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1 Introduction

Structural models of credit risk use option pricing theory to provide a fundamental framework

for valuing the default risk inherent in corporate debt and related derivatives. A typical element

of such models is the recovery form which specifies the way of valuing payments to bondholders

when default occurs. One form, Recovery of Face Value at Default (RFV) means receiving the

same fractional recovery of par at default for bonds of the same issuer and seniority, regardless of

remaining maturity. RFV is a direct consequence of the debt acceleration clause in typical bond

indentures. The claim acceleration clause implies that, at default, the principal amount and the

accrued interest of the bonds outstanding is immediately payable1. RFV is also in line with US

bankruptcy law. The stage of the Chapter 11 process that most directly affects the relative recovery

values of bonds within the same class is the classification of claims as proposed in the reorganization

plan. Only substantially similar claims can be put into the same class, so that same-seniority claims

are very likely to be grouped in the same class. Yet within the same class no specific provisions

are made for dealing with the bond-specific contractual details such as the maturity or coupon.

Credit derivatives market participants generally assume RFV for pricing derivative contracts or

for implementing capital structure arbitrage trades using proprietary models.

A case-study example of RFV is found in Table I and Figure 1 for Worldcom Incorporated2.

We see that in the period leading up to the initial default event same seniority bond prices converge

to similar values. In particular, short-dated bonds suffer comparatively more than longer maturity

bonds. When Worldcom reveals the initial bad news of accounting irregularities on 26 June 2002

the price quote of the shortest dated bond, maturing on 15 May 2003, declines in value from 68.5

to 14 per 100 face value; at the same time the price of the bond maturing on 15 May 2031 goes

from 38 to 11.25. When Worldcom eventually files for Chapter 11 bankruptcy protection on 21

July 2002, both bonds are quoted at 13.25.

RFV is consistent with bond indenture language, US bankruptcy law, and defaulted bond

values, and yet it is notable that RFV is not the typical recovery form assumption in the research

of structural models of credit risk3. In recent years, the appeal of structural models has been
1The accrued interest is also immediately payable but it is dwarfed by comparison with the principal amount.
2Guha (2002) describes the data used in this example.
3Starting with the seminal Merton (1974) model, Eom, Helwege, and Huang (2004) empirically test a wide range

of such models, none which are consistent with RFV. Likewise, Huang and Huang (2003) do not consider RFV

in finding that credit spread underestimation is a robust characteristic across many structural credit risk models.

Ericsson and Reneby (2002) use RFV to price individual bonds without providing any justification. Since their

focus is on evaluating their model’s ability to predict yield spread levels and changes out-of-sample, the recovery

form used and its implications for bond price sensitivities are not discussed.
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revived by their ability of establishing a direct link between credit risk and capital structure,

thus enabling important applications like equity-based credit risk management. We explore the

consequences of incorporating RFV into a parsimonious structural credit risk model for the pricing

and hedging of individual corporate bonds. Following the subset of models derived from Black and

Cox (1976), model parsimony leads us to consider default as defined by the first time that a firm’s

asset value hits some exogenous boundary4. We find that RFV can help explain and quantify

important stylized facts about the relationship between credit risk and default-free interest rates

which other typical recovery forms cannot. RFV provides a simple explanation for both i) the low

empirical duration of high-yield bonds and ii) the decreasing sensitivity of corporate credit spreads

to interest rates as issuer credit quality declines. We also show that the recovery form interacts

with the default-free term structure (level and slope) in determining model credit spreads. Since

the level and slope of the default-free term structure changes through time, the employed recovery

form affects the empirical validation of the model by influencing the model prediction errors.

It has been documented (e.g., Cornell and Green (1991)) that high-yield corporate bond prices

have much lower sensitivity to default-free rates (i.e. modified duration) than what their promised

cash flows imply. RFV explains that phenomenon with the fact that the bond investor receives

a recovery claim at the time of default whose value is independent from default-free rates. Since

participants in the high-yield market widely acknowledge that default-free rate sensitivities of

high-yield bonds is not what their promised cash flows imply, RFV can be used in applications for

hedging the interest rate risk embedded in individual credit-sensitive instruments and portfolios

of such securities. We show how RFV contributes to a more informed investment management

process by producing a clean measurement of the portion of promised-cashflows duration of an

individual high-yield bond.

Duration and credit spread sensitivity to default-free interest rates are related. If duration

is low, then credit spread sensitivity must be quite negative. This fact is a straightforward but

powerful implication of the chain rule in calculating the derivative of the defaultable bond price

with respect to the default-free rate. By implying a low duration of high-yield bonds, RFV also

explains the decreasing sensitivity of corporate credit spreads to default-free interest rates as issuer
4Endogenous-boundary models also stem from Black and Cox (1976) (see for example Leland (1994), Leland and

Toft (1996), and Acharya and Carpenter (2002)) but they are problematic for the study of the implications of the

recovery form assumption. In these models, the recovery amount for the single bondholders is not specified as it is

not the object of interest (Ericsson and Reneby (2002) are an exception). Due to the firm deciding default, the total

amount recovered by the sum of all debtholders is not a primitive. It is difficult to distinguish the acts of the firm’s

choice of default time from the acts of the recovery form assumption. Davydenko (2005) empirically examines the

default boundary using a sample of US firms.
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credit quality declines. There is robust empirical evidence that the regression coefficient of the

credit spread changes on the default-free rate changes becomes more negative as credit quality

decreases (see for example Duffee (1998) and Collin-Dufresne, Goldstein, and Martin (2001)).

RFV’s explanation is compellingly simple: the promised yield of low-credit-quality bonds is not

affected much by default-free yield changes because bond pricing is dominated by considerations

on the fixed payment at default. For low-credit-quality bonds, an increase in the default-free yield

is nearly offset by a strong decrease of the credit spread, leading to a moderate change in the

promised yield (the sum of the default-free yield and of the credit spread) generated within a RFV

model. Given the increase in the default-free yield, the strength of the RFV credit spread decrease

is enhanced by a constant value of the RFV payment at default.

Previous research never compared recovery forms within structural credit risk models although

we see different embedded assumptions in the literature. The typical recovery form seen in

exogenous-boundary structural credit risk models (for example, in Longstaff and Schwartz (1995),

Cathcart and El-Jahal (1998), Hsu, Saa-Requejo, and Santa-Clara (2002)) is Recovery of Trea-

sury (RT). RT states that, at the time of default, bondholders retrieve a given fraction of the

default-free equivalent of the defaultable bond considered5. The RT payment at default is by con-

struction dependent on default-free yields. We are the first to highlight that RFV and RT have a

strong impact on the default-free interest rate hedging of low-credit-quality bond portfolios. For

low-credit-quality bonds, an increase in the default-free yield is only in part offset by a decrease

of the credit spread, leading to a significant change in the promised yield generated within a RT

model. Given the increase in the default-free yield, the strength of the RT credit spread decrease

is diminished by a dropping present value of the RT payment at default.

