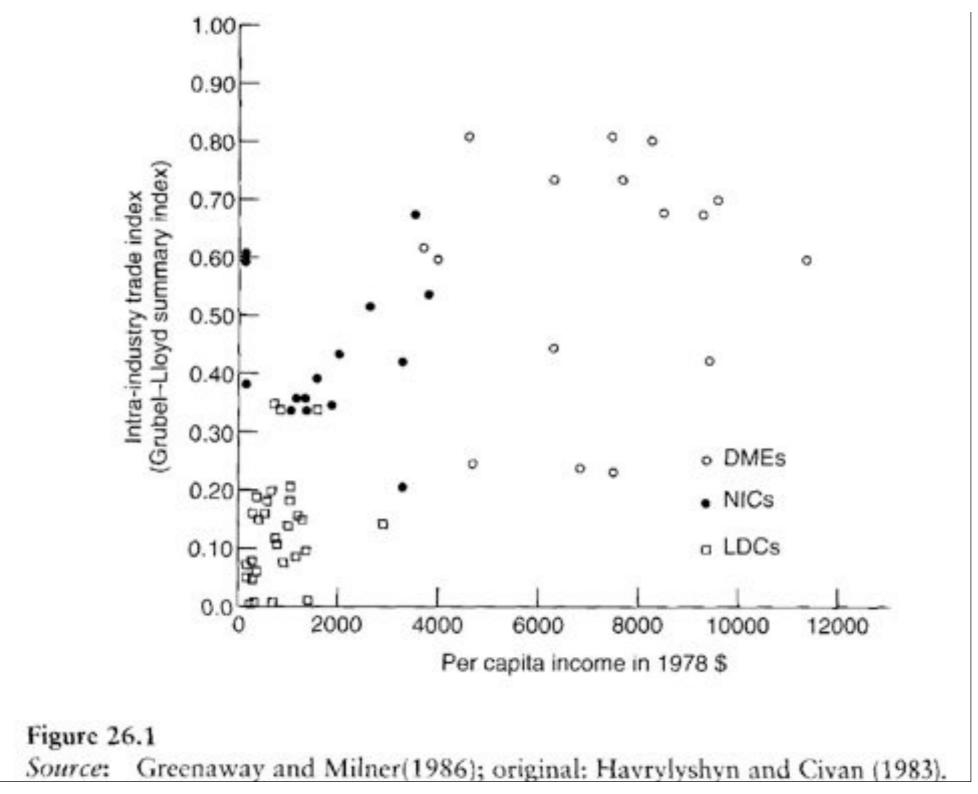
Test of Intra-Industry Trade Theories

The Grubel-Loyd Index

$$B_{j} = \frac{\left(X_{j} + M_{j}\right) - \left|X_{j} - M_{j}\right|}{X_{j} + M_{j}}$$

- $(X_j + M_j)$ is the gross bilateral trade value
- $\left|X_{j} M_{j}\right|$ is the absolute value of intra-industry trade
- The index may vary between $0 \le B_i \le 1$ and may be writen as


$$B_{j} = 1 - \frac{\left|X_{j} - M_{j}\right|}{X_{j} + M_{j}}$$

SITC	1959	1964	1970	1977	1979
2. Crude materials	0.18	0.19	0.36	0.40	0.38
3. Mineral fuels	0.30	0.35	0.26	0.58	0.74
4. Animal and vegetable oils	0.41	0.29	0.25	0.50	0.41
5. Chemicals	0.42	0.56	0.59	0.69	0.72
6. Manufactured goods	0.44	0.52	0.56	0.69	0.69
7. Machinery & transport equipment	0.38	0.51	0.60	0.69	0.70
8. Miscellaneous manufactured goods	0.66	0.75	0.79	0.80	0.75

Table 26.1 Average levels of IIT at 3-digit level in the UK: selected years

•

Source: Greenaway and Milner (1986).

Econometric Tests

- Loertscher-Wolter (1980)
 - IIT is important if average development is high
 - IIT is important when differences in economic development among countries are low
 - IIT is important if average markets dimension is high
 - IIT is important if differences in market dimension are limited
 - IIT is important when barrier to international trade are low

- IIT in an industry is important when product differentiation is high and there are significant barrier to entrance in production
- IIT in an industry is important if transaction costs are low (e.g: distance from the market transportation costs))
- IIT in an industry is important if the industry definition is very general (high aggregation of goods)

Table 26.2	Determinants of intra-industry trade
	OECD countries: cross-section, 1972-3

Endogenous variables	Estimated coefficients	F-values	Expected sign
Country-specific variables			
Development stage differential	-0.106×10^{0}	47.95**	(-)
Average development stage	0.259×10^{-1}	1.68	(+)
Market size differential	-0.146×10^{-5}	82.71**	(-)
Average market size	0.296×10^{-5}	108.17**	(+)
Distance	-0.485×10^{-4}	44.52**	(-)
Customs Union dummy	0.382×10^{0}	64.89**	(+)
Language group dummy	0.171×10^{0}	6.43**	(+)
Border trade dummy	0.268×10^{0}	20.41**	(+)
Cultural group dummy	-0.423×10^{-2}	0.01	(+)
Industry-specific variables			
Product differentiation	0.733×10^{-3}	0.45	(+)
Scale economies	-0.311×10^{-1}	91.23**	(+)
Transaction costs	-0.225×10^{-3}	3.71**	(+)
Level of aggregation	0.137×10^{-1}	3.05**	(+)
Product group	0.112×10^{0}	5.56**	(+)
Constant term	-0.196×10^{1}		0.0000000

