(a; h; �)


�
1; g(h; a); �f(h;a)

(1��)p+�f(h;a)

�
+(1� �(a; h; �)) 


�
0; g(h; a); �(1�f(h;a))

(1��)(1�p)+�(1�f(h;a))

� 9=;
9=;

Note that if 
 2 S; then N
 is also bounded and continuous by Berge�s theorem of
maximum. Thus, the above de�nes a mapping N from the set S into itself. Moreover
the set S with the sup norm, k
k = supx;h;� j
(x; h; �)j is a complete normed vector
space (see Theorem 3.1 in Stockey and Lucas (1989) p. 47).
De�ne the metric �(z; y) = kz � yk and thereby the complete metric space (S; �):

We then know from the Contraction Mapping Theorem (Theorem 3.2 in Stockey
and Lucas (1989) p. 50) that if N : S ! S is a contraction mapping with modulus
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�; then (a) N has exactly one �xed point, call it V , in S, and (b) for any V0 2 S;
�(NnV0; V ) � �n�(V0; V ); n = 0; 1; 2; ::: To show then that the Bellman equation
above is uniquely de�ned, we only have to show that N is a contraction mapping with
modulus � (i.e. that for some � 2 (0; 1); �(Nz;Ny) � ��(z; y) for all z; y 2 S). For
this we make use of Blackwell�s su¢ cient conditions for a contraction (Theorem 3.3
in Stockey and Lucas (1989) p. 54): Let Q � R3; and let B(Q) be a space of bounded
functions V : Q ! R with the sup norm. Let N : B(Q) ! B(Q) be an operator
satisfying (a) monotonicity: z; y 2 B(Q) and z(q) � y(q); for all q 2 Q; implies
(Nz)(q) � (Ny)(q); for all q 2 Q; (b) discounting: there exists some � 2 (0; 1) such
that (N(f +d))(q) � (Nf)(q)+�d, for all f 2 B(X); d � 0; q 2 Q; where (f +d)(q)
is the function de�ned by (f + d)(q) = f(q) + d: Then, N is a contraction mapping
with modulus �:
Applying this to our case we have that the monotonicity requirement is trivially

satis�ed because (N
)(x; h; �) is the maximized value of the function

w(a; x; h; �; 
) � v(a; x; h)+�

8<: �(a; h; �)

�
1; g(h; a); �f(h;a)

(1��)p+�f(h;a)

�
+(1� �(a; h; �)) 


�
0; g(h; a); �(1�f(h;a))

(1��)(1�p)+�(1�f(h;a))

� 9=; ;
and if z(x; h; �) � y(x; h; �); thenw(a; x; h; �; y) is uniformly higher thanw(a; x; h; �; z):
In more detail, after de�ning af � maxaw(a; x; h; �; f); we have that if z(x; h; �) �
y(x; h; �) then (Ny)(x; h; �) � w(az; x; h; �; y) � w(az; x; h; �; z) = (Nz)(x; h; �).
The discounting requirement is also trivially satis�ed as (N(V + d))(x; h; �) =
(NV )(x; h; �)+�d: Therefore, the mapping N : S ! S is a contraction mapping with
modulus �: Hence, the Bellman equation and the value function it de�nes implicitly
are well-de�ned, and N is uniformly contracting.

10.2 Properties of V

Given Lemma 3, showing Lemma 4 amounts to showing that properties (A) and (B)
are valid when we move to in�nite horizon (including cumulative welfare e¤ects of
past consumptions in the utility function, where Lemma 3 is still true as we also
mention in the relevant subsection).
To this end, and recalling the de�nition of the operator L on functions g and �;

let S� be the subset of S such that all functions 
 in S�are nonincreasing in x; h; �
and satisfy the following property:


(0; Ljg(h; a); Ljm(0; �; h; a)) is nonincreasing in h and a for any j � 0; n � 1
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S� is nonempty (as it includes all constant functions) and notably all functions in S�

satisfy properties (A) and (B) (the latter follows by setting j = 0). Thus, it su¢ ces
to show that V 2 S�:
Given that N is uniformly contracting on the complete space S (endowed with

the sup norm), we have that if N : S� ! S� and S� is closed; then the unique value
function de�ned by the Bellman equation lies in S�; see for instance Stockey and
Lucas (1989). We show these two properties in turn.