There is interaction between the default-free term structure (level and slope) and the recovery

form in determining model credit spreads. If the curve is at the rate level that makes the default-

free equivalent bond trade at par, RFV and RT credit spreads are equal. If the curve is upward

(downward) sloping, RFV credit spreads are lower (higher) than RT credit spreads as the RFV

payment at default is worth more (less) than the RT payment. Since the observed default-free

term structure level and slope changes through time, the dynamics of the difference between the

observed promised yields and the model-based yields is different across recovery forms. We are

the first to point that the difference in the prediction error dynamics across recovery forms is an

important concern in the empirical validation of structural credit risk models.

In the existent literature the comparative effect of the different recovery forms on credit risk
5Collin-Dufresne and Goldstein (2001) describe an exogenous-boundary structural model in which bondholders

receive a fixed fraction of just the face amount at the maturity of the defaultable bond.
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pricing has only been examined in the context of intensity-based models. Duffie and Singleton

(1999), Lando (2004), and Schoenbucher (2003) consider the theoretical pricing effects of RFV

within an intensity-based model. In a detailed empirical study Bakshi, Madan, and Zhang (2002)

compare different recovery forms (with RFV among them) within an intensity-based model using

individual corporate bond price data. Delianedis and Lagnado (2002) and Finkelstein (1999)

compare the effect of recovery form on credit default swap pricing and find that it does matter,

but neither examines this issue within the context of a structural model.

The remainder of the paper proceeds as follows. Section 2 describes RFV and RT within the

basic structural model setup. Section 3 studies interest rate durations generated within RFV and

RT. Section 4 uses the duration results to assess the credit spread sensitivity to the default-free

yield across recovery forms. Section 5 focuses on the interaction between the default-free term

structure and the recovery forms. Section 6 concludes and the Appendix gathers the technical

details.

2 Structural Default Risk and Recovery Forms

We consider the simplest of structural models which can reasonably be applied to coupon-paying

bonds6, a first-passage time model of a firm value process with constant interest rates and a

constant default boundary. This simple and parsimonious model is considered the “base case”

model in Huang and Huang (2003). Several reasons are behind our model choice.

Firstly, Huang and Huang (2003) show that, within the class of structural models, the base

case explains the credit risk component of credit spreads as well as more sophisticated versions of

it. This is suggestive that our results for studying comparative recovery forms under the base case

may hold under more complicated settings. Secondly, the parsimonious base case allows us to fully

concentrate on the comparative effects of the different recovery forms. Lastly, the base case leads

to tractable closed-form solutions which greatly eases our analysis.

The underlying stochastic variable for default risk is the firm asset value process whose dynamics

under the risk-neutral measure is modelled as follows:

dVt = (r − δ) Vtdt + σV VtdzQ
V (1)

where r is the constant default-free interest rate, δ is the assumed constant firm payout rate, and

σV is the assumed constant volatility of firm’s asset value, and zQ
V is a standard Brownian motion

6For this reason we avoid the Merton(1974) model, which can be cumbersome to apply to coupon-paying bonds.
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under the risk-neutral probability measure. Default occurs at the first-passage time τ of V hitting

the constant default boundary, K :

τ ≡ inf
(

u > 0, xu ≡ ln
(

Vu

K

)
= 0

)
(2)

Such a boundary is usually economically justified by the presence of positive net worth or safety

covenants (Black and Cox (1976)). Defining xt as ln Vt

K ,the log of the inverse leverage ratio7, with

positive initial value x0, the risk-neutral cumulative default probability is:

Qt (τ < T ) = N

(−x0 − µ∗(T − t)
σV

√
T − t

)
+ e

− 2µ∗x0
σ2

v N

(−x0 + µ∗(T − t)
σV

√
T − t

)
(3)

where N(·) is the standard normal cumulative distribution function and µ∗ is the risk-neutral drift

for xt: µ∗ ≡ r − δ − σ2
V

2 .

Expressions for defaultable bond prices are straightforward in this simple setting. Our objective

is to compare the implications of the different recovery assumptions. We partition the value of a

defaultable bond with a face value of F maturing at time T paying semi-annual coupons8 at an

annual rate of c into two components: 1) valuation of payments in the states where no default

occurs, and 2) valuation of payments in states where default occurs,

P0,c,T = PND
0,c,T + PD

0,c,T . (4)

The latter portion will vary with the recovery form we choose while the former part is independent

of the recovery value. In other words, the first expression is equal to the value of the bond assuming

a zero recovery value:

PND
0,c,T = D(0, T )F [1−Q0(τ < T )] +

c

2

2T∑

i=1

D(0, Ti/2)
[
1−Q0(τ < Ti/2)

]
(5)

where D(0, Ti/2) is the value of the default-free discount bond maturing at Ti/2, or in this setting:

exp
(−rTi/2

)
. The partitioned value for the default states will depend on the recovery form. In all

cases a constant recovery rate of ω is assumed.

We first present the typical form seen in the literature: RT (see for example Longstaff and

Schwartz (1995)) .

7This interpretation is correct if we assume the level of the default boundary to proxy for the value of total

liabilities of the firm.
8Discount bond prices arise by setting the coupon rate to zero.
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Recovery of Treasury (RT):

PD,RT
0,c,T = ω

[
D(0, T )FQ0(τ < T ) +

c

2

2T∑

i=1

D(0, Ti/2)Q0(τ < Ti/2)

]
. (6)

At default, RT bondholders receive the value of a default-free bond with the same contractual

features of the defaultable bond.

We now consider the RFV case where the debtholder receives a fraction of the face value of the

bond at the default date9.

Recovery of Face Value at Default (RFV):

PD,RFV
0,c,T = EQ

0

[
1{τ<T} exp(−rτ)ωF

]
(7)

We can write this expression as ωF multiplied by today’s value of a unit payment received at

default. This latter term describes the price of an American digital option (see for example Nelken

(1996)):

EQ
0

[
1{τ<T} exp(−rτ)

]
=

[
e
−x0(µ∗+λ)

σ2
v N

(−x0 + λT

σV

√
T

)
+ e

−x0(µ∗−λ)
σ2

v N

(−x0 − λT

σV

√
T

)]
(8)

where λ ≡
√

µ2∗ + 2σ2
V r.

We make use of American digitals as a modelling vehicle for a recovery form10 supported by

defaulted bond price data, bond indentures, and bankruptcy code language.

