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1 Introduction

How much should a firm anticipate investment in a project if, once the project has been

entered1, the firm will enjoy a form of cash flow insurance? The form of insurance I

consider is an improvement of the operating cash flows from the project whenever business

conditions deteriorate. Deteriorated business conditions are described by the project’s

value hitting a certain lower threshold. I carry out the analysis within the model of

investment under uncertainty in McDonald and Siegel (1986), as reviewed in Dixit and

Pindyck (1994) pp. 136-161. Such a model represents a classic bridge between real option

theory and perpetual American option theory. I employ a double barrier contingent claims

technique2 to handle the free upper boundary for immediate investment as well as the lower

threshold that triggers the improvement of the operating cash flows. My analysis shows

that the major forces that drive anticipated investment are strong volatility in the project’s

value, project-value closeness to the lower threshold, and scarce status-quo operating cash

flows.

The work is organized as follows. Section 2 introduces the investment problem with

cash flow improvement. Section 3 looks at its dynamic programming formulation. Section

4 solves the problem by contingent claims analysis. Section 5 discusses the characteristics

of the optimal investment rule. Section 6 concludes.
1For problems considering a firm that already enetered the project and faces a sequence of investment

opportunities in project-technology innovations, see Grenadier and Weiss (1997).
2Sbuelz (2004) considers a different double barrier real option problem. He studies how much a firm

will postpone investment if, under deteriorated business conditions, the sunk cost for accessing the project

will decrease.
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2 Investment under uncertainty with cash flow improve-

ment

For a project with present value V , I consider the following problem: At what critical level

V ∗ of the project’s value is it optimal to pay the sunk cost I in return for the project’s

value itself, given that, as a fraction of the project’s value, the operating cash flows over

an infinitesimal time period dt will improve from δ ·dt to α ·δ ·dt, α ∈ [100%,∞), whenever

V drops to a lower threshold L? The improvement of the project’s operating cash flows

is assumed to occur at a threshold that returns a negative net present value (L < I).

The potential improvement of the project’s operating cash flows is expressed by means

of payout-rate switching. I assume that stochastic changes in V are spanned by existing

traded assets of the economy. The spanning assumption will make the analysis akin to the

treatment of perpetual American options. V evolves according to the following geometric

Brownian motion (under the equivalent martingale measure):

dV = (r − δ) V dt + σV dz,

where r is the riskfree rate, δ is the status-quo payout rate, σ is the volatility rate, and dz

is the increment of a Wiener process. The value of the option to invest is F (V ). It is the

opportunity cost of investing now rather than waiting. Fno-switch (V ) is the value of the

option to invest in the absence of payout-rate switching.
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3 The dynamic programming problem

In the absence of any payout-rate switching, the firm is back to the McDonald and Siegel

(1986) benchmark case. The benchmark critical value V ∗ is

V ∗ =
β1

β1 − 1
I,

β1 =
1
2
− (r − δ)

σ2
+

√[
(r − δ)

σ2
− 1

2

]2

+
2r

σ2
> 1,

and the firm’s option to invest has the benchmark value

Fno-switch (V ) = E [
e−rTV ∗ | V ]

(V ∗ − I) 1{V≤V ∗} + (V − I) 1{V ∗<V },

E [
e−rTV ∗ | V ]

=
(

V

V ∗

)β1

.

E [· | V ] is the conditional expectation given the project’s present value V . E [
e−rTV ∗ | V ]

is the value of an American single barrier digital claim written on the project’s value:

One unit of numeraire is paid as soon as the project’s value hits the level V ∗. Since the

project’s value is spanned, the value of claims written on it is also spanned.

The Bellman equation for the payout-rate-switching problem is

F (V ) = max { max {V − I, 0} , exp (−rdt) E [F (V ) + dF | V ] } ,

with conditions,
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F
(
V ∗) = V ∗ − I, (Value Matching Condition)

d
dV F |V =V ∗ = d

dV (V − I) |V =V ∗ = 1, (Smooth Pasting Condition)

F (L) = E [
e−rTV ∗,α | L]

(V ∗,α − I) , (Payout-Rate Switching Condition)

where

V ∗,α =
β1 (α)

β1 (α)− 1
I,

β1 (α) =
1
2
− (r − αδ)

σ2
+

√[
(r − αδ)

σ2
− 1

2

]2

+
2r

σ2
> 1,

In the region {V : V ∈ (0, L)} the payout rate has already switched to the higher level αδ.