Toh (1982)

Table 26.3 Cross-section regression results of intra-industry trade in US manufacturing industries, 1970 and 1971

Independent variables	1970	1971	Expected sign
PV (product differentiation)	5.85	6.09	
	(2.45)**	(2.43)**	(+)
HYTI (trade intensity)	0.17	0.33	
	(1.35)	(2.23)*	(+)
LPR (length of production run)	299.2	246.3	
	(2.61)**	(2.67)**	(+)
USXSHR (world market share)	-0.32	-0.16	
	(1.81)*	(0.87)	(-)
IACR (share concentration ratio)	-0.077	-0.053	
	(4.16)**	(2.16)**	(-)
PC (product variety introduction)	0.0065	0.0075	
	(2.16)*	(2.14)*	(+)
MD (distance)	-0.0101	0.0089	
	(0.83)	(0.64)	(+)
TAR (tariffs)	0.206	0.619	
	(0.41)	(0.93)	(-)
NTB (non-tariff barriers)	-0.39	-0.19	
	(0.11)	(0.05)	()
Constant	38.15	6.98	0.3000
	(1.63)	(0.29)	
R ²	0.318	0.268	
	$F = 5.30^{**}$	$F = 4.416^{**}$	

The figures in parentheses are t-values.

**,* Significant respectively at the 1% and 5% levels. Source: Tob (1982).

Greenaway-Milner (1984)

- They take into account the following explanatory variables:
 - Statistical aggregation effects(DG)
 - Specialization (SPC). Share of industry output of the bigger firm
 - Product differentiation by attributes (RD)
 - Market concentration ratio (CR)
 - Minimum efficiency size in production (economy of scale) (SE)

Independent variables	Linear estimates		Log-lanear estimates		Expected
	B,	\mathbf{C}_{i}	In B _j	$\ln C_{\rm y}$	
DG (aggregation effect)	0.17	0.17	0.08	0.11 (2.01)	(+)
SPC (specialisation)	-0.04	-0.28	0.82 (1.39)	0.78 (0.98)	(-)
AS (product differentiation by attributes)	0.77 (2.47)**	0.69 (1.94)*	0.06 (1.93)*	0.02 (0.35)	(+)
RD (product differentiation by technology)	1.43 (0.74)	0,15 (0.07)	-0.01 (-0.01)	0.01 (0.00)	(+)
$(RD)^2$	-0.01 (0.04)	0.48 (0.71)	0.01 (0.01)	-0.05 (-0.01)	(-)
CR (concentration tatio)	-0.56 (-2.56)**	-0.55 (-2.21)*	-0.07	-0.07 (-0.51)	()
SE (minimum efficient scale of production)	-0.22 (-1.46)	-0.11 (-0.65)	-1.46 (-2.45)*	-0.15 (1.84)*	(-)
DR (overlapping tastes)	0.73 (2.35)*	(0.51 (1.45)	0.54 (3.52)*	0.34 (1.62)	(+)
Constant	3.17 (0.17)	6.94 (1.38)	-0.55 (-0.49)	-0.29 (-0.19)	
R ²	0.38	0.20	0.55	0.24	
F n	3.60** 37	2.31*	6.28** 37	2.55* 37	

Table 26.4 Cross-section regression results of intra-industry trade in UK manufacturing industries, 1977

The figures in parentheses are t-values

**,* Significant respectively at the 1% and 5% levels.

Sources Greenaway and Milner (1984).

Hughes (1993)

- He takes the following variables:
 - product etherogeneity (HETNO)
 - R&D expenditure on added value (RDNO)
 - Share of skilled workers (SKPT)
 - Share of unskilled workers (MEMP)
 - Dimension of the firms (SCALE)
 - Market concentration (CR5)

Variables (independent)	France	Germany	Italy	Japan	UK	USA
RDNO	0.66	1.34	0.85	-0.79	0.35	-0.11
CR5	(4.17)** -0.37	(8.80)** -0.07	(3.18)** 0.15	(-2.61)**	(1.88)* -0.04	(-0.53) 0.004
	(-7.53)**	(-1.25)	(2.06)*	(-4.22)**	(-0.62)	(0.06)
HETNO	0.02	-0.01	-0.001	-0.01	0.02	0.01
	(9.84)**	(-1.80)	(-0.14)	(-1.19)	(5.93)**	(2.73)
SCALE	-0.83	-0.26	-1.58	-0.74	-1.66	-1.44
	$(-3.07)^{**}$	(-0.95)	(-4.54)**	(-1.58)	(-4.88)**	(-3.84)**
MEMP	0.30	0.54	-0.01	-0.65	0.13	-0.19
	(2.65)**	(4.23)**	(0.09)	(-3.45)**	(0.86)	(-1.07)
SKPT	2.18	0.02	2.39	-1.07	1.39	1.71
	(4.18)**	(0.04)	(2.87)**	(-0.86)	(1.93)*	(2.08)*
Constant	0.53	0.35	0.47	1.12	0.58	0.64
	(5.78)	(3.61)	(3.98)	(7.33)	(5.09)	(4.73)
R^2	0.44	0.11	0.18	0.1.5	0.21	0.12
11	544	544	544	544	\$44	544

Table 26.5 Estimates of IIT from panel data, 1980-7

The figures in parentheses are t-values. Standard errors are heteroscedasticconsistent estimates.

**,* Significant respectively at the 1% and 5% levels. Source: Hughes (1993).