For choosing the parameters which do not vary across credit quality we refer to Huang and

Huang (2003). These include the constant interest rate r(8.00%), the constant payout rate

δ(6.00%), the default boundary K, assumed to be 60% of the firm’s total liabilities; and an ex-

pected recovery rate ω of 51.31%. For the parameters which would likely vary across credit quality
9In the more general form of RFV any accrued interest on the last coupon payment prior to default should be

included in the recovery payment if stipulated as such in the bond indenture. We ignore this feature in our analysis.
10American digitals have been applied before for corporate bond pricing by Black and Cox (1976), Leland and

Toft (1996), and Ericsson and Reneby (2002). They study the value-maximizing decisions of the firm manager. It

is difficult to distinguish the acts of the maximizing assumption from the acts of the recovery form assumption.

6



we use mean estimates from Davydenko and Strebulaev (2002)11. These include the leverage ra-

tio, as measured by the book value of total liabilities divided by the sum of the book value of

total liabilities and the market value of equity, and the asset value volatility. Table II shows their

estimates across the credit rating classes. While the results in absolute terms will depend highly

on our choice of parameters, we are concerned with the relative difference in spreads across the

recovery forms. The choice of assuming a constant recovery rate ω across the recovery forms is

deliberate given the purpose of investigating the relative difference in spreads. In applications, the

parameter ω is typically an exogenous input based on historical data.

3 Duration and Recovery Forms

Portfolio managers with investment-grade benchmarks are often allowed out-of-benchmark allo-

cations to high-yield debt. Thus, understanding the effect such allocations have on the overall

portfolio duration is important.

It is widely acknowledged that the default-free rate sensitivity of high-yield securities is not

necessarily what their promised cash flows imply 12. Indeed, it is well known empirically that

the duration of a bond tends to decline as default becomes imminent. For example, Cornell and

Green (1991) show that the empirical duration (i.e., the return realized per unit of yield change)

of low-grade bonds is lower than that for high-grade bonds and suggest that this may be partly

due to the fact that coupons are higher for low-grade bonds13.

We show that the recovery form assumed in a parsimonious structural credit risk model deeply

affects the model sensitivities to default-free rates. Our results quantify the intuition that, due

to differences in default-free-rate dependence of the cash flow payments across the recovery forms,

different default-free rate sensitivities are produced by each recovery form. We consider two model
11In Huang and Huang(2003) the asset volatility parameter is calibrated to match the data, and thus vary for

different maturities. While we could use their data on leverage ratios for the different credit rating classes, we decide

to take these two parameters from a consistent source.
12Many claim that high-yield debt exhibits rather equity-like behavior (see for example Campi and Sbuelz (2005),

Campi, Polbennikov, and Sbuelz (2005), and Vassalou and Xing (2004).
13Dynkin, Hyman, and Konstantinovsky (2004) confirm this finding with recent daily data over the period: August

1998- September 2004. They regress daily price returns of whole-letter-grade components of the Lehman Investment-

Grade and High-Yield Credit indices against daily changes in the 10-year U.S. Treasury yield. The (negative of

the) regression coefficients can be interpreted as empirical durations. These are compared to the classical modified

durations (as defined in this section, that is, as the negative semi-elasticity of the model bond price with respect to

its promised yield) for each index over the same period. In higher quality bonds, the empirical durations are almost

identical to classical modified durations; for lower quality bonds, the empirical durations become much smaller than

the classical modified durations.
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sensitivity measures: 1) the derivative of the model bond price with respect to the default-free rate:
∂P j

0,c,T

∂r , and 2) the negative semi-elasticity of the model bond price with respect to the default-free

interest rate, or the model modified duration:

Durj
0,c,T ≡ − 1

P j
0,c,T

∂P j
0,c,T

∂r
(9)

for j = {RT, RFV }. The classical modified duration is the negative semi-elasticity of the model

bond price with respect to its promised yield. Given the following notation,

pW = price of corporate bond W ,

yW = promised yield of bond W ,

y = default-free equivalent bond yield,

sW = yW − y (credit spread),

where y equals r in a flat term structure of default-free rates, modified duration and classical

modified duration are related by this simple but important equation:

1
pW

dpW

dy
=

1
pW

dpW

dyW
·
(

1 +
dsW

dy

)
, (10)

that is,

modified durationW = classical modified durationW

· (1 + spread sensitivity to rates) .

For investment-grade credit quality the sensitivities are essentially the same across all recovery

forms due to default being an unlikely event. However, as the credit quality decreases the sensitivity

as implied by the two recovery forms diverge. When default is close, bondholders expect to receive

imminently the recovery payment specified by the recovery form. Bondholders receive a fixed
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payoff at default under RFV, whereas they receive a default-free-rate-dependent payoff (a fraction

of the default-free equivalent bond price) under RT. As asset volatility and leverage increase, the

modified duration of an RFV bond decreases substantially more than RT. Hence, structural RFV

is able to match the stylized fact that empirical durations for low-grade bonds are quite low.

The explanation is simple: RFV specifies a default-free-rate-insensitive payoff at default. Our

parsimonious structural model quantifies how much weaker the default-free-rate sensitivity of low-

grade bond prices is under RFV than under RT. Figure 2 plots the derivative against maturity

for a hypothetical speculative-grade (B-rated) bond. The coupon rate is chosen to be equal to

the default-free rate (8.00%). The same plot in terms of the model modified duration is shown

in Figure 3. The RT form has a significantly more negative sensitivity to default-free rates and a

considerably higher modified duration. For example, in the 30-year maturity case the RT modified

duration is 8.69 while the RFV modified duration is 5.32. An important point here is that the

coupon in these figures is equal to the default-free rate so that RFV and RT corporate bond

model prices are the same. If c ' 8%, RT generates a par bond value at default so that RT and

RFV generate very similar credit spreads. Thus, given identical prices14, sensitivities still differ:

Structural RFV has robust and profound implications for interest rate risk hedging.

Another way of looking at the practical importance of strucural RFV is with reference to this

question: Which fraction of classical modified duration should one hedge for high-yield bonds?

This is a relevant question for portfolio managers who seem to apply a rule of thumb of hedging

about 50% of the classical modified duration. In Figure 4 we plot model modified durations of

A-rated and B-rated bonds against classical modified durations for both the RT and RFV recovery

forms. Figure 4 shows that RFV-based hedging of medium to long-term high-yield bonds implies

considering only a small (about 50%) fraction of the classical modified duration of those bonds, in

line with prevalent market practice.

4 Spread-Rate Slope and Recovery Forms

As shown in Equation 10, there is a link between duration and the sensitivities of credit spreads

to the default-free rate. Such sensitivities are the slope coefficients in the regressions of changes

in corporate yield spreads on changes in Treasury bond rates performed by Duffee (1998) and by

Collin-Dufresne, Goldstein, and Martin (2001).

