Matematica (2004/2005)

Corso disattivato

L'insegnamento è organizzato come segue:
Modulo Crediti Settore disciplinare Periodo Docenti
LEZIONE 7 SECS-S/06-METODI MATEMATICI DELL'ECONOMIA E DELLE SCIENZE ATTUARIALI E FINANZIARIE 1° Sem Lez Alberto Roveda
ESERCITAZIONE 3 Vedi pagina del modulo Vedi pagina del modulo

Obiettivi formativi

Il corso ha lo scopo di fornire le nozioni e i modelli matematici di base.

Programma

Elementi di base
Insiemi. Sottoinsiemi. Insieme delle parti. Unione, intersezione. Insieme complementare. Prodotto cartesiano di insiemi. Insiemi numerici: numeri naturali, interi, razionali, reali. Cenni di geometria analitica. Equazioni e disequazioni. Relazioni. Funzioni.
Intervalli. Valore assoluto, distanza, intorno, cenni di topologia in ℜ. Maggiorante e minorante. Massimo e minimo. Estremo superiore ed estremo inferiore. Insieme limitato e illimitato.
Funzioni di una variabile (reale)
Grafico di una funzione. Proprietà delle funzioni. Funzione composta. Funzione identità. Funzione inversa. Funzioni elementari.
Limiti
Definizione di limite, teoremi sui limiti, algebra dei limiti. Continuità. Calcolo di limiti. Forme indeterminate. Limiti notevoli. Simboli di Landau. Infiniti e infinitesimi.
Calcolo differenziale
Definizione di derivata. Funzione derivabile. Retta tangente. Differenziabilità. Derivata di ordine n. Formula di Taylor. Regole di derivazione. Proprietà della derivata. Estremanti relativi. Punti stazionari. Teoremi di Rolle e di Lagrange. Funzione convessa. Convessità e segno della derivata seconda. Punti di flesso. Studio di funzione.
Funzioni di più variabili (reali)
Dominio e curve di livello. Continuità, derivabilità parziale, gradiente e differenziabilità.
Teoria dell’Integrazione
Definizione di integrale di Riemann. Condizione di integrabilità di Riemann. Additività e monotonia dell'integrale. Condizioni sufficienti di integrabilità. Teorema della media integrale. Teorema fondamentale del calcolo integrale. Integrale indefinito. Calcolo dell'integrale mediante una primitiva. Metodi elementari di integrazione. Integrazione per parti e per sostituzione.
Spazi
Gli spazi vettoriali. Lo spazio n ℜ. Struttura algebrica e struttura metrica: addizione e moltiplicazione scalare, prodotto scalare, norma, distanza. Sottospazio. Combinazione lineare. Dipendenza e indipendenza lineare. Insieme di generatori. Base e dimensione di uno spazio vettoriale. Base canonica di n ℜ.
Matrici
Matrice. Operazioni sulle matrici: addizione e moltiplicazione scalare. Moltiplicazione righe per colonne di matrici. Matrici invertibili. Matrice trasposta. Matrici simmetriche. Complemento algebrico. Definizione costruttiva di determinante. Alcune proprietà del determinante. Regola di Sarrus. Teoremi di Laplace. Caratterizzazione delle matrici invertibili. Calcolo della matrice inversa. Rango di una matrice. Proprietà del rango.
Sistemi di equazioni lineari
Teorema di Rouché-Capelli. Teorema di Cramer. Regola di Cramer per il calcolo delle soluzioni di un sistema. Sistemi omogenei e sistemi parametrici.

Libri di testo
DOLCI P.V., Matematica Generale, CEDAM, Padova.
DOLCI P.V., MARANGONI G.D., Esercitazioni di Matematica. CEDAM, Padova.

Modalità d'esame

L’esame consiste in una prova scritta da superare con un punteggio minimo per essere ammessi alla prova orale.