The Krugman model with product innovation

- Two countries: A is the innovator, B is the follower
- A produces "new" goods
- When a good becomes "old" country B produces and exports it
- One factor of production: labour
- Consumers have the following utility function:

$$
U=\left[\sum_{i=1}^{n} c(i)^{\theta}\right]^{1 / \theta} \quad 0<\theta<1
$$

- n is the total number of available goods (new + old)
-When Δn "new" goods are produced, then consumers maximize

$$
U=\left[\sum_{i=1}^{n+\Delta n} c(i)^{\theta}\right]^{1 / 6}
$$

- subject to the income constraint

$$
M=p_{A} c_{A}+p_{B} c_{B}
$$

- One unit of labour produces one unit of good (MPL = I)
- Because of perfect competition

$$
p_{A} \stackrel{w_{A}}{ } \quad p_{B}=w_{B}
$$

- A produces "new" goods and B produces
"old" goods because

$$
\frac{w_{A}}{w_{B}}>1
$$

- Total number of goods is $n=n_{A}+n_{B}$
-Let c_{A} and c_{B} denote consumption in countries A and B
- We obtain the relative demand function maximizing the lagrangian $\overline{c_{b}}=\left(\overline{p_{B}}\right)$

$$
V=\left[c_{A}^{\theta}+c_{B}^{\theta}\right]^{1 / \theta}+\lambda\left(M-p_{A} c_{A}-p_{B} c_{B}\right)
$$

-First order conditions (f.o.c.) are:

$$
\begin{aligned}
& \frac{\delta V}{\delta C_{A}}=\frac{1}{\theta}\left(c_{A}^{\theta}+c_{B}^{\theta}\right)^{(1-\theta) / \theta} \cdot \theta c_{A}^{\theta-1}-\lambda p_{A}=0 \\
& \frac{\delta V}{\delta C_{B}}=\frac{1}{\theta}\left(c_{A}^{\theta}+c_{B}^{\theta}\right)^{(1-\theta) / \theta} \cdot \theta c_{B}^{\theta-1}-\lambda p_{B}=0 \\
& \frac{\delta V}{\delta \lambda}=M-p_{A} c_{A}-p_{B} c_{B}=0
\end{aligned}
$$

-From the first two f.o.c. we get

$$
\frac{c_{A}^{\theta-1}}{c_{B}^{\theta-1}}=\frac{p_{A}}{p_{B}} \rightarrow \frac{c_{A}}{c_{b}}=\left(\frac{p_{A}}{p_{B}}\right)^{-1 /(1-\theta)}=\left(\frac{w_{A}}{w_{B}}\right)^{-1 /(1-\theta)}
$$

-Demand for labour depends on both goods demand and the number of available goods

$$
L_{A}=n_{A} c_{A} \quad L_{B}=n_{B} c_{B}
$$

-From labour and goods demand we get the relative demand for labour

$$
\begin{aligned}
& c_{A}=\frac{L_{A}}{n_{A}} \quad c_{B}=\frac{L_{B}}{n_{B}} \\
& \frac{L_{A}}{L_{B}}=\left(\frac{n_{A}}{n_{B}}\right)\left(\frac{w_{A}}{w_{B}}\right)^{-1 /(1-\theta)}
\end{aligned}
$$

-From relative demand for labour we finally find the relative wage

$$
\frac{w_{A}}{w_{B}}=\left(\frac{n_{A}}{n_{B}}\right)^{1-\theta}\left(\frac{L_{A}}{L_{B}}\right)^{\theta-1}
$$

-Wage differential between A and B depends upon the ratio between "new" and "old" goods
-Wage differential is increasing in the speed A introduces "new" goods