14Identical prices can obtained for example by ad-hoc calibration of the recovery rate parameter across different

recovery forms.
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Duffee (1998) considers monthly data (January 1985 through March 1995) for noncallable bonds

issued by US industrial, utility, and financial firms, and performs regressions by rating group in

which the effect of the default-free term structure slope is controlled for. He finds that corporate

bond yield spreads move inversely with short default-free rates (the 3-month Treasury yield) and

that the inverse relation is stronger for lower-quality bonds. Collin-Dufresne, Goldstein, and

Martin (2001) consider monthly data (July 1988 through December 1997) for noncallable bonds

issued by US industrial firms, and perform regressions by leverage as well as by rating group in

which they control for the effect of several structural model determinants of credit spread changes

(including the default-free term structure slope). Consistent with the empirical findings of Duffee

(1998), they find that an increase in the default-free rate (the 10-year Benchmark Treasury yield)

lowers the credit spread for all bonds. Furthermore, the sensitivity to default-free rates increases

monotonically across both leverage and rating groups15.

In summary, there is robust empirical evidence that the regression coefficient of the credit

spread changes on the default-free rate level changes becomes more negative as credit quality

decreases. Collin-Dufresne, Goldstein, and Martin (2001) explain this finding by noting that an

increase in asset value drift decreases the risk-neutral probability of default, and that the closer

firms are to their default threshold, the more sensitive they are to this change. In Leland and

Toft (1996) and Acharya and Carpenter (2002) the empirical evidence is matched by relaxing the

assumption of an exogenous boundary at default.

We emphasize a recovery-form-based explanation that, together with the drift-based and endogenous-

default-based arguments, can greatly help to understand the empirical spread-rate slope across

rating groups. We start by rearranging Equation 10 to note that spread-rate slope is related to

duration (see also Acharya and Carpenter (2002), Equation 19, p. 1370):

dsW

dy
=

dpW /pW

dy

dpW /pW

dyW

− 1

=
modified durationW

classical modified durationW
− 1 .

If modified duration is low, then credit spread sensitivity dsW

dy must be quite negative. As we

have shown in the previous section, RFV modified duration is low when default is imminent,
15Dynkin, Hyman, and Konstantinovsky (2004) focus on more recent daily data and find similar results in per-

forming regressions by rating group on 10-year Treasury yield changes.
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because bondholders expect to soon receive a default-free-rate-insensitive payoff. It follows that,

under RFV, credit spread sensitivity to default-free rates becomes more negative as credit quality

decreases. This is not the case under recovery forms that specify a default-free-rate-sensitive payoff

at default.

This point is best highlighted by the plot in Figure 5. It plots the model credit spread sensitivity

to default-free rates versus Moody’s rating groups (the range is B through Aaa) for a generic 8.00%

coupon 20-year bond using both the RFV and RT recovery forms-the default-free term structure

is flat at the 8.00% rate and constant. In Figure 5 we also report the slope coefficients in the

regressions of changes in long-dated (more than 12 years to maturity) corporate yield spreads on

changes in the 10-year Benchmark Treasury yields performed by Collin-Dufresne, Goldstein, and

Martin (2001) across the same rating groups (see the fifth row in their Table III, Panel C, p. 2189).

RFV sensitivities return a close match of the shape of the empirical spread-rate slope curve. This

is especially true for the low-credit-grade area: RFV is able to reproduce the sharp increase in

slope magnitude from the the Ba grade to the B grade as the model sensitivity level goes from

-24% to -43%. For low-grade bonds, the striking evidence in Figure 5 is that a simple structural

RFV model predicts spread-rate slope levels that are very similar with those observed empirically.

A conclusion from such graphical evidence is that typical recovery forms in exogenous-default

structural models rather than exogeneity itself may be the real target of criticism as far as the

spread-rate slope pattern is concerned.

5 Spreads, Default-Free Term Structure, and Recovery Forms

The vast majority of corporate bonds pay coupons. For coupon bonds we compare credit spreads

generated by different recovery forms using the base case model. This is done across credit rating

classes and various maturities.

We consider a hypothetical semiannual coupon-paying bond under three different annual coupon

rate scenarios with the constant interest rate fixed at 8.00% : 1) 8.00% (par bond)16, 2) 12.00%

(premium bond), and 3) 4.50% (discount bond).

Results are found in Table III for 6 different credit rating classes and three maturities (2, 10,

and 30-year). In the top three credit rating classes (Aaa, Aa, A) the recovery form does not make

much difference. This follows from default being an extremely unlikely event. Relative to the RT
16Of course the defaultable bonds would not be trading at par due to default risk, however we use the terminology

to distinguish among the other cases.
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case, RFV spreads can be larger or smaller depending on whether the bonds are at a premium

or discount: if c > 8%, RT generates a premium bond value at default so that RT yields a lower

spread than RFV does and viceversa if c < 8%. If c ' 8%, RT generates a par bond value at

default so that RT and RFV generate a very similar spread. Indeed, in the par bond case RFV and

RT are virtually the same17. In the lowest three credit rating classes (Baa, Ba, B) the recovery

form does make a significant difference. For high coupon bonds we see that the RFV assumption

can noticeably produce larger spreads versus the RT case, especially as the credit rating worsens

and the maturity increases. For the 10-year maturity B-rated premium bond RFV produces a

spread of 387 bps versus 320 bps for the RT case.

How do the different recovery forms affect pricing in the presence of stochastic default-free

interest rates possibly correlated with the default process? In answering to this question we use

a default-free term structure model that enjoys the following three properties: 1) It enables the

examination of how different initial default-free yield curve shapes can affect credit risk pricing

across the different recovery forms; 2) It models the empirical evidence of a negative relationship

between default-free interest rate levels and credit spreads (e.g. Duffee (1998) and Collin-Dufresne,

Goldstein, and Martin (2001)); 3) It has multifactor dynamics as advocated by a vast majority of

the empirical fixed-income literature.

We consider a simple two-factor admissible affine term structure model (see Dai and Singleton

(2000) ). The short rate path r(t) is assumed as the sum of two stochastic factors, l(t) and s(t),

and a deterministic factor g(t). The dynamic system of equations, under the risk-neutral measure,

is

dl(t) = −κll(t)dt + σldzQ
l (11)

ds(t) = −κss(t)dt + σsdzQ
s

r(t) = g(t) + l(t) + s(t)

where E(dzQ
l dzQ

s ) = ρlsdt, E(dzQ
l dzQ

V ) = ρlV dt, E(dzQ
s dzQ

V ) = ρsV dt and the initial values of both

l and s are equal to zero. By making the deterministic term, g(t), time dependent we can calibrate

the model to the initial yield curve. A full description of this particular specification as well its

solution and calibration procedure can be found in the Appendix.
17In the Huang and Huang (2003) paper the authors assume a coupon of 8.162% in their calibration exercises.