10.2.1 N : S� ! S�

Here we show that N : S� ! S�.
Consider 
 2 S� and let (x00; h00; �00) � (x0; h0; �0) with at least one inequality being

strict. Note that the (assumed) monotonicity properties of �(a; h; �); m(x; �; h; a);
�(0; Ljg(h; a); Ljm(0; �n�1; h; a)), m(1; L

jm(0; �n�1; h; a); L
jg(h; a); 0) and

Ljm(0; �n�1; h; a); L
jg(h; a), for all j � 0 and n � 1; imply that

E�(a;h;�0)[
(Xn; g(h; a);m(Xn; �
0; h; a)] � E�(a;h;�00)[
(Xn; g(h; a);m(Xn; �

00; h; a))]

E�(a;h0;�)[
(Xn; g(h
0; a);m(Xn; �; h

0; a)] � E�(a;h00;�)[
(Xn; g(h
00; a);m(Xn; �; h

00; a))]

E�(0;h;�)[
(Xn; g(h; 0);m(Xn; �; h; 0))] � E�(1;h;�)[
(Xn; g(h; 1);m(Xn; �; h; 1))]

and, after setting m0
n(0) = m(0; �n�1; h

0; a0) and m00
n(0) = m(0; �n�1; h

00; a00) and
recalling m(0; Ljm00

n(0); L
jg(h00; a00); 0)) = Lj+1m00

n(0), that

E�(0;Ljg(h0;a0);Ljm0
n(0))

[
(Xn+j+1; L
j+1g(h0; a0);m(Xn+j+1; L

jm0
n(0); L

jg(h0; a0); 0))]

� E�(0;Ljg(h00;a00);Ljm00
n(0))

[
(Xn+j+1; L
j+1g(h00; a00);m(Xn+j+1; L

jm00
n(0); L

jg(h00; a00); 0))]

Note then that the de�nitions of maximum and a(:); the properties of v(:); and
the above properties imply (after setting a0 = a(x0; h0; �0) and a00 = a(x00; h00; �00))
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that

(N
)(x; h; �0)

= v(a0; x; h) + �

8<: �(a0; h; �0)

�
1; g(h; a0); �0f(h;a0)

(1��0)p+�0f(h;a0)

�
+(1� �(a0; h; �0)) 


�
0; g(h; a0); �0(1�f(h;a0))

(1��0)(1�p)+�0(1�f(h;a0))

� 9=;
� v(a00; x; h) + �

8<: �(a00; h; �0)

�
1; g(h; a00); �0f(h;a00)

(1��0)p+�0f(h;a00)

�
+(1� �(a00; h; �0)) 


�
0; g(h; a00); �0(1�f(h;a00))

(1��0)(1�p)+�0(1�f(h;a00))

� 9=;
� v(a00; x; h) + �

8<: �(a00; h; �00)

�
1; g(h; a00); �00f(h;a00)

(1��00)p+�00f(h;a00)

�
+(1� �(a00; h; �00)) 


�
0; g(h; a00); �00(1�f(h;a00))

(1��00)(1�p)+�00(1�f(h;a00))

� 9=;
= (N
)(x; h; �00)

Similarly,

(N
)(x; h0; �)

= v(a0; x; h0) + �

8<: �(a0; h0; �)

�
1; g(h0; a0); �f(h0;a0)

(1��)p+�f(h0;a0)

�
+(1� �(a0; h0; �)) 


�
0; g(h0; a0); �(1�f(h0;a0))

(1��)(1�p)+�(1�f(h0;a0))

� 9=;
� v(a00; x; h0) + �

8<: �(a00; h0; �)

�
1; g(h0; a00); �f(h0;a00)

(1��)p+�f(h0;a00)

�
+(1� �(a00; h0; �)) 


�
0; g(h0; a00); �(1�f(h0;a00))

(1��0)(1�p)+�0(1�f(h0;a00))

� 9=;
� v(a00; x; h00) + �

8<: �(a00; h00; �)

�
1; g(h00; a00); �f(h00;a00)

(1��)p+�f(h00;a00)

�
+(1� �(a00; h00; �)) 


�
0; g(h00; a00); �(1�f(h00;a00))

(1��)(1�p)+�(1�f(h00;a00))

� 9=;
= (N
)(x; h00; �)

Furthermore,

(N
)(0; h; �) = v(a0; 0; h) + �

(
�(a0; h; �)
(1; g(h; a0); �f(h;a0)

(1��)p+�f(h;a0))

+ (1� �(a0; h; �)) 
(0; g(h; a0); �(1�f(h;a0))
(1��)(1�p)+�(1�f(h;a0)))

)
g

� v(0; 0; h) + �

(
�(0; h; �)
(1; g(h; 0); �f(h;0)

(1��)p+�f(h;0))

+ (1� �(0; h; �) 
(0; g(h; 0); �(1�f(h;0))
(1��)(1�p)+�(1�f(h;0)))

)
g

� v(a00; 1; h) + �

(
�(a00; h; �)
(1; g(h; a00); �f(h;a00)

(1��)p+�f(h;a00))

+ (1� �(a00; h; �)) 
(0; g(h; a00); �(1�f(h;a00))
(1��)(1�p)+�(1�f(h;a00)))

)
= (N
)(1; h; �)
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with the last inequality following from v(0; 0; h) � v(a; 1; h) for any a 2 f0; 1g; that
a00 2 f0; 1g and the above properties of expectations.
The above monotonicity properties of (N
)(x; h; �) imply in turn that a(0; h; �) =

