Statistics (2016/2017)



Course code
4S00121
Credits
9
Coordinator
Marco Minozzo
Academic sector
SECS-S/01 - STATISTICS
Language of instruction
Italian
Teaching is organised as follows:
Activity Credits Period Academic staff Timetable
lezione 7 primo semestre triennali Marco Minozzo
esercitazione 2 primo semestre triennali Mauro Mussini

Lesson timetable

primo semestre triennali
Activity Day Time Type Place Note
lezione Monday 10:10 AM - 11:40 AM lesson Lecture Hall A  
lezione Tuesday 10:10 AM - 11:40 AM lesson Lecture Hall A  
lezione Thursday 2:00 PM - 3:30 PM lesson Lecture Hall A  
lezione Friday 8:30 AM - 10:00 AM lesson Lecture Hall A  

Learning outcomes

The course provides to students in economic and business sciences an introduction to probability and to descriptive and inferential statistics.
Prerequisite to the course is the mastering of a few basic mathematical concepts such as limit, derivative and integration at the level of an undergraduate first year introductory course in calculus.

Syllabus

Descriptive Statistics: data collection and classification; data types; frequency distributions; histograms and charts; measures of central tendency; arithmetic mean, geometric mean and harmonic mean; median; quartiles and percentiles; fixed and varying base indices; Laspayres and Paasche indices; variability and measures of dispersion; variance and standard deviation; coefficient of variation; moments; indices of skewness and kurtosis; multivariate distributions; scatterplots; covariance; variance of the sum of more variables; method of least squares; least-squares regression line; Pearson’s coefficient of linear correlation r; Cauchy-Schwarz inequality; R-square coefficiente; deviance residual and deviance explained; multivariate frequency distributions; conditional distributions; chi-squared index of dependence; index of association C; Simpson’s paradox.

Probability: events, probability spaces and event trees; combinatorics; conditional probability; independence; Bayes theorem; discrete and continuous random variables; distribution function; expectation and variance; Markov and Tchebycheff inequalities; discrete uniform distribution; Bernoulli distribution; binomial distribution; Poisson distribution; geometric distribution; continuous uniform distribution; normal distribution; exponential distribution; multivariate discrete random variables; joint probability distribution; marginal and conditional probability distributions; independence; covariance; correlation coefficient; linear combinations of random variables; average of random variables; weak law of large numbers; Bernoulli’s law of large numbers for relative frequencies; central limit theorem.

Inferential Statistics: sample statistics and sampling distributions; chi-square distribution; Student-t distribution; Snedecors-F distribution; point estimates and estimators; unbiasedness; efficiency; consistency; estimate of the mean, of a proportion and of a variance; confidence intervals for a mean, for a proportion (large samples) and for a variance; hypothesis testing; one and two tails tests for a mean, for a proportion (large samples) and for a variance; hypothesis testing for differences in two means, two proportions (large samples) and two variances.

The course consists of a series of lectures (56 hours) and of twelve exercise classes (24 hours).
All classes are essential to a proper understanding of the topics of the course.
The working language is Italian.

Assessment methods and criteria

The course is considered completed if the candidate has passed the two parts of the written test.
Students must receive at least 15 out of 30 in both parts of the written test.
An intermediate examination paper on the first part of the program is planned for the beginning of November 2016.
The passing of this intermediate examination paper can entail an increase of at most three points of the result obtained in the written test during the two winter examination sessions.

Reference books
Activity Author Title Publisher Year ISBN Note
lezione D. Giuliani, M. M. Dickson Analisi statistica con Excel Maggioli Editore 2015 8838789908
lezione M. R. Middleton Analisi statistica con Excel Apogeo, Milano 2004
lezione F. P. Borazzo, P. Perchinunno Analisi statistiche con Excel Pearson, Education 2007
lezione S. Bernstein, R. Bernstein Calcolo delle Probabilita', Collana Schaum's, numero 110. McGraw-Hill, Milano 2003
lezione A. Azzalini Inferenza Statistica: Una presentazione basata sul concetto di verosimiglianza (Edizione 2) Springer Verlag Italia 2001 9788847001305 Laurea in Matematica Applicata
lezione E. Battistini Probabilità e statistica: un approccio interattivo con Excel McGraw-Hill, Milano 2004
lezione D. Piccolo Statistica Il Mulino 2000 8815075968
lezione S. Bernstein, R. Bernstein Statistica descrittiva, Collana Schaum's, numero 109 McGraw-Hill, Milano 2003
lezione S. Bernstein, R. Bernstein Statistica inferenziale, Collana Schaum's, numero 111. McGraw-Hill, Milano 2003
lezione D. Piccolo Statistica per le decisioni Il Mulino 2004 8815097708
lezione P. Klibanoff, A. Sandroni, B. Moselle, B. Saraniti Statistica per manager (Edizione 1) Egea 2010 9788823821347
lezione G. Cicchitelli Statistica: principi e metodi (Edizione 2) Pearson Italia, Milano 2012 Libro di testo
lezione D. M. Levine, D. F. Stephan, K. A. Szabat Statistics for Managers Using Microsoft Excel, Global Edition (Edizione 7) Pearson 2014 0133061817
Teaching aids
Title Format (Language, Size, Publication date)
01) Informazioni sul corso  pdfpdf (it, 391 KB, 27/09/16)
02) Commissioni di esame A.A. 2016-2017  pdfpdf (it, 258 KB, 27/09/16)

Student opinions - 2015/2016


Statistics about transparency requirements (Attuazione Art. 2 del D.M. 31/10/2007, n. 544)

Data from AA 2016/2017 are not available yet