This corresponds to a par coupon if yields are computed assuming semiannually compounding. Therefore, although

they price bonds in their base case using a RT assumption, their RT bond prices approximate RFV bond prices

(but not sensitivities).
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Implementing the model requires values for the parameters which are assumed constant. In

two-factor Gaussian models as the one described, typically one factor can be thought of as the

interest rate level factor while the other factor can be interpreted as a slope factor. The level

factor is likely the one with a considerably smaller reversion parameter value, indeed usually close

to zero. Using the estimates of Brown and Schaefer (2000) from US Treasury STRIP data we set

the reversion parameters κl = 0.0393 and κs = 0.2060, thus considering l(t) as the level factor and

s(t) the slope factor. For the volatility parameters we set σl = 0.010 and σs = 0.015, values found in

both Brown and Schaefer (1994) and He (2000). We set the term structure correlation parameter,

ρls, equal to −0.336 as estimated by Brown and Schaefer (2000). Using our own estimates from a

subset of companies and relevant interest rate data we set ρlV = −0.15 and ρsV = 0.00. Ideally we

would like these latter correlation parameters to vary by credit rating, but given the size of data

which the estimates would have been taken from we consider only one value.

We price defaultable bonds by jointly simulating the firm value process found in (1) and the

interest factor processes. The two different recovery forms (RT and RFV) are taken into account

when determining cash flows path by path. Details of the simulation procedure and the appropriate

techniques used for reducing pricing bias are discussed in the Appendix. We examine 4 different

initial default-free curve shapes in terms of the instantaneous forward rate across different matu-

rities: 1) flat curve; 2) upward-sloping curve; 3) humped-shape curve; and 4) downward-sloping

curve. The curves are chosen such that the average forward rate over the first ten years is equal

to 8%, thus comparable to our base case results with a constant interest rate of 8%. Figure 6

plots the 4 different term structure shapes. Details on how the yield curves are produced using

the Nelson and Siegel (1987) methodology is found in the Appendix.

Table IV shows the results in terms of basis point spreads over the default-free promised yield

corresponding to the particular interest rate environment. Given an initial flat default-free curve

the spreads are little unchanged from our base case result with constant interest rates, despite the

fact that the firm value process is correlated with the interest rate process.

For the other three default-free curve shapes the form of the recovery assumption can affect

pricing significantly. This is true even if the coupon rate of the bond is not markedly high or low.

In the upward-sloping default-free yield curve, the default-free yields are: 4.67% (2-year), 8.00%

(10-year), and 9.07% (30-year). In such a scenario, higher long-dated interest rates decrease the

recovery value under an RT assumption on a relative basis versus RFV. For the short-dated bond

the RFV spread is slightly higher than the RT spread in the B-rated bond due to the coupon of

the bond considered being at a significant premium. In the medium term bond, while the bond
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coupon rate is the same relative to the default-free yield the RT spread is higher than RFV, by up

to 30 basis points for the B-rated bond.

In the humped-shape default-free curve, the default-free yields are: 9.46% (2-year), 8.25% (10-

year), and 7.74% (30-year). The results in this scenario are similar to the flat curve scenario since

the forward rates assumed flatten out to a constant 7.00% after the humped-shape rise in the early

maturities. The positive difference between the RFV and RT assumptions in the 2 and 10-year

case, even though the hypothetical bond would be a discount coupon bond, can be attributed

to the higher interest rates assumed in the shorter maturities making any immediate recovery

attained in an RFV setting worth relatively less. The difference between the two forms increases

as the maturity increases to 30 years as the bond considered becomes a premium coupon bond.

In the downward-sloping default-free curve, the default-free yields are: 9.59% (2-year), 8.36%

(10-year), and 6.07% (30-year). This scenario generates the opposite effects seen in the upward

sloping scenario: Lower interest rates increase the recovery value under an RT assumption on a

relative basis versus RFV. Indeed, for the medium term bonds RFV produces a slightly higher

spread compared with the RT assumption despite the fact that the bond is at slight discount to

the promised default-free yield. In the case of the 30-year maturity bond the significant premium

of the coupon rate versus the default-free yield (8.00% versus 6.07%) exacerbates the difference

between RFV and RT spreads.

Two observations emerge from our analysis under a stochastic interest rate setting. First,

our base case results, though assuming constant interest rates, are generally robust as long as

the default-free yield curve is not too extensively upward or downward-sloping. As it is visually

evident from comparing the ‘par bond’ columns of credit spreads in Table III with the ‘flat curve’

columns of credit spreads in Table IV, using the closed-form solutions presented earlier can be done

with confidence in defaultable debt analysis in many interest rate environments. Second, while

the coupon premium/discount effect is strong, the default-free curve shape can also affect how the

recovery form influences model credit spreads. Ceteris paribus, in an upward-sloping curve credit

spreads under RT will be higher than RFV credit spreads, while the opposite holds in a downward-

sloping yield curve. This has a clear implication whenever exogenous boundary structural credit

risk models are used for relative valuation and risk management. In addition, these results are

potentially important for researchers doing empirical work with such models. Empirically tests of

such models use individual corporate bond price data and they are often based on the study of the

prediction errors. Understanding the source of these errors is necessary if we would like to improve

on current structural models. However, as these studies are typically done over a long period of
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time, the term structure setting could vary considerably from one period to another. If recovery

forms have an impact on model spreads in a way which depend on both the level and the slope of

the default-free term structure of interest rates, it is possible that conclusions from such studies

may be affected due to the recovery form one is assuming within the model.

6 Conclusion

The recovery form specifies the way of valuing payments to bondholders when default occurs. Under

RFV, bondholders with the same seniority receive the same fraction of par at default regardless of

remaining maturity. Although RFV is consistent with bond indenture language, US bankruptcy

law, and defaulted bond values, it has not been studied yet in the context of structural credit risk

models.

Within a parsimonious structural model we show that RFV explains two important stylized

facts related to hedging high-yield bonds against default-free rate changes: i) low-credit-quality

bonds have low modified durations, and ii) credit spread sensitivity to default-free rates becomes

more negative as credit quality decreases. RFV offers a simple explanation of these two facts.

When default is likely, bondholders focus on what they will get at default and the RFV payment

at default is independent from default-free rates. By contrast, RT, the typical recovery form used

in the literature (it states that bondholders get at default a fraction of the default-free equivalent of

the risky bond) is not able to match the two stylized facts because it assumes a payment at default

that depends negatively on default-free rates. Typical recovery forms in exogenous boundary

structural models rather than exogeneity itself may be the target of criticism for the failure of

explaining the two important stylized facts.

Recovery forms also exert influence on the empirical analysis of structural credit risk models.