There, the option value is

F (V ) = E [
e−rTV ∗,α | V ]

(V ∗,α − I) .

4 Solution by contingent claims analysis

In the region
{
V : V ∈ [L, V ∗)

}
there is no immediate investment. Thus, the Bellman

equation boils down to the Black-Scholes Differential Equation (DE):

E [dF | V ] = F (V ) rdt.

The value of any spanned contingent claim satisfies the Black-Scholes DE: In risk-adjusted

expectation, the percentage increase in the spanned claim value must equal the claim’s

percentage cost of carry. Since the operator E [dF | V ] is linear, any linear combination
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of spanned contingent claim values does satisfy the Black-Scholes DE. The boundary

conditions introduce the free upper boundary V ∗ as well as the lower threshold L so that

the firm is facing a double barrier problem. An educated guess suggests the use of a linear

combination of American double barrier digital claims to build up the candidate solution.

The values of the relevant American double barrier digitals are (see, for example, Geman

and Yor (1996) and Lin (1998)):

E
[
e−rT

V ∗1{T
V ∗<TL} | V

]
=

(V )β1 (L)β2 − (V )β2 (L)β1

(
V ∗)β1 (L)β2 − (

V ∗)β2 (L)β1
,

E
[
e−rTL1{TL<T

V ∗} | V
]

=
(V )β2

(
V ∗)β1 − (V )β1

(
V ∗)β2

(
V ∗)β1 (L)β2 − (

V ∗)β2 (L)β1
,

β2 =
1
2
− (r − δ)

σ2
−

√[
(r − δ)

σ2
− 1

2

]2

+
2r

σ2
< 0.

The candidate solution G (V ),

G (V ) = E
[
e−rT

V ∗1{T
V ∗<TL} | V

] (
V ∗ − I

)

+E
[
e−rTL1{TL<T

V ∗} | V
]
E [

e−rTV ∗,α | L]
(V ∗,α − I) ,

satisfies by construction the Black-Scholes DE, the Value Matching Condition at the free

boundary V ∗, and the Payout-Rate Switching Condition at the lower boundary L. The

only condition left out is the Smooth Pasting Condition.
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I force G (V ) to fulfill the Smooth Pasting Condition to generate a restriction that pins

down the critical value 3 V ∗:

d

dV
G|V =V ∗ =

d

dV
(V − I) |V =V ∗ = 1.

5 Characteristics of the optimal investment rule

I here examine the characteristics of the optimal investment rule and the value of the

option to invest. In picking the parameter values, I rely on the classic calibration in Dixit

and Pindyck (1994), p. 153. Unless otherwise noted, in what follows I set the cost of the

investment, I, equal to 1, the riskfree rate r = 4%, the status-quo payout rate δ = 4%,

and the volatility rate σ = 20% (at annual rates). Given these parameter values, the

benchmark critical value V ∗ is equal to 2I = 2. If payout-rate switching is ruled out,

V must be at least twice as large as the cost I before the firm should invest. Consider

now a non-zero chance of a non-trivial payout-rate switch with parameters L = 0.75 and

α = 500%. If the project’s value drops down to 3/4 of the cost of undertaking it, the

project’s payout rate improves to go from its status-quo level to the new level of 20%. For

these payout-rate-switching parameters, the critical value V ∗ is equal to 1.89 = 1.89I. V

must be less than twice as large as the status-quo cost I before the firm should invest. This

anticipation of investment is driven by the fact that the chance of improving operating

cash flows is greater if the firm enters the project at a critical value that is closer to L

than the benchmark critical value V ∗ is. Figure 1 shows that L’s proximity (L → I = 1)
3Such a numerical computation of the critical value is easily performed in the Mathematica software

because of G (V )’s analytic nature.
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forces strong anticipation of investment.

As Figure 1 also shows, the sensitivities of the critical value to the project’s value

parameters have the same sign as the sensitivities of the benchmark critical value V ∗ (cf.

