Introduzione alla macroeconomia aperta

Andrea Vaona
Università di Verona

Addenda alla prima lezione B di Politica Economica Internazionale

National accounts in an open economy

- Let us define domestic absorption as $A_{t}^{d}=C_{t}+I_{t}+G_{t}$ and total absorption as, A_{t}, as $A_{t}=A_{t}^{d}+I M_{t}$. Therefore one can write

$$
Y_{t}=A_{t}^{d}+E X_{t}-I M_{t}
$$

- Adding to both sides of the equation $r B_{t-1}$, one can obtain

$$
Y_{t}+r B_{t-1}=A_{t}^{d}+E X_{t}-I M_{t}+r B_{t-1}=A_{t}^{d}+T B_{t}+r B_{t-1}
$$

- Bringing A_{t}^{d} to the left-hand side and keeping in mind that $C A_{t}=T B_{t}+r B_{t-1}$, one can obtain

$$
Y_{t}-A_{t}^{d}+r B_{t-1}=C A_{t}
$$

If an economy absorbs more than its output and external revenues it will have a deficit of the current account.

Intertemporal approach: a two-periods model, examples

- Let us consider a two-periods time horizon. At time 1, the external net position of the economy is nil, $B_{0}=0$. This entails

$$
\begin{equation*}
C A_{1}=B_{1}-B_{0}=B_{1}=Y_{1}-I_{1}-C_{1} \tag{1}
\end{equation*}
$$

- In the second period, the trade balance will be

$$
\begin{equation*}
C A_{2}=B_{2}-B_{1}=Y_{2}+r B_{1}-C_{2}-I_{2} \tag{2}
\end{equation*}
$$

- On the other hand, $B_{2}=0$, otherwise the domestic economy would have a credit or a debit in the second period that are impossible to redeem. $l_{2}=0$ otherwise there would be investments, whose yields are impossible to enjoy.

Intertemporal approach: a two-periods model, examples

- Therefore (2) can be rewritten as

$$
\begin{equation*}
C A_{2}=-B_{1}=Y_{2}+r B_{1}-C_{2} \tag{3}
\end{equation*}
$$

- Let us suppose that $B_{1}>0$:
- $B_{1}=Y_{1}-I_{1}-C_{1}>0$. The economy produces more than what it absorbes. It is saving an amount equal to B_{1} and it is investing what it saves abroad
- $-B_{1}=Y_{2}+r B_{1}-C_{2}<0$. The economy absorbes more than its output and its external revenues. It is decumulating its foreign activities by an amount equal to B_{1}.

Intertemporal approach: a two-periods model, examples

- Suppose that $B_{1}<0$:
- $B_{1}=Y_{1}-I_{1}-C_{1}<0$. The economy produces less than what it absorbes. At the end of period 1 , it will have an external debt equal to B_{1}.
- $-B_{1}=Y_{2}+r B_{1}-C_{2}>0$. The economy produces more than its absorption and the cost of its external debt. It is decumulating its assets by an amount equal to B_{1}.
- Suppoose that $B_{2} \neq 0$ and that $B_{1}<0$
- $B_{2}-B_{1}=Y_{2}+r B_{1}-C_{2}>0$. There is a current account surplus. B_{2} is less negative than B_{1}.
- $B_{2}-B_{1}=Y_{2}+r B_{1}-C_{2}<0$. There is a current account deficit. B_{2} is more negative than B_{1}

Intertemporal approach: detailed calculation of the intertemporal budget constraint

- Let us consider (3), bring to the left hand side $r B_{1}$ to obtain

$$
\begin{align*}
-B_{1}-r B_{1} & =Y_{2}-C_{2} \\
B_{1} & =\frac{C_{2}-Y_{2}}{1+r} \tag{4}
\end{align*}
$$

- Let us substitute (1) into (4) to obtain

$$
Y_{1}-I_{1}-C_{1}=\frac{C_{2}-Y_{2}}{1+r}
$$

- Re-arranging one obtains

$$
C_{1}+\frac{C_{2}}{1+r}=Y_{1}+\frac{Y_{2}}{1+r}-l_{1}
$$

Intertemporal approach: a two-periods model

- The aim of the individual is to maximize the discounted utility over the two periods subject to the intertemporal budget constraint

$$
\begin{align*}
\max _{C_{1}, C_{2}} V & =U\left(C_{1}\right)+\delta U\left(C_{2}\right) \tag{5}\\
\text { s.t. } C_{1}+\frac{C_{2}}{1+r} & =Y_{1}-I_{1}+\frac{Y_{2}}{1+r} \tag{6}
\end{align*}
$$

where $\delta<1$ is the discount rate

- Let us solve (6) with respect to C_{2}

$$
C_{2}=\left(Y_{1}-I_{1}-C_{1}\right)(1+r)+Y_{2}
$$

- and let us substitute the result into (5), obtaining

$$
\begin{equation*}
\max _{C_{1}} V=U\left(C_{1}\right)+\delta U\left[(1+r)\left(Y_{1}-I_{1}-C_{1}\right)+Y_{2}\right] \tag{7}
\end{equation*}
$$

Intertemporal approach: a two-periods model

- Let us differentiate 7 with respect to C_{1} and equating the first derivative to zero one can obtain the first order condition

$$
\begin{equation*}
U^{\prime}\left(C_{1}\right)-\delta(1+r) U^{\prime}\left[(1+r)\left(Y_{1}-I_{1}-C_{1}\right)+Y_{2}\right]=0 \tag{8}
\end{equation*}
$$

- Substituting into (8) C_{2} we obtain

$$
U^{\prime}\left(C_{1}\right)=\delta(1+r) U^{\prime}\left[C_{2}\right]
$$

An example of balance of payments

Items	2000	2001
Current account	-6305	-178
Goods	10368	17775
Services	1167	338
Factor incomes	-13099	-11575
Unilateral transfers	-4742	-6716
Capital accounts	3195	938
Intangible assets	-72	-311
Unilateral transfers	3267	1249
Financial accounts	4287	-2889
Direct investments	1149	-7377
Portfolio investments	-26255	-7640
Derivatives	2501	-477
Other investments	29950	12121
Variation in official reserves	-3058	484
Errors and omissions	-1177	2129

An example of balance of payments

Items 2000
Current account (A) -6305
Goods 10368
Services 1167
Factor Incomes -13099
Unilateral transfers -4742
Capital account (B) 10540
Intangible assets -72
Unilateral transfers 3267
Direct investments 1149
Portfolio investments -26255
Derivatives 2501
Other investments 29950
Errors and omissions 1177
A+B-C 1177
Variation of official reserves (C) 3058