There is an interaction between the default-free term structure (level and slope) and recovery form

in determining model credit spreads. If the curve is at the rate level that makes the default-free

equivalent bond trade at par, RFV and RT credit spreads are equal. Given a curve that is centered

at the rate level that makes the default-free equivalent bond trade at par, if the curve is upward

(downward) sloping, RFV credit spreads are lower (higher) than RT credit spreads as the RFV

payment at default is worth more (less) than the RT payment. Since the term structure level

and slope in data are dynamic, the time series of credit spreads predicted across RFV and RT

will be different. In turn, the recovery form plays an important role in the empirical validation of

structural credit risk models.

Our research has direct relevance for the relative valuation and risk management of low-credit
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quality corporate debt and related derivatives. An interesting topic for future research is the

empirical validation of the testable RFV restrictions on pricing and hedge ratios18. Finally, two

important applications of structural RFV can be explored in future research. Firstly, structural

RFV is a natural assumption for convertible bond pricing models, as they necessitate the consid-

eration of structural credit risk. Secondly, while for many firms the promised yield spread can

provide a good approximation for their cost of debt, for firms with a significant probability of

default this can substantially overestimate the expected return on debt19. Structural RFV can be

used to produce a clean measure of the cost of debt from corporate credit spreads.

18See for example Schaefer and Strebulaev (2003).
19See for example Cooper and Davydenko (2004).
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Table I: Worldcom Bonds: Prices Leading up to Bankruptcy

Shown below are the prices of 9 selected Worldcom bonds with final maturity shown. All bonds are senior unsecured

debt. The official initial default event date defined by when Worldcom misses an interest payment is 15 July, 2002.

The Chapter 11 bankruptcy filing occurs on 21 July, 2002. On 26 June, 2002 it became public information that the

firm had concealed $3.9 billion of losses for more than a year.

Bond Maturity 31-Jan-02 28-Feb-02 28-Mar-02 30-Apr-02 31-May-02 18-Jun-02

18-May-03 103.27 99.69 95.62 75 84.5 81

01-Apr-04 103.06 98.50 91.47 60 73.5 70

15-Aug-05 99.22 96.45 86.51 50 57 54.5

15-Jan-06 100.00 97.66 87.40 49 56 53

01-Apr-07 101.96 97.80 86.65 45.5 54 49.5

15-May-10 103.09 101.06 88.83 48 50 47.5

15-May-11 97.68 96.35 83.88 47 49 46.5

15-Aug-28 85.28 82.31 69.66 42 38.5 39

15-May-31 99.05 96.12 80.66 44 43 42

Bond Maturity 21-Jun-02 25-Jun-02 26-Jun-02 27-Jun-02 15-Jul-02 22-Jul-02

18-May-03 75 68.5 14 17 14.25 13.25

01-Apr-04 61.5 57.5 11.5 13.75 14.25 13.25

15-Aug-05 49 46.5 11.5 13.75 14.25 13.25

15-Jan-06 48.5 45 11.5 13 14 13.25

01-Apr-07 45.5 42 11.5 13 14 13.25

15-May-10 44 42 11.25 14 14 13.25

15-May-11 43.5 41 11.5 13.5 14 13.25

15-Aug-28 37.5 36.5 11 14 14 13.25

15-May-31 40 38 11.25 13 14 13.25
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Table II: Parameter Values for Various Credit Grades

The table shows the leverage ratio and asset volatility parameters across credit ratings used for computing model

spreads for representative companies of that particular credit rating. The numbers are taken from Davydenko and

Strebulaev (2002). Parameters used in the model which are invariant across credit rating classes are taken from

Huang and Huang (2003).

Credit Rating Leverage Ratio Asset Vol

Aaa .12 .22

Aa .15 .24

A .29 .24

Baa .36 .25

Ba .45 .28

B .64 .37
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Table III: Recovery Form and Credit Spreads: Constant Interest Rates

Calculated yield spreads are shown in basis points across different credit rating classes for 2, 10, and 30-year

maturities using a first passage defaultable debt model. Parameter assumptions are described in Table II and

Section 2. The hypothetical bond pays a semi-annual coupon at an annual rate of either 8.00% (Par Bond), 12.00%

(Premium Bond), or 4.50% (Discount Bond). The recovery assumptions considered are: 1) Recovery of Treasury

(RT), and 2) Recovery of Face Value (RFV).

Panel A: 2-Year Maturity

Par Bond Premium Bond Discount Bond

RT RFV RT RFV RT RFV

Aaa 0.00 0.00 0.00 0.00 0.00 0.00

Aa 0.00 0.00 0.00 0.00 0.00 0.00

A 0.00 0.00 0.00 0.00 0.00 0.00

Baa 0.05 0.05 0.04 0.04 0.04 0.04

Ba 2.97 3.07 2.91 3.05 3.05 3.08

B 224.73 229.62 221.29 233.33 228.01 226.08

Panel B: 10-Year Maturity

Par Bond Premium Bond Discount Bond

RT RFV RT RFV RT RFV

Aaa 0.07 0.07 0.06 0.07 0.08 0.07

Aa 0.78 0.79 0.70 0.76 0.87 0.83

A 10.58 10.76 9.77 10.78 11.55 10.74

Baa 27.67 28.13 25.94 28.97 29.79 27.12

Ba 83.55 84.90 80.08 91.46 87.82 76.88

B 319.45 324.31 320.14 386.64 318.59 250.63

Panel C: 30-Year Maturity

Par Bond Premium Bond Discount Bond

RT RFV RT RFV RT RFV

Aaa 2.67 2.70 2.39 2.89 3.18 2.35

Aa 8.14 8.22 7.49 9.25 9.33 6.36

A 27.13 27.33 26.01 33.12 29.18 16.94

Baa 46.20 46.50 45.06 58.28 48.30 25.58

Ba 92.70 93.20 92.27 122.54 93.49 42.73

B 249.71 250.76 255.22 364.25 239.21 80.97
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Table IV: Recovery and Credit Spreads: Stochastic Interest Rates

Calculated yield spreads are shown in basis points across different credit rating classes for 2, 10, and 30-year maturities using

the first passage firm value model described in Section 2 combined with the default-free multifactor term structure model

described in Section 5. The parameters for the firm value model are described in Table II while the parameters for the term

structure model are described in Section 5. We consider a hypothetical bond paying a semi-annual coupon at an annual

rate of 8.00%. We consider four different initial interest rate environments as described in the Appendix: 1) Flat Curve,

2)Upward Sloping Curve, 3)Humped Shape Curve, and 4)Downward Sloping Curve. The respective default-free promised

yields for the 2,10, and 30-year maturity bonds under the different environments are: 1)8.00%(2-year), 8.00%(10-year),

8.00%(30-year); 2)4.67%, 8.00%, 9.07%; 3)9.46%, 8.25%, 7.74%; and 4)9.59%, 8.36%, 6.07%. The recovery assumptions

considered are: 1) Recovery of Treasury (RT), and 2) Recovery of Face Value (RFV).

