Models of currency crisis

First generation models

- They explain currency crisis by looking at public deficit dynamics that are not compatible with fixed exchange rate regimes
 - Fiscal deficit is financed with money creation
 - Inflation rises
 - Real exchange rate appreciates
 - A trade deficit appears
 - Official currency reserves decreases
 - Fixed official exchange rate becomes no longer sustainable

 $m_t - p_t = \hat{y} - ki_t$ $m_t = \gamma b_t^d + (1 + \gamma) ru_t \quad 0 < \gamma < 1$

Money supply is a weighted average of domestic credit and official reserves

Setting $p^* = 1$ PPP $s_t = p_t - p_t^*$ may be written as

 $p_t = s_t$

 $i_t = i_t^* + \dot{s}$ (uncovered interest parity UIP)

 $\dot{b}^d = \mu$ (rate of growth of money supply)

Central Bank finances government budget deficit creating money

Define $\delta = \hat{y} - ki^*$

Then, using the UIP condition

$$\delta = \hat{y} - k(i - \dot{s})$$

$$\delta = \hat{y} - ki + k\dot{s} \quad \rightarrow \quad \delta - k\dot{s} = \hat{y} - ki$$

$$m_t - s_t = \delta - k\dot{s} \quad [p = s]$$

With fixed exchange rates $s_t = \overline{s}, \dot{s} = 0$

$$m_t - \overline{s}_t = \delta$$

Recalling that $m_t = \gamma b_t^d + (1 + \gamma) r u_t$

 $m_t - \overline{s}_t = \delta$ becomes

$$\gamma b_t^d + (1 + \gamma) r u_t = \overline{s} + \delta$$
$$(1 + \gamma) r u_t = \overline{s} + \delta - \gamma b_t^d$$

So that
$$ru_t = \frac{\overline{s} + \delta - \gamma b_t^d}{(1 + \gamma)}$$

$$ru_t = \frac{\overline{s} + \delta - \gamma b_t^d}{(1 + \gamma)}$$

Differencing the above equation we get the time rate of change of official reserves

$$dru_t = -\frac{\gamma}{1-\gamma}db_t^d$$

$$r\dot{u} = \frac{dru}{dt} = -\Theta \frac{db^d}{dt} = -\Theta\mu$$

Official reserves diminishes at a rate proportional to the monetary financing of government deficit

 \tilde{s} Is the "shadow" exchange rate, the market determined exchange rate that would prevail in a flexible exchange rate regime

Comparing the "shadow exchange rate" with the official fixed exchange rate we have three cases:

1) Agents expect $\tilde{s} < \overline{s}$ (expected appreciation) then the exchange rate stay fixed

2) When agent expect a devaluation $\tilde{s} > \bar{s}$ profitable speculation against the currency is possible

3) The speculative attack actually starts at $\tilde{s} = \overline{s}$ when official reserves are depleting because of monetary financing of government deficit

In fact, in monetary models of exchange rates $\dot{m} = \dot{s}$ so that when $\dot{m} > 0$ Agents expect a depreciation $\dot{s} > 0$