Dynamic equilibrium of the model

- Innovation and imitation continuously occur through time
-The overall stock of "new" and "old" goods depends on innovation and imitation processes
- Because of continuos innovation, n grows according to $\dot{n}=v n$
- Imitation process is measured by $\dot{n}_{B}=t n_{A}$
- v and t are positive constant $v>O \quad t>O$
- Imitation lag is equal to $\frac{1}{1}$
- Average growth rate of "new" product is

$$
\dot{n}_{A}=\dot{n}-\dot{n}_{B}=v n-t n_{A}
$$

-We have a dynamic system with two equations

$$
\begin{aligned}
\dot{n} & =v n \\
\dot{n}_{A} & =v n-t n_{A}
\end{aligned}
$$

- The system is "instable" and "explosive"
-The number of "new" products continuously increases because of continuos innovation
- A phase diagram:

$$
\begin{aligned}
& \dot{n}=v n \\
& \dot{n}=0 \rightarrow v n=0 \rightarrow n=0 \\
& \frac{\delta \dot{n}}{\delta n}=v>0 \\
& \dot{n}_{A}=v n-t n_{A} \\
& \dot{n}_{A}=0 \rightarrow n=\frac{t}{v} n_{A} \\
& \frac{\delta \dot{n}_{A}}{\delta n_{A}}=\frac{t}{v}>0
\end{aligned}
$$

- n increases without bounds but the ratio between "new" and "old" goods is stationary $\frac{n_{A}}{n_{B}}=\frac{v}{t}$
- $\sigma=n_{A} / n$ is the share of "new" goods on the total. Using logarithms, by time differentiation we get:

$$
\begin{array}{ll}
\ln \sigma=\ln n_{A}-\ln n & d \ln \sigma=\frac{1}{n_{A}} d n_{A}-\frac{1}{n} d n \\
\frac{d \ln \sigma}{d t}=\frac{1}{n_{A}} \frac{d n_{A}}{d t}-\frac{1}{n} \frac{d n}{d t} & \frac{1}{\sigma} \frac{d \sigma}{d t}=\frac{1}{n_{A}} \dot{n}_{A}-\frac{1}{n} \dot{n}
\end{array}
$$

Multiplying both sides by σ we get $\quad \dot{\sigma}=\frac{\sigma}{n_{A}} \dot{n}_{A}-\frac{\sigma}{n} \dot{n}$

$$
\dot{\sigma}=\frac{n_{A}}{n} \frac{\dot{n}_{A}}{n_{A}}-\sigma \frac{\dot{n}}{n} \quad \dot{\sigma}=\frac{\dot{n}_{A}}{n}-\sigma \frac{\dot{n}}{n}
$$

- Since $\dot{n}=v n$ and $\dot{n}_{A}=v n-t n_{A}$, from

$$
\begin{aligned}
& \dot{\sigma}=\frac{\dot{n}_{A}}{n}-\sigma \frac{\dot{n}}{n} \rightarrow \dot{\sigma}=\frac{v n-t n_{A}}{n}-\sigma \frac{v n}{n} \\
& \dot{\sigma}=v-\frac{t n_{A}}{n}-\sigma v \rightarrow \dot{\sigma}=v-\sigma t-\sigma v
\end{aligned}
$$

-we obtain $\dot{\sigma}=v-(t+v) \sigma$
-therefore, steady state condition $\dot{\sigma}=0$ implies

$$
\sigma=\frac{v}{(t+v)}
$$

- recalling that $n=n_{A}+n_{B} \quad \sigma=\frac{n_{A}}{n}$

$$
\begin{array}{ll}
\frac{n_{A}}{n_{B}}=\frac{n-n_{B}}{n_{B}} & \frac{n_{A}}{n_{B}}=\frac{n_{A}+n_{B}-n_{B}}{n_{B}}=\frac{n_{A}}{n-n_{A}} \\
\frac{n_{A}}{n_{B}}=\frac{\frac{n_{A}}{n}}{1-\frac{n_{A}}{n}}=\frac{\sigma}{1-\sigma} & \frac{n_{A}}{n_{B}}=\frac{\sigma}{1-\sigma}=\frac{\frac{v}{t+v}}{1-\frac{v}{t+v}}=\frac{\frac{v}{t+v}}{\frac{t+v-v}{t+v}}
\end{array}
$$

- we finally get $\frac{n_{A}}{n_{B}}=\frac{\sigma}{(1-\sigma)}=\frac{v}{t}$

$$
\frac{n_{A}}{n_{B}}=\frac{\sigma}{(1-\sigma)}=\frac{v}{t}
$$

- in steady state the ratio between "new" and "old" goods is an increasing function of innovation rate and imitation lag.
- Because relative wage depends on the "new" and "old" goods ratio, "it is an increasing function of innovation rate and imitation lag too.
- International trade pattern does not change and A keep exporting "new" product.