Panel A: 2-Year Maturity

Flat Curve Upward Sloping Humped Shape Downward Sloping

RT RFV RT RFV RT RFV RT RFV

Aaa 0.00 0.00 0.00 0.00 0.03 0.03 0.02 0.02

Aa 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00

A 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.02

Baa 0.00 0.00 0.17 0.17 0.07 0.07 0.02 0.02

Ba 2.53 2.59 4.57 4.71 2.07 2.11 2.18 2.22

B 226.97 231.70 279.29 289.08 204.74 205.77 204.90 207.65

Panel A: 10-Year Maturity

Flat Curve Upward Sloping Humped Shape Downward Sloping

RT RFV RT RFV RT RFV RT RFV

Aaa 0.25 0.25 0.21 0.21 0.16 0.16 0.03 0.03

Aa 0.93 0.94 0.84 0.81 0.64 0.67 0.41 0.44

A 9.98 10.18 10.27 9.78 10.33 10.70 9.99 10.43

Baa 26.75 27.24 27.01 25.45 26.82 27.94 24.52 25.61

Ba 83.22 84.22 82.65 76.27 76.28 79.27 77.11 80.25

B 315.85 318.48 328.43 299.58 307.38 317.68 306.73 315.66

Panel A: 30-Year Maturity

Flat Curve Upward Sloping Humped Shape Downward Sloping

RT RFV RT RFV RT RFV RT RFV

Aaa 3.46 3.71 1.28 1.17 4.91 5.59 17.67 23.29

Aa 9.85 10.27 3.25 2.69 13.02 14.39 31.76 43.31

A 29.63 30.68 14.64 10.77 35.51 39.76 67.72 95.29

Baa 47.74 48.88 29.14 20.54 55.31 61.88 89.52 128.47

Ba 93.70 94.97 71.71 48.35 100.73 112.52 134.75 197.62

B 246.70 246.03 240.81 158.81 250.35 278.83 266.79 400.51
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Figure 1: Worldcom Inc. Bond Prices

The plot shows prices for nine bonds issued by Worldcom Incorporated at three different dates leading up to their

official default date on 15 July 2002. The bonds are sorted by maturity whose details are found in Table I.
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Figure 2: Term Structure of Interest Rate Sensitivity: B Rating

The plot shows the term structure of sensitivities of coupon bond prices to the default-free interest rate for a

hypothetical company with a speculative-grade B credit rating using the Recovery of Treasury (RT), and Recovery

of Face Value (RFV) recovery assumptions. The negative of the derivative values shown on the y-axis can be

interpreted as the dollar duration of the relevant bond. The coupon (8.00%) is chosen to equal the default-free

interest rate. The leverage ratio (64%) and asset volatility (37%) parameters are taken from Table II. Other

parameters include the constant default-free interest rate (8.00%), constant payout ratio (6.00%), default boundary

(60% of total liabilities) and expected recovery rate (51.31%).

22



0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

maturity

m
od

ifi
ed

 d
ur

at
io

n

RT
RFV

Figure 3: Term Structure of Modified Durations: B Rating

The plot shows the term structure of modified durations for a hypothetical company with a speculative-grade B credit

rating using the Recovery of Treasury (RT), and Recovery of Face Value (RFV) recovery assumptions. The modified

duration is defined as the negative of the derivative divided by the relevant model price. The coupon (8.00%) is

chosen to equal the default-free interest rate. The leverage ratio (64%) and asset volatility (37%) parameters are

taken from Table II. Other parameters include the constant default-free interest rate (8.00%), constant payout ratio

(6.00%), default boundary (60% of total liabilities) and expected recovery rate (51.31%).
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Figure 4: Modified Duration vs. Classical Modified Duration

The plot shows the modified duration graphed against the corresponding classical modified duration for A-rated and

B-rated 8.00% coupon bonds using the Recovery of Treasury (RT) and the Recovery of Face Value (RFV) recovery

forms across 30 different maturities (T = 1, 2, ..., 30). The leverage ratio and asset volatility parameters for the

different credit ratings come from Table II. The remaining parameters are: default-free interest rate (8.00%), payout

rate (6.00%), default boundary (60% of total liabilities) and expected recovery rate (51.31%). Modified duration

is defined as the percentage change in the corporate bond price due to a change in the default-free rate (Equation

9). Classical modified duration is defined as the percentage change in the corporate bond price due to a change in

the promised yield. The ratio between modified duration and classical modified duration equals one plus the credit

spread sensitivity to the default-free rate (Equation 10).
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Figure 5: Credit Spread Sensitivity to Interest Rates: Model and Empirical

The plot shows the sensitivity of credit spreads to default-free interest rates against different credit ratings. Model

sensitivities are calculated using both the Recovery of Treasury (RT) and Recovery of Face Value (RFV) recovery

forms for a generic 8.00% coupon 20-year bond. The leverage ratio and asset volatility parameters for the different

credit ratings come from Table II. The remaining parameters are: default-free interest rate (8.00%), payout rate

(6.00%), default boundary (60% of total liabilities) and expected recovery rate (51.31%). The empirical credit

spread sensitivities are the slope coefficients in the regressions of changes in long-dated corporate yield spreads on

changes in the 10-year Treasury yields performed by Collin-Dufresne, Goldstein, and Martin (2001) across the credit

ratings (see the fifth row in their Table III, Panel C, p. 2189).
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Figure 6: Hypothetical Yield Curve Shapes used in Bond Pricing

The plot shows the 4 different yield curve shapes we assume in comparing defaultable bond pricing in a stochastic

interest rate environment. The yield curves are in terms of the instantaneous forward rates and are generated by

Nelson and Siegel (1987) methodology using the parameters given in the Appendix.
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APPENDIX

A Default-Free Term Structure Model Specification
We describe here the default-free term structure model specification used in Section 5. The value of a default-free
riskless zero coupon bond at time t with maturity date T is

P (t, T ) = EQ
t

�
exp

�
−
Z T

t
r(s)ds

��
(A1)

where r(t) is the process for instantaneous riskless nominal short rate. We consider a term structure model in the

multivariate affine class as described, for example, by Duffie and Kan (1996) and Dai and Singleton (2000). We
introduce the two factors, l(t) and s(t), for which, under the risk-neutral probability measure Q, we assume:

dl(t) = −κll(t)dt + σldzQ
l , (A2)

ds(t) = −κss(t)dt + σsdzQ
s ,

r(t) = g(t) + l(t) + s(t),

where E(dzQ
l dzQ

s ) = ρlsdt and the initial values of both l and s are equal to zero, which is their long-run mean. κl

and κs are reversion parameters of the two factors, while σl and σs are volatility parameters.
The basic bond valuation equation (A1) becomes

P (t, T ) = EQ
t

�
exp

�
−
Z T

t
(g(u) + l(u) + s(u))du

��
= (A3)

exp

�
−
Z T

t
g(u)du

�
· EQ

t

�
exp

�
−
Z T

t
(l(u) + s(u))du

��
.

