The Krugman model of international trade with process innovation

Model assumptions

- Countries and goods can be ranked according to their technological level
- An "advanced" country has technological advantages in the production of high-tech goods
- A "TECHNOLOGIC FRONTIER" defines the"state of the art" of technology
- Industries are characterized by different speed of introduction of technological progress
- Industries ranking is stable and is measured on the basis of their time distance from the frontier
- Labour is the only factor of production

Two countries model (I e 2)

the labour requirement in production of good z in country paese i is:

$$
a_{i}(z) \quad i=1,2
$$

$a^{*}(z)$ is the "best" (lower) labour requirement in production of good z (it defines the"best technology")
labour input (hours) required by the "best technology" continuously decreases through time

$$
a^{*}(z)=\exp \left[-g_{z} t\right]=e^{-g_{z} t} \quad[e=2,71828]
$$

g_{z} is the growth rate of technological progress in industry Z

Each country has a time lag τ with respect to the frontier:

$$
a_{1}(z)=\exp \left[-g_{z}\left(t-\tau_{1}\right)\right]
$$

If country 2 has a technological lag with respect to country I, then: $\tau_{2}>\tau_{1}$

Country I is more efficient in every industry
Productivity advantage is equal to:

$$
\begin{gathered}
\frac{a_{2}(z)}{a_{1}(z)}=\frac{\exp \left[-g_{z}\left(t-\tau_{2}\right)\right]}{\exp \left[-g_{z}\left(t-\tau_{1}\right)\right]}=\exp \left[-g_{z}\left(t-\tau_{2}\right)+g_{z}\left(t-\tau_{1}\right)\right] \\
\frac{a_{2}(z)}{a_{1}(z)}=\exp \left[g_{z}\left(\tau_{2}-\tau_{1}\right)\right]
\end{gathered}
$$

Productivity advantage is increasing in g_{z}

Consumers' demand is identical in the two countries In a continuum of goods ranked in decreasing order of technological efficiency, country i productivity advantage is given by

$$
A(z)=\frac{a_{2}(z)}{a_{1}(z)} \quad A_{z}^{\prime}>0
$$

\bar{z} is the good for which production cost is the same in the two countries I and 2

$$
\begin{aligned}
& w_{1} a_{1}(z)=w_{2} a_{2}(z) \\
& \frac{w_{1}}{w_{2}}=\frac{a_{2}(z)}{a_{1}(z)}=A(\bar{z})
\end{aligned}
$$

Goods $z<\bar{z}$ are produced (are cheaper) in 2
Goods $z>\bar{z}$ are produced (are cheaper) in I

The income share S spent in purchases of goods of country 2 grows with the range of good that are produced in that country:

$$
S=S(\bar{z}) \quad S^{\prime}>0
$$

S is the income share of countries I and 2 spent buying goods of country 2

In equilibrium, the output value of country 2 is equal to world demand:

$$
\begin{aligned}
& w_{1} L_{1} S(\bar{z})+w_{2} L_{2} S(\bar{z})=w_{2} L_{2} \\
& w_{1} L_{1} S(\bar{z})=w_{2} L_{2}[1-S(\bar{z})]
\end{aligned}
$$

If $W=w_{1} / w_{2}$ is relative wage, then

$$
W=\frac{L_{2}}{L_{1}} \frac{1-S(\bar{z})}{S(\bar{z})} \quad \frac{d W}{d \bar{z}}=\frac{L_{2}}{L_{2}} \cdot \frac{-S^{\prime}(\bar{z})}{[S(\bar{z})]^{2}}<0
$$

Effects of "technological gap" changes

We use a logarithmic version of the model:
"Gap" increases "Gap" decreases

- When country i increases its technological advantage, the range of goods produced in country i enlarges
- Relative wages increases too but less than the productivity gap
- If "gap" reduces (catching-up), then we have opposite conclusions.