Dixit and Pindyck (1994) pp. 152-161). The joint inspection of Figures 1, 2, 3, and 4 bears

two considerations on the difference between the payout–rate-switching case with respect

to the benchmark case. A high volatility rate σ does make a difference in the critical

values. Such a significant anticipation of investment translates into an option value that

is lower than the benchmark option value in a wide region of present values of the project.

The result is driven by current-value propagation of a future riskier convex payoff and

by the fact that, for any σ, the option value Fno-switch (L) with δ = 4% is greater than

Fno-switch (L) with αδ = 20%. A high riskfree rate r does not make a strong difference in

the critical values. The ensuing anticipation of investment translates into an option value

that is lower than the benchmark option value in a confined region of present values of

the project - the region between 0 and levels above but not far from L. The option value

Fno-switch (L) with δ = 4% is greater than Fno-switch (L) with αδ = 20% (and even more so

as r increases) but, given V > L, the chance of payout-rate switching dims as the cost of

carrying the project is pushed up by an increasing r. A high status-quo payout rate δ pulls

down both critical values and stimulates early investment in any case, thus leaving no room

for much difference. By contrast, a low status-quo payout rate δ does create a non-trivial

difference in the critical values, as the prospect of a potential improvement of the scarse

status-quo cash flows encourages anticipated investment. Figure 5 shows how a higher α

magnifies the differences between the option values F (V ) and Fno-switch (V ). For example,
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a substantial improvement of the operating cash flows (α = 2000%) halves the value of

the option of waiting to invest, on average, in the project-value region corresponding to

V ∈ (L = 0.75, I = 1) - this is achieved by pulling down the critical value V ∗ to the level

1.83 = 1.83I.

6 Conclusions

How should a firm adjust the optimal timing of investment in a given project in the

presence of potential project-technology switching? Sbuelz (2004) shows how investment-

technology switching - the sunk cost for entering the project drops - induces postponement

of investment. The present paper shows how the project-technolgy switching that takes

the form of an improvement of the project’s operating cash flows leads to anticipation of

investment. The firm is willing to have early access to the project because the potential

improvement in cash will yield benefits only once the firm has entered the project. An-

ticipation of investment is mainly driven by strong volatility in the project’s value, by

project-value closeness to the threshold that triggers project-technology switching, and by

scarce status-quo operating cash flows. The limitations of the analysis are the assumption

of an exogenous costless payout-rate improvement and the absence of industry equilib-

rium considerations. Addressing these two points makes an interesting agenda for future

research.
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Figure 1: The critical value V ∗ versus the ratio α of new payout rate to status-
quo payout rate

If not changed, these are the parameter values: The investment cost is I = 1; The
riskfree rate is r = 4%; The status-quo payout rate is δ = 4%; The project-value volatility
is σ = 20%; The lower threshold that triggers payout-rate switching is L = 0.75.
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Figure 2: The investment-option value F (V ): The effect of the ratio α of new
payout rate to status-quo payout rate

These are the parameter values: The investment cost is I = 1; The riskfree rate is r = 4%;
The status-quo payout rate is δ = 4%; The project-value volatility is σ = 20%; The lower
threshold that triggers payout-rate switching is L = 0.75.
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Figure 3: The investment-option value F (V ): The effect of the status-quo
payout rate δ

These are the parameter values: The investment cost is I = 1; The riskfree rate is r = 4%;
The ratio of new payout rate to status-quo payout rate is α = 500%; The project-value
volatility is σ = 20%; The lower threshold that triggers payout-rate switching is L = 0.75.
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Figure 4: The investment-option value F (V ): The effect of the riskfree rate r

These are the parameter values: The investment cost is I = 1; The status-quo payout
rate is δ = 4%; The ratio of new payout rate to status-quo payout rate is α = 500%;
The project-value volatility is σ = 20%; The lower threshold that triggers payout-rate
switching is L = 0.75.
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Figure 5: The investment-option value F (V ): The effect of the project-value
volatility σ

These are the parameter values: The investment cost is I = 1; The riskfree rate is r = 4%;
The status-quo payout rate is δ = 4%; The ratio of new payout rate to status-quo payout
rate is α = 500%; The lower threshold that triggers payout-rate switching is L = 0.75.
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