The expectation on the right hand side has a well-known solution form as seen in Duffie and Kan (1996) so we can

write the bond value as

P (t, T ) = exp

�
−
Z T

t
g(u)du

�
· exp [A(T − t)−Bl(T − t)l(t)−Bs(T − t)s(t)] , (A4)

where after solving the PDE and denoting T − t = T − t, we find

Bl(T − t) =
1− exp(−κl(T − t))

κl
, By(T − t) =

1− exp(−κs(T − t))

κs
, (A5)

A(T − t) =

Z T−t

0
A′(u)du where A′(T − t) =

1

2
σ2

l B2
l (T − t) +

1

2
σ2

sB2
s (T − t) + ρlsσlσsBl(T − t)Bs(T − t).

We would like to calibrate the model to be able to fit the initial yield curve. The solution to the term structure

model (A2)

r(t) = g(t) + σle
−κlt

Z t

0
eκludzl(u) + σse−κst

Z t

0
eκsudzs(u) (A6)

The time dependent intercept g(t) will embed any information regarding the initial yield curve. From (A4) we can

express the initial yield curve as the set of zero coupon bond prices at time 0

P (0, T ) = exp

�
−
Z T

0
g(u)du + A(T )

�
, (A7)

since l(0) = 0 and s(0) = 0 by construction. Taking logs and differentiating with respect to T on both sides of the

equation (A7) and then substituting from (A5)we arrive at

f(0, T ) = −d log P (0, T )

dT
, (A8)

g(T ) = −d log P (0, T )

dT
+

dA(T )

dT
= (A9)

f(0, T ) +
1

2
σ2

l B2
l (T ) +

1

2
σ2

sB2
s (T ) + ρlsσlσsBl(T )Bs(T ), (A10)
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where f(0, T ) is the initial instantaneous forward rate curve. We can substitute this term into equation (A6) to

arrive at our new expression for the short rate path

r(t) = f(0, t) +
1

2
σ2

l B2
l (t) +

1

2
σ2

sB2
s (t) + ρlsσlσsBl(t)Bs(t) (A11)

+σle
−κlt

Z t

0
eκludzl(u) + σse−κst

Z t

0
eκsudzs(u)

From this expression it is clear how the short rate path used to value all interest rate sensitive claims can be

calibrated to initial market data – via the forward rate curve.

B Simulation Pricing Procedure
This section describes the Monte Carlo simulation procedure used for pricing the defaultable bonds under a stochastic
interest rate environment with the term structure model specified above in (11). The simulations are performed on
the basis of the Euler discretization of the following continuous-time data generating process:

dl(t) = −κll(t)dt + σldzQ
l ,

ds(t) = −κss(t)dt + σsdzQ
s ,

dxt = (r(t)− δ − σ2
V

2
)dt + σV dzQ

V , (B1)

r(t) = g(t) + l(t) + s(t),

where E(dzQ
l dzQ

s ) = ρlsdt, E(dzQ
l dzQ

V ) = ρlV dt, E(dzQ
s dzQ

V ) = ρsV dt. The initial values of l(t) and s(t) are equal
to zero, while the initial value of x(t) is x0. Default occurs the first time x(t) hits zero. We employ a Cholesky
factorization of the correlation matrix Σ of the random processes zi, i = {V, l, s} so we can write the system in
terms of independent Wiener processes wi, i = {V, l, s}:

z = Mw,

and
MMᵀ = Σ,

where M is a lower triangular matrix.
After we have rewritten the dynamics in terms of the independent processes wi, i = {V, l, s} we discretize our

continuous time equations at equal time steps ∆t. For x(t), we do a simple Euler discretization. For l(t) and s(t)
we discretize their continuous closed-form solutions.

We generate N (N = 100000) paths of x and the short rate r using the antithetic variable technique and 52
steps per year. Defaultable bond valuation is attained as follows. First, the promised cash flows would be generated
for each path. Second, if default has occurred for a specific path the promised cash flows would be altered in a way
specific to the recovery form assumed. Once the default-adjusted cash flow paths have been generated we discount
each cash flow path at the relevant riskfree short rate path. That is the rate path which produced the default path
associated with the default-adjusted cash flow path. The mean of these N values can be considered the crude Monte
Carlo estimated bond price.

The presence of a default boundary implies that the Crude Monte Carlo price suffers an overpricing bias. Once
we sample our continuous time processes at discrete time intervals we do not get as many default-triggering “hits”
in our simulation as we would expect under our risk-neutral pricing measure. This is due to the fact that for any
nonzero time interval discretization induces a bias since many time points at which low values of the variable x could
occur are ignored. Narrowing the time step shrinks the bias toward zero, but time steps small enough to produce
accurate answers may be computationally quite burdensome. To correct this bias we implement the technique
developed by Beaglehole, Dybvig, and Zhou (1997). Their technique draws on the theory of the Brownian bridge.
After we have generated the paths for x(t) in our crude simulation we treat each discrete time interval as two ends
of a Brownian bridge. We then draw the minimum (as we are interested in x(t) reaching zero) of the path process
on the interval using the known theoretical distribution of a Brownian bridge on an interval.

C Generating Hypothetical Yield Curves
We generate 4 yield curve shapes: 1) flat curve; 2) upward-sloping curve; 3) humped-shape curve; and 4) downward
sloping curve. We produce curves in terms of the instantaneous forward rate curve. Generating the flat curve
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is straightforward. For the remaining types we used the Nelson and Siegel (1987) methodology which fits term
structures using the following form for the initial instantaneous forward rate curve:

f(0, m) = β0 + β1 exp

�−m

u

�
+ β2

�
m

u
exp

�−m

u

��
(C1)

where m is a particular maturity point on the yield curve while β0, β1, β2,and u are parameters. We choose
parameters such that the sought for shapes are generated and that the average instantaneous forward rate over the
first ten years is equal to 0.08. The curves are shown in Figure 6. The parameter values chosen are as follows:

Flat: β0 = 0.08, β1 = 0, β2 = 0

Upward-Sloping: β0 = 0.08, β1 = −0.05, β2 = 0.14, u = 12.05

Humped-Shape: β0 = 0.07, β1 = −0.04, β2 = 0.143, u = 1

Downward-Sloping: β0 = −.01, β1 = 0.1068, β2 = 0.085, u = 10.00
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