0 (as in the proof of Lemma 3). Thus, we have (by using again the de�nition of
optimum and the above properties of expectations) that:

(N
)(0; Ljg(h0; a0); Ljm0
n(0))

= v(0; 0; Ljg(h0; a0))

+�

�
�(0; Ljg(h0; a0); Ljm0

n(0))
(1; L
j+1g(h0; a0);m(1; Ljm0

n(0); L
jg(h0; a0); 0))

+ (1� �(0; Ljg(h0; a0); Ljm0
n(0))) 
(0; L

j+1g(h0; a0); Lj+1m0(0))

�
g

� v(0; 0; Ljg(h00; a00))

+�

�
�(0; Ljg(h00; a00); Ljm00

n(0))
(1; L
j+1g(h00; a00);m(1; Ljm00

n(0); L
jg(h00; a00); 0))

+ (1� �(0; Ljg(h00; a00); Ljm00
n(0))) 
(0; L

j+1g(h00; a00); Lj+1m00
n(0))

�
= (N
)(0; Ljg(h00; a00); Ljm00

n(0))

Thus, we have that N maps S� into itself. It remains to show that S� is closed:
We show this next.

10.2.2 Proof that S� is closed

In what follows we endow all the function spaces with the sup norm.
Let S denotes the subset of all continuous and bounded functions 
(x; h; �) from

f0; 1g�[0; H]�[0; 1] to R and let the subset of S consisting of all weakly nonincreasing
functions be denoted by S0;d. We start by noting that S0;d is a closed subset of S:37

We now consider a subset S1;d of S0;d that has some further properties and show
that it is a closed set as well.

S1;d is a closed subset of Sd Speci�cally, take any function 
 2 S0;d: Consider
any point in the domain of the form (0; h; �): For any admissible (according to
Assumption (8)) g and f; consider the function e
 which maps h; a; � to R as:

e
(h; a; �) � 
(0; g(h; a);m(0; h; �; a)) (7)

37See Stockey and Lucas (1989). The proof requires showing that the limit function, say 
; of a
sequence of functions 
n in S

0;d belongs to the set S0;d: It is straightforward that 
 is continuous
and bounded, and that it is nonincreasing (and hence belongs to S0;d) can be shown by mimicking
the steps in the next subsection.
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De�ne then the set of functions, S1;d � S0;d such that 
 2 S1;d if and only if e
 is
nonincreasing in h and a:
We need to show that S1;d is closed. Towards that end, let us introduce some

notation. We denote with 
1 a generic element of S1;d:Moreover, we use an upperbar
to denote a limit function. Thus, for instance, 
 denotes the limit function of a
sequence of functions f
ngn:
Consider now a sequence of functions f
1ngn; where 
1n 2 S1;d; such that this

sequence has a limit function 
1: We need to show that 
1 2 S1;d:
Since S1;d is a subset of S0;d and since S0;d is closed, the limit function 
1 must

be in S0;d so the only way 
1 can not be in S1;d is because its corresponding e
1 is
increasing in h and a:
Fix a � and consider h00 � h0 and a00 � a0; with at least one inequality strict, such

that e
1(h00; a00; �)� e
1(h0; a0; �) = "; for some " > 0:
Let g0 = g(h0; a0) and g00 = g(h00; a00): Similarly, �0 = m(0; �; h0; a0) and �00 =

m(0; �; h00; a00): From (7), we have, 
1n(0; g
0; �0) = e
1n(h0; a0; �) and 
1n(0; g00; �00) =e
1n(h00; a00; �): Moreover �
1(0; g0; �0) = e
1(h0; a0; �) and �
1(0; g00; �00) = e
1(h00; a00; �):

Since 
1n converges to 

1 uniformly, there exists a positive integer bn; such that

for all n > bn;
j
1n(0; g00; �00)� 
1(0; g00; �00)j <

"

2
and

j
1n(0; g0; �0)� 
1(0; g0; �0)j <
"

2
From the above two inequalities we have,


1n(0; g
00; �00) > 
1(0; g00; �00)� "

2
(8)

and,

1n(0; g

0; �0) < 
(0; g0; �0) +
"

2
The latter inequality can be written as

�
1n(0; g0; �0) > �
(0; g0; �0)�
"

2
(9)

Combining the two inequalities (8) and (9), we get


1n(0; g
00; �00)� 
1n(0; g0; �0) > 
1(0; g00; �00)� 
1(0; g0; �0)� "

= e
1(h00; a00; �)� e
1(h0; a0; �)� "
= 0
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which implies that e
1n(h00; a00; �)� e
1n(h0; a0; �) > 0
This contradicts that 
1n 2 S1;d:
To complete the proof of the desired result, we apply this argument repeatedly

to get successive subsets S0;d � S1;d � S2;d; ::: each of which is closed. Countable
intersections of closed sets are closed and hence \kSk;d � S� (the intersection of
fSk;dgk) is